Shortest Paths and Probabilities on

<u>Time-Dependent Graphs -</u> <u>Applications to Transport</u> <u>Networks</u>

<u>Sébastien FELIX – Orange Labs</u> Jerome GALTIER – Orange Labs

Workshop DIMACS. – Paris

Agenda

- Our framework
- How do we model a Network?
- Shortest Path algorithms
- <u>Why do we use time dependence?</u>
- Our algorithm
- Conclusion and further work

Our framework

- Model transport networks
- <u>« How long will last my journey with a</u> probability of at least 99 % ? »
- <u>« What is the path from v_i to v_j which</u> <u>length is the lowest guaranteed with a</u> <u>probability of at least 99 % ? »</u>

٠

٠

٠

)

)

travelling time of e₂ (in mins)

travelling time of e_2 (in mins)

travelling time of e_2 (in mins)

Shortest path algorithms

<u>Principle of Optimality :</u>
<u>Every subpath of a shortest path is a</u>
<u>shortest path</u>

Shortest path algorithms

• Dijstra : complexity of O(m+n.ln(n))

• Bellman-Ford : complexity of O(n^3)

į

Why do we use time dependence?

Why do we use time dependence?

- Number of sensors is increasing :
 - ✤ GPS on mobile phones
 - ✤ CCTV cameras
 - ✤ Magnetic loops
 - Embedded accelerometers and compasses
- load and travelling times are linked

Link between the load $x_{\underline{e}}$ and the travelling time $t_{\underline{e}}$ of a road \underline{e} (pictures from « Flows over time with load-dependent transit times », E. Kôhler and M. Skutella)

Our algorithm

• FIFO property

• Principle of optimality

Probability density

 $\delta_e(t_d, \cdot) = \text{probability density function}$ of the random variable that gives the time needed to traverse *e* starting at t_d .

$$p_e(t_d, t_p) = \int_{-\infty}^{t_p} \delta_e(t_d, \epsilon) d\epsilon$$

Probability density

$$\delta_{e+e'}(t_d, t_p) = \int_{z=-\infty}^{+\infty} \delta_e(t_d, z) \delta_{e'}(t_d + z, t_p - z) dz$$

$p_{e+e'}(t_d, t_p) \ge p_e(t_d, t_1) * p_{e'}(t_d + t_1, t_p - t_1)$

Our input data

- Let $\eta = 1 10^{-N}$, with N > 0
- Let N = 2:

$$- \underline{\eta}^{0} = \underline{1}$$

- $\underline{\eta}^{1} = 0.99$
- $\underline{\eta}^{2} = 0.9801 \approx 0.98$
- $\underline{\eta}^{3} = 0.970299 \approx 0.97$

Conclusion and further work

- <u>Shortest path algorithms on time-</u> <u>dependent graphs</u>
- Result given with a certain accuracy
- Computing $c_{\underline{e}}(t_{\underline{d}}, p)$ functions
- Analyse data from sensors
- Get closer to the continuous model

Questions?