IBM

Smart Cities – How Can Data Mining and Optimization Shape Future Cities?

Francesco Calabrese

SmarterCities Technology Centre

Advisory Research Staff Member, Analytics & Optimization Smarter Cities Technology Centre IBM Research and Development - Ireland

IBM Research and Development - Ireland

IBM Research Worldwide

Smarter Cities Technology Centre

Many Visions of what a Smarter City might be

A "mission control" for infrastructure

A totally "wired" city

SmarterCities Technology Centre

A showcase for urban planning concepts

A self-sufficient, sustainable eco-city

© 2011 IBM Corporation

But we know they'll intensively leverage ICT technologies

Intelligent Transportation Systems

- Integrated Fare Management
- Road Usage Charging
- Traffic Information Management

Energy Management

- Network Monitoring & Stability
- Smart Grid Demand Management
- Intelligent Building Management
- Automated Meter Management

Water Management

- Water purity monitoring
- Water use optimization
- Waste water treatment optimization

Telecommunications

- Fixed and mobile operators
- Media Broadcasters

Public Safety

- Surveillance System
- Emergency Management Integration
- Micro-Weather Forecasting

Environmental Management

- City-wide Measurements
- KPI's
- CO2 Management
- Scorecards
- Reporting

SmarterCities Technology Centre

© 2011 IBM Corporation

How can we help cities achieve their aspirations?

- Data diversity, heterogeneity
- Data accuracy, sparsity
 - Data volume

1. Modelling human demand

- Understand how people use the city infrastructure
- Infer demand patterns

SmarterCities Technology Centre

1. Operations & Planning

Factor in uncertainty

Outline

Sensor data assimilation

Continuous assimilation of real-time traffic data

Understanding/Modeling human demand

Characterizing urban dynamics from digital traces

Operations & Planning

 Leveraging mathematical programming for planning in an uncertain world

Our Stockholm Experience (2009)

Noisy GPS Data

- To become useful, GPS data has to be related to the underlying infrastructure (e.g., road or rail network) by means of map matching algorithms, which are often computationally expensive
- In addition, GPS data is sampled at irregular possibly large time intervals, which requires advanced analytics to reconstruct with high probability GPS trajectories
- Finally, GPS data is not accurate and often needs to be cleaned to remove erroneous observations.

Real-Time Geomapping and Speed Estimation

Real-Time Traffic Information

SmarterCities Technology Centre

Our Dublin Experience (2011)

- Complex system & analytics challenges
 - Data diversity, heterogeneity
 - Data accuracy, sparsity
 - Data volume

- Active relationship with DCC
- Deployed in Dublin's DoT

IBM

InfoSphere Streams

Our Dublin Experience (2011)

- Complex system & analytics challenges
 - Data diversity, heterogeneity
 - Data accuracy, sparsity
 - Data volume

Deployed in Dublin's DoT

700 intersections⁵

1,000 buses 3,000 GPS / min

4,000 loop detectors 20,000 tuples / min

Æ

200 CCTV cameras

Our Dublin Experience (2011)

- Complex system & analytics challenges
 - Data diversity, heterogeneity
 - Data accuracy, sparsity
 - Data volume

- Active relationship with D
- Deployed in Dublin's DoT

InfoSphere

Our Dublin Experience (2011)

- Active relationship with D
- Deployed in Dublin's DoT

2000

2500

500

1000

Time (seconds)

1500

Outline

Sensor data assimilation

Continuous assimilation of real-time traffic data

Understanding/Modeling human demand

Characterizing urban dynamics from digital traces

Operations & Planning

 Leveraging mathematical programming for planning in an uncertain world

Pervasive Technologies Datasets as Digital Footprints

Understand how people use the city's infrastructure

- Mobility (transportation mode)
- Consumption (energy, water, waste)
- Environmental impact (noise, pollution)

Potentials

- Improve city's services
 - Optimize planning
 - Minimizing operational costs
- Create feedback loops with citizens to reduce energy consumption and environmental impact

Understanding Urban Dynamics

- Research goals
 - Understanding human behavior in terms of mobility demand
 - Analyzing and predicting transportation needs in short & long terms
- Outcome
 - Help citizens navigating the city
 - Design adaptive urban transportation systems
 - Support urban planning and design

Mobile phones to detect human mobility and interactions

Received Signal Strength (RSS)

Example of extracted trajectory over 1 week

F. Calabrese, M. Colonna, P. Lovisolo, D. Parata, C. Ratti, Real-Time Urban Monitoring Using Cell Phones: a Case Study in Rome, IEEE Transactions on Intelligent Transportation Systems, 2011.

How social events impact mobility in the city

Modeling and predicting non-routine additive origin-destination flows in the city

F. Calabrese, F. Pereira, G. Di Lorenzo, L. Liu, C. Ratti, "The geography of taste: analyzing cell-phone mobility and social events", In International Conference on Pervasive Computing, 2010.

Detecting and predicting travel demand

(b) Boston Red Sox vs. Baltimore

(d) Shakespeare on the Boston

Location based services

Cold start problem

Applications

- Improving event planning & management
 - Predicting the effect of an event on the urban transportation
 - Adapting public transit (schedules and routes) to accommodate additional demand

Recommending social events

 Average rank

 Popular in Area (3)

 TF-IDF (4)

 Popular (1)

 Popular (1)

 10-Nearest-Events (6)

 30-Nearest Locations (5)

 Geographically Close (2)

 0.1

•

•

Francesco Calabrese

Modeling Urban Mobility: bike sharing system

Bike sharing systems

- Implemented in many cities, starting from europe Used by locals and tourists Reducing private and other public transport demand •
- •

SmarterCities Technology Centre

Modeling Urban Mobility: Spatio-Temporal Patterns

- Analyze spatio-temporal pattern of bike availability •
- Infer correlation between stations (origin and destination of bike rides) •
- Predict, long and short term Number of available bikes •

 - Number of available returning spots

IBM

Modeling Urban Mobility: journey advisor

- Build a journey advisor application able to suggest which station to use to
 - Minimize travel time
 - Maximize probability to find and return bike

SmarterCities Technology Centre

(c) the best (t = 800)

Outline

Sensor data assimilation

Continuous assimilation of real-time traffic data

Understanding/Modeling human demand

• Characterizing urban dynamics from digital traces

Operations & Planning

 Leveraging mathematical programming for planning in an uncertain world

Overview

- Design and planning of urban infrastructures
 - Transportation
 - Water distribution and treatment
 - Energy
- "Standard" optimization approaches minimize costs while meeting demand
- Additional environmental objectives
 - Minimize carbon footprint
 - Meet pollution reduction targets
- Additional challenge capturing uncertainty, such as:
 - Population growth and urban dynamics
 - Rainfall
 - Renewable energy sources
 - Energy costs

Planning Levels

© 2011 IBM Corporation

Example: Transportation infrastructure

Types of decisions:

- The routes to create or expand
- The combination of transport modes
- The capacity of each route

• For alternative transport (e.g. "zipcar", city bikes, electric vehicle stations), the location and capacity of each station

Example: Transportation infrastructure

Sources of uncertainty:

•Origin-destination matrices

"How sensitive is the investment plan to variations in the O-D matrices?"

Population growth

"How will a 10% increase in population affect our carbon footprint?"

•Changes in the built environment

"How will industrial expansion affect the infrastructure?"

•Transport mode preference

"How sensitive is the plan to people's preference for alternative transport?"

© 2010 Google Image MassGIS, Commonwealth of Massachusetts EOEA

SmarterCities Technology Centre

Traditional vs. Proposed Approach

Traditional vs. Proposed Approach

IBM

Challenges

- Capturing and generalizing user requirements
- Identifying and comparing best existing methods for
 - Scenario creation
 - Uncertainty and sensitivity analysis (e.g. stochastic programming, robust optimization, simulation, genetic algorithms)
- Researching new methods where current methods are lacking

IBM

How can we help cities achieve their aspirations?

Sensor data assimilation

From noisy data... ... to uncertain information

Modeling human demand
 Capturing uncertainty

Operations & Planning Factoring in uncertainty

SmarterCities Technology Centre

Thanks Francesco Calabrese fcalabre@ie.ibm.com

© 2011 IBM Corporation

Publications

- The Connected States of America. Can data help us think beyond state lines?, **Time Magazine**, 11 April 2011
- F Calabrese, D Dahlem, A Gerber, D Paul, X Chen, J Rowland, C Rath, C Ratti, The Connected States of America: Quantifying Social Radii of Influence, International Conference on Social Computing, 2011.
- F. Calabrese, G. Di Lorenzo, L. Liu, C. Ratti, "Estimating Origin-Destination flows using opportunistically collected mobile phone location data from one million users in Boston Metropolitan Area", **IEEE Pervasive Computing**, 2011.
- G. Di Lorenzo, F. Calabrese, "Identifying Human Spatio-Temporal Activity Patterns from Mobile-Phone Traces", IEEE ITSC, 2011
- F. Calabrese, Z. Smoreda, V. Blondel, C. Ratti, "The Interplay Between Telecommunications and Face-to-Face Interactions-An Initial Study Using Mobile Phone Data", **PLoS ONE**, 2011.
- D. Quercia, G. Di Lorenzo, F. Calabrese, C. Ratti, "Mobile Phones and Outdoor Advertising: Measurable Advertising", IEEE Pervasive Computing, 2011.
- F. Calabrese, M. Colonna, P. Lovisolo, D. Parata, C. Ratti, "Real-Time Urban Monitoring Using Cell Phones: a Case Study in Rome", IEEE Transactions on Intelligent Transportation Systems, 2011.
- L. Gasparini, E. Bouillet, F. Calabrese, O. Verscheure, Brendan O'Brien, Maggie O'Donnell, "System and Analytics for Continuously Assessing Transport Systems from Sparse and Noisy Observations: Case Study in Dublin", IEEE ITSC, 2011
- A. Baptista, E. Bouillet, F. Calabrese, O. Verscheure, "Towards Building an Uncertainty-aware Multi-Modal Journey Planner", **IEEE ITSC**, 2011
- T. Tchrakian, O. Verscheure, "A Lagrangian State-Space Representation of a Macroscopic Traffic Flow Model", IEEE ITSC, 2011

