DIMACS Workshop On Secure Routing March 10, 2010

How Secure are Secure Interdomain Routing Protocols?

Sharon Goldberg Microsoft Research & Boston University

Michael Schapira Yale & Berkeley Pete Hummon Princeton Jennifer Rexford Princeton **Today, Internet routing is surprisingly insecure**

• Decade of research on secure routing protocols

Our Goal: Compare the effectiveness of these protocols.

- Each has a different set of security properties.
- How well do they prevent traffic attraction attacks?

Our approach: Evaluate via simulation on real data.

- Data: Map of Internet & business relationships
- ... both [CAIDA] and [UCLA Cyclops]
- We use a (standard) model of routing policies
- ... based on the Gao-Rexford conditions

BGP: The Internet's Routing Protocol (1a)

The Border Gateway Protocol (BGP) sets up paths from Autonomous Systems (ASes) to destination IP addresses.

BGP: The Internet's Routing Protocol (1b)

The Border Gateway Protocol (BGP) sets up paths from Autonomous Systems (ASes) to destination IP addresses.

BGP: The Internet's Routing Protocol (2)

The Border Gateway Protocol (BGP) sets up paths from Autonomous Systems (ASes) to destination IP addresses.

A model of routing decisions:

• Prefer cheaper paths. Then, prefer shorter paths.

BGP: The Internet's Routing Protocol (3)

The Border Gateway Protocol (BGP) sets up paths from Autonomous Systems (ASes) to destination IP addresses.

• Only carry traffic if it earns you money.

This talk

Part 1: A model of Interdomain Routing

Part 2: Secure Routing Protocols and Attacks Plain BGP Origin Authentication Secure BGP Interlude: Finding the Optimal Attack Defensive Filtering Interlude: Attract more by announcing less

Part 3: Results and Implications

Attacker wants max number of ASes to route thru its network. (For eavesdropping, dropping, tampering, ...)

A model of routing decisions:

- Prefer cheaper paths. Then, prefer shorter paths.
- Only carry traffic if it earns you money.

Attacker wants max number of ASes to route thru its network. (For eavesdropping, dropping, tampering, ...)

A model of routing decisions:

- Prefer cheaper paths. Then, prefer shorter paths.
- Only carry traffic if it earns you money.

Attacker wants max number of ASes to route thru its network. (For eavesdropping, dropping, tampering, ...) **UPC**, Prefix **UPC**, **Prefix** Init 7 AG UPC Verizon **Zurich** 43284, 20984, **IP Prefix** Prefix 43284 20984, Prefix 20984, Prefix 20984

A model of routing decisions:

- Prefer cheaper paths. Then, prefer shorter paths.
- Only carry traffic if it earns you money.

Attacker wants max number of ASes to route thru its network. (For eavesdropping, dropping, tampering, ...) **UPC**, Prefix **UPC**, **Prefix** Init 7 AG UPC Verizon **Zurich** 43284, 20984, **IP Prefix** Prefix 43284 \bigcirc 20984, Prefix 20984, Prefix 20984

A model of routing decisions:

- Prefer cheaper paths. Then, prefer shorter paths.
- Only carry traffic if it earns you money.

Attacker wants max number of ASes to route thru its network. (For eavesdropping, dropping, tampering, ...)

- Prefer cheaper paths. Then, prefer shorter paths.
- Only carry traffic if it earns you money.

Security Mechanism: Origin Authentication (6)

Origin Authentication: A secure database that maps IP Prefixes to their owner ASes.

Security Mechanism: "Secure BGP" [KLS98]

Public Key Signature: Anyone who knows UPC's public key can authenticate that the message was sent by UPC.

Security Mechanism: "Secure BGP" [KLS98]

Are attacks still possible with Secure BGP? (0)

Are attacks still possible with Secure BGP? (1)

Are attacks still possible with Secure BGP? (2)

Are attacks still possible with Secure BGP? (2)

Are attacks still possible with Secure BGP? (3)

Are attacks still possible with Secure BGP? (4)

Smart Attack Strategy: Announce the shortest path I can get away with to all my neighbors!

Later we'll discuss why this is an "attack"

Wait! Is this the "best" attack strategy?!?

Wait! Is this the "best" attack strategy?!?

Sometimes longer paths are better! (1)

Sometimes longer paths are better! (2) Simulations show he attracts 56% of Internet! With the shorter path, he attracts only 16% of Internet! This is almost as much as attack on insecure BGP: 62%! Init 7 AG UPC Verizon **Zurich IP Prefix** 517 neighbors 43284 Why does this \odot happen? Verizon 4 neighbors 20984 is "bigger" than 43284.

Key Observation: Who you announce to is as important as what you announce.

Has 20984 done anything wrong? He announces the path he actually uses!

A model of routing decisions:

• Prefer cheaper paths. Then, prefer shorter paths.

• Only carry traffic if it earns you money.

Security Heuristic: Defensive Filtering (1)

Defensive Filtering: The provider drops announcements for prefixes not owned by it's stubs.

A model of routing decisions:

• Prefer cheaper paths. Then, prefer shorter paths.

• Only carry traffic if it earns you money.

Security Heuristic: Defensive Filtering (2)

Defensive Filtering: The provider drops announcements for prefixes not owned by it's stubs.

This talk

Part 1: A model of Interdomain Routing

Part 2: Secure Routing Protocols and Attacks Plain BGP Origin Authentication Secure BGP Interlude: Finding the Optimal Attack Defensive Filtering Interlude: Attract more by announcing less

Part 3: Results and Implications

Attract More by Exporting Less (Naïve) ! (1)

Attract More by Exporting Less (Naïve) ! (2)

Attract More by Exporting Less (Naïve) ! (3)

Attract More by Exporting Less (Naïve) ! (4)

Attract More by Exporting Less (Clever) ! (1)

Attract More by Exporting Less (Clever) ! (2)

< **>**

Attract More by Exporting Less (Clever) ! (3)

< **>**

Attract More by Exporting Less (Clever) ! (4)

< **>**

Attract More by Exporting Less (Clever) ! (5)

This talk

Part 1: A model of Interdomain Routing

Part 2: Secure Routing Protocols and Attacks Plain BGP Origin Authentication Secure BGP Interlude: Finding the Optimal Attack Defensive Filtering Interlude: Attract more by announcing less

Part 3: Results and Implications

Probability* the Smart Attack attracts 10% of Internet

Recall that the Smart Attack Strategy underestimates damage.

Probability* Smart Attack attracts >x% of Internet (1)

Recall that the Smart Attack Strategy underestimates damage.

Probability* Smart Attack attracts >x% of Internet (2)

Recall that the Smart Attack Strategy underestimates damage.

Tier 2's are the most effective attackers

*Probability is over random victim and attacker from different classes

Conclusions (1) : Theory & Simulations

- 1) Who you tell is as important as what you say.
 - Secure BGP constrains the paths announced
 - ... but not to whom they are announced.

- 2) Finding the optimal attack is NP hard
 - Announcing shortest paths is not always optimal
 - Exporting to all neighbors is not always optimal
 - → its hard to rigorously compare secure protocols
- 3) Defensive filtering is crucial even with Secure BGP
 - How to find incentives for providers to police stubs?

Conclusions (2): Implementing Defensive Filtering

Today: The provider locally keeps a list of the prefixes that its stubs own.

Relies on altruism & trust

Also, maintaining this list is annoying and hard. But, we could use the origin authentication database!

Origin Authentication: A secure database that maps IP Prefixes to their owner ASes.

⇒Add defensive filtering to the origin authentication standard

Tech Report Available: https://www.cs.bu.edu/~goldbe

How Secure is Routing on the Internet Today? (1)

February 2008 : Pakistan Telecom hijacks Youtube

How Secure is Routing on the Internet Today? (2)

Here's what should have happened....

Block your own customers.

How Secure is Routing on the Internet Today? (3)

But here's what Pakistan ended up doing...

Draw traffic from the entire Internet!