Towards Universal Weakly-Secure Codes for

 Data Exchange and Storage DIMACS workshopNewark, NJ
April 2, 2015

Alex Sprintson
spalex@tamu.edu

Joint work with Swanand Kadhe, Muxi Yan, and Igor Zelenko

Weakly Secure Coding

Set of files to be stored: $S=\left\{S_{1}, S_{2}, \ldots, S_{B_{s}}\right\}$
Set of coded files observed by Eve: E

- Perfectly secure scheme: $I(S ; E)=0$
- Weakly secure scheme: $I\left(S_{i} ; E\right)=0$
- g-weakly secure scheme

$$
I\left(S_{\mathcal{G}} ; E\right)=0 \quad \forall \mathcal{G}:|\mathcal{G}| \leq g
$$

Weakly Secure Coding

Weakly secure against g guesses

$$
I\left(S_{\mathcal{G}} ; E\right)=0 \quad \forall \mathcal{G}:|\mathcal{G}| \leq g
$$

- Equivalent to maximizing the minimum Hamming weight of any vector in the span of the codewords
- Requires that no meaningful information is exposed to Eve
- Example

$$
\begin{gathered}
S_{1}+S_{2}+S_{3}+S_{4} \\
S_{1}+5 S_{2}+12 S_{3}+8 S_{4}
\end{gathered}
$$

Cooperative Data Exchange Problem

Clients need to share their local packets with other clients Clients use a lossless broadcast channel
One packet or function of packet is broadcasted at each time slot. Related to the key distribution and omniscience problems

Eavesdropper

Wants to obtain information about packets held by the clients Has access to any data transmitted over the broadcast channel

g-weak Security

For each subset S_{G} of X of size g or less it holds that $I\left(S_{G} ; P\right)=0$

Example

Eavesdropper can only get value of $x_{1}+x_{2}, x_{2}+x_{4}$, and $x_{4}+x_{5}$,

- cannot get value of the original packets x_{1}, \cdots, x_{4}
- this solution is 1 -weakly secure

Example (cont.)

Eavesdropper cannot obtain a combination of any two original packets This solution is 2-weakly secure

Constrained Matrix Completion Problem

	$p_{1} p_{2} \quad p_{3} \quad p_{4} \quad p_{5} \quad p_{6}$					
(1)	X	X	0	0	X	X
(2)	0	0	X	X	X	X
(3)	X	X	X	X	0	0

Matrix completion problem

When is it possible to complete the matrix so it will satisfy the MDS condition?

- When it does not contain an all zero submatrix of size $a \times b$, such that $a+b \geq O P T+1$

Fragouli, Soljanin, '06
Halbawi, Ho, Yao, Duursma '14
Dau, Song, Yuen '14

Matrix completion problem

Our case: constraints on the code construction

- Due to the side information available at the clients

Random code works with high probability

- Hard to check since finding a minimum distance is an NP-hard problem

Theorem

Can achieve the distance

$$
n-O P T+1
$$

- with high probability at least $1-\binom{n}{O P T} \frac{O P T}{q}$
- requires field size $\binom{q>n}{O P T} O P T$

Deterministic algorithm

Use matrix completion

- Fill $i^{\text {th }}$ entry of the matrix with a value if $G F\left(2^{i}\right) \subset G F\left(2^{i-1}\right)$
- Determinant of any $O P T \times O P T$ matrix is guaranteed to be full rank

Structured Codes

Can we use standard codes, e.g., Reed-Solomon
Then, perform a linear transformation to complete the matrix?
Generalized Reed-Solomon code

$$
G=\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\alpha_{1} & \alpha_{2} & \cdots & \alpha_{n} \\
\vdots & \vdots & \vdots & \vdots \\
\alpha_{1}^{\mu-1} & \alpha_{2}^{\mu-1} & \cdots & \alpha_{n}^{\mu-1}
\end{array}\right]
$$

Structured Codes

Can we use standard codes, e.g., Reed-Solomon
Then, perform a linear transformation to complete the matrix?
$\left[\begin{array}{cccccc}X & X & X & X & 0 & 0 \\ X & X & 0 & 0 & X & X \\ 0 & 0 & X & X & X & X\end{array}\right]=\left[\begin{array}{lll}t_{11} & t_{12} & t_{13} \\ t_{21} & t_{22} & t_{23} \\ t_{31} & t_{32} & t_{33}\end{array}\right]\left[\begin{array}{cccccc}1 & 1 & 1 & 1 & 1 & 1 \\ \alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} & \alpha_{5} & \alpha_{6} \\ \alpha_{1}^{2} & \alpha_{2}^{2} & \alpha_{3}^{2} & \alpha_{4}^{2} & \alpha_{5}^{2} & \alpha_{6}^{2}\end{array}\right]$

Unfortunately, the transformation matrix is not guaranteed to be full-rank

Negative example

A negative example:
$\left[\begin{array}{cccccc}X & X & X & X & 0 & 0 \\ X & X & 0 & 0 & X & X \\ 0 & 0 & X & X & X & X\end{array}\right]=\left[\begin{array}{ccc}t_{11} & t_{12} & t_{13} \\ t_{21} & t_{22} & t_{23} \\ t_{31} & t_{32} & t_{33}\end{array}\right]\left[\begin{array}{cccccc}1 & 1 & 1 & 1 & 1 & 1 \\ \alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} & \alpha_{5} & \alpha_{6} \\ \alpha_{1}^{2} & \alpha_{2}^{2} & \alpha_{3}^{2} & \alpha_{4}^{2} & \alpha_{5}^{2} & \alpha_{6}^{2}\end{array}\right]$
α : primitive element of $G F(8)$ with primitive polynomial $x^{3}+x+1$

Conjecture

If the configuration matrix can be completed to MDS,

- i.e., it does not contain a zero submatrix of dimension $a \times b$ such that $a+b \geq O P T+1$
Then the determinant of T is not identically equal to zero

$$
\left[\begin{array}{cccccc}
X & X & X & X & 0 & 0 \\
X & X & 0 & 0 & X & X \\
0 & 0 & X & X & X & X
\end{array}\right]=\left[\begin{array}{ccc}
t_{11} & t_{12} & t_{13} \\
t_{21} & t_{22} & t_{23} \\
t_{31} & t_{32} & t_{33}
\end{array}\right]\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
\alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} & \alpha_{5} & \alpha_{6} \\
\alpha_{1}^{2} & \alpha_{2}^{2} & \alpha_{3}^{2} & \alpha_{4}^{2} & \alpha_{5}^{2} & \alpha_{6}^{2}
\end{array}\right]
$$

Reformulation of the problem

Let $N_{1}, \ldots N_{\mu}$ be subsets of $[n]$ such that $\left|N_{i}\right|=\mu-1$
Define the collection of μ polynomials P_{1}, \ldots, P_{μ} in $\mathbb{F}\left[\alpha_{1}, \ldots \alpha_{2}\right][x]:$

$$
P_{i}=\prod_{j \in N_{i}}\left(x-\alpha_{j}\right)
$$

Question: Under what condition on the collection of sets $\left\{N_{i}\right\}_{i=1}^{\mu}$ the polynomials $\left\{P_{i}\right\}_{i=1}^{\mu}$ are linearly dependent over the ring $\mathbb{F}\left[\alpha_{1}, \ldots, \alpha_{n}\right]$?

Security for Storage: Motivation

There are numerous service providers
Some of these cloud networks can be compromised
Any of the storage nodes in a compromised network can be eavesdropped

Security for Storage: Challenges

Storage system is a dynamic system with nodes continually failing and being replaced
At a particular node location, eavesdropper can keep on observing the data downloaded during multiple repairs

- Random coding is not helpful

Regenerating Codes

A special class of erasure codes that optimally trade-off storage space for repair bandwidth

- (n, k)-MDS property: any k nodes are sufficient for data reconstruction
- Minimize the repair bandwidth $d \beta$

```
(n,k,d,\alpha,\beta)-Regenerating Code
```


Product-Matrix (PM) Codes

We focus on a special class of regenerating codes,

- Product-Matrix framework based Minimum Bandwidth Regenerating (PM-MBR) Codes
Explicit codes, unlike random coding
Designed for exact regeneration
- Repaired node is an exact replica of the failed node

Construction for all values of (n, k, d)

- Efficient in terms of field size - Very practical!

Product-Matrix (PM) Codes

PM code is obtained by taking a product of encoding matrix Ψ and message matrix M

- Both Ψ and M have have specific structures
- Choosing Ψ as a Vandermonde or a Cauchy matrix works

Eavesdropping a PM-MBR Code

G

Coset Coding Based Outer Codes

Can we utilize the elegant structure of Product Matrix codes to explicitly design H that satisfies the condition above?

Outer Code Design

How to design H that satisfies this condition?

$$
\operatorname{rank}\left[\begin{array}{l}
H_{\mathcal{G}^{\prime}} \\
G_{E}
\end{array}\right]=\operatorname{rank}\left(H_{\mathcal{G}^{\prime}}\right)+\operatorname{rank}\left(G_{E}\right)
$$

where $H_{\mathcal{G}^{\prime}}$ is any $(g+1) \times B$ sub-matrix of H

Outer Code Design

How to design H that satisfies this condition?

$$
\operatorname{rank}\left[\begin{array}{l}
H_{\mathcal{G}^{\prime}} \\
G_{E}
\end{array}\right]=\operatorname{rank}\left(H_{\mathcal{G}^{\prime}}\right)+\operatorname{rank}\left(G_{E}\right)
$$

where $H_{\mathcal{G}^{\prime}}$ is any $(g+1) \times B$ sub-matrix of H

Explicit Outer Code Construction

Observation: generator matrix for any node e has the same structure
$G_{e}=\left[\begin{array}{ccccccccc}\Psi(e, 1) & \Psi(e, 2) & \Psi(e, 3) & \Psi(e, 4) & 0 & 0 & 0 & 0 & 0 \\ 0 & \Psi(e, 1) & 0 & 0 & \Psi(e, 2) & \Psi(e, 3) & \Psi(e, 4) & 0 & 0 \\ 0 & 0 & \Psi(e, 1) & 0 & 0 & \Psi(e, 2) & 0 & \Psi(e, 3) & \Psi(e, 4) \\ 0 & 0 & 0 & \Psi(e, 1) & 0 & 0 & \Psi(e, 2) & 0 & \Psi(e, 3)\end{array}\right]$

Notion of type

- A length- B encoding vector $h^{(i)}$ is of type i if it has form as the i-th row of G_{e}
- Essentially, the type specifies the locations of the non-zero coefficients

Explicit Outer Code Construction

Design H such that each row belongs to one of the d types
It is sufficient to specify the number of rows of each type and the values of the non-zero coefficients
Let θ_{i} denote the number of rows of type i that are present in H

- We call θ_{i} as the type cardinality of type i

$$
\theta_{i}= \begin{cases}0 & \text { if } \quad i=1 \\ d-k+j & \text { if } \quad 2 \leq i \leq k-1 \\ d-1 & \text { if } \quad i=k \\ 1 & \text { if } \quad k+1 \leq i \leq d\end{cases}
$$

Explicit Outer Code Construction

Example : $(n=5, k=3, d=4)$ PM-MBR Code, $B=9, B_{s}=7$

$$
H=\left[\begin{array}{ccccccccc}
0 & \hat{\Psi}(1,1) & 0 & 0 & \hat{\Psi}(1,2) & \hat{\Psi}(1,3) & \hat{\Psi}(1,4) & 0 & 0 \\
0 & \hat{\Psi}(2,1) & 0 & 0 & \hat{\Psi}(2,2) & \hat{\Psi}(2,3) & \hat{\Psi}(2,4) & 0 & 0 \\
0 & \hat{\Psi}(3,1) & 0 & 0 & \hat{\Psi}(3,2) & \hat{\Psi}(3,3) & \hat{\Psi}(3,4) & 0 & 0 \\
-- & -- & -- & -- & -- & -- & -- & -- & -- \\
0 & 0 & \hat{\Psi}(1,1) & 0 & 0 & \hat{\Psi}(1,2) & 0 & \hat{\Psi}(1,3) & \hat{\Psi}(1,4) \\
0 & 0 & \hat{\Psi}(2,1) & 0 & 0 & \hat{\Psi}(2,2) & 0 & \hat{\Psi}(2,3) & \hat{\Psi}(2,4) \\
0 & 0 & \hat{\Psi}(3,1) & 0 & 0 & \hat{\Psi}(3,2) & 0 & \hat{\Psi}(3,3) & \hat{\Psi}(3,4) \\
-- & -- & -- & -- & -- & -- & -- & -- & -- \\
0 & 0 & 0 & \hat{\Psi}(1,1) & 0 & 0 & \hat{\Psi}(1,2) & 0 & \hat{\Psi}(1,3)
\end{array}\right]
$$

First three rows are of type 2
Next three rows are of type 3
Last row is of type 4

Theorem

Proposed outer code that results in a g-weakly secure code for $g=d+k-3$
The secure storage capacity of the proposed construction is $B_{s}=B-2$

- Improvement over uncoded security level of $k-1$ guesses
- Roughly twofold enhancement in the security level * Still far from maximum possible level of security * $g_{\max }=B-d-1=\mathcal{O}\left(k^{2}\right)$
* Does not require an increase in the field size

Conclusions

- A promising way to provide reliability and security
- Light-weight alternatives to cryptographic primitives
- In many cases, reliability and security can be provided at no or little additional cost
- Many exciting research problems

