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Classical Coding Formulation

X i in finite field F

Adversary may replace any z packets (min. distance d ≥ 2z + 1)

Decoder must output all packets without error

Fundamental limit: Singleton bound k ≤ n − 2z where k is
dimension of message — achievable by MDS codes
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Motivating Toy Problem

M ∈ {1,2, . . . ,2qR }

X i ∈ {1,2, . . . ,2
q }

M must be recoverable from any two of X1,X2,X3

Adversary may replace one of the three packets

Decoder must output one packet without error



Finite Field Constructions

(3,1) MDS code: Let M ∈ F

Achieves R = 1
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What would it take to achieve R = 2?

H (X i ,X j ) = H (M ) = 2q

Thus I (X i ;X j ) = 0

But if the packets are pairwise independent, then adversary
may replace X3 with an independent copy, yielding distribution

p (x1) p (x2) p (x3)

Decoder cannot tell which is correct
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What would it take to achieve R = 2?

H (X i ,X j ) = H (M ) = ��2q (2 − ϵ )q

Thus I (X i ;X j ) = �0 ϵq

But if the packets are pairwise independent, then adversary
may replace X3 with an independent copy, yielding distribution

p (x1) p (x2) p (x3)

Decoder cannot tell which is correct



A Polytope Code Construction

Let M = (xN ,yN ) where xN ,yN ∈ {1,2,3, . . . ,2k }N

Let zN = xN + yN [xN ,yN ,zN sit in a polytope]

Construct the covariance

Σ? =



xN
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zN
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T

=



〈xN ,xN 〉 〈xN ,yN 〉 〈xN ,zN 〉

〈xN ,yN 〉 〈yN ,yN 〉 〈yN ,zN 〉

〈xN ,zN 〉 〈yN ,zN 〉 〈zN ,zN 〉


Σ? takes infinitesimal rate compared to xN for large N
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MDS structure

xN ,yN ∈ {1,2, . . . ,2k }N : Number of bits = kN

zN ∈ {1,2, . . . ,2k+1}N : Number of bits = (k + 1)N ≈ kN for large k

Thus xN ,yN ,zN are nearly pairwise independent

(xN ,yN ,zN ) form a (3,2) MDS polytope code
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Decoding

Recover the should-be covariance Σ? using majority rule
Given xN ,yN ,zN form the actually-is covariance

Σ =
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If Σxy , Σ?
xy , then either xN or yN is corrupted — zN is safe

Can always identify one safe packet
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xN + yN − zN 
2
= 0 =⇒ xN + yN − zN = 0

Therefore all packets are trustworthy
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Generic polytope code constructions

Message m ∈ {1,2, . . . ,2k }R × N

Calculate covariance Σ? =mmT — included in all packets

Packet data is in the form xN = aTm for integer vector a ∈ ZR

xi =
∑
j

a jm ji ≤
∑
j

a j2
k ≤ 2k+∆ for sufficiently large k

— requires (k + ∆)N bits to store

These constructions can mimic most finite field linear codes
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Main property

Given some subset of packets yN =



xN1
xN2
...

xNp


= Am

Form Σy = (yN ) (yN )T

Without corruption, Σy = AΣ?AT

If Σ , ATΣ?A, then corrupted packets may be localized

If Σ = ATΣ?A, then all quadratic functions are uncorrupted:

For C satisfying CA = 0, ‖CyN ‖2 = 0, so CyN = 0, i.e. all linear
constraints match
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Theorem (Cai-Yeung (2006))

For a single multicast, and an adversary that controls any z
unit-capacity edges:

C = min-cut − 2z

Converse via network version of the Singleton bound
Achievability via network version of (linear) MDS codes

Can be viewed as a separation theorem:

Add redundancy Linear Coding Error Correction

Source: Network: Destination:

Polytope codes allow error detection/correction inside the network
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The Caterpillar Network

1

2

3

4

5

6

S D

Single unicast from S to D

All links have unit capacity

Adversary may control any one of the red edges

Simple upper bound: C ≤ 2



Polytope Code Achievability

Let message m = (xN ,yN ), where xN ,yN ∈ {1, . . . ,2k }N

zN = xN + yN

wN = xN + 2yN

Σ? =mmT

(xN ,yN ,zN ,wN ) form a
(4,2) MDS polytope code

1

2

3

4

5

6

S D

At node 5, determine one uncorrupted packet

At node 6, decode the message and transmit a different
uncorrupted packet

No finite field linear code achieves this rate
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Σ? included in all packets

Nodes 4 and 5 compare covariance of incoming pair of packets
— transmit outcome of comparison
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A Class of Networks Solved by Polytope Codes

Theorem (Kosut-Tong-Tse (2014))
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Network is planar
1 adversary node
No node has more than 2 unit-capacity output edges
No node has more outputs than inputs
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node-based adversary model
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Parameters

α : Storage capacity of single node

β : Download bandwidth when forming new node

n: Number of active storage nodes

k: Number of nodes contacted by data collector (DC) to recover
file

d: Number of nodes contacted to construct new node

z: Number of (simultaneous) adversarial nodes



Existing Bounds

Pawar-El Rouayheb-Ramchandran (2011): Storage capacity is
upper bounded by

C ≤
k−2z−1∑
i=0

min{(d − 2z − i )β , α }

Identical to bound without adversaries where k → k − 2z and
d → d − 2z

Rashmi et al (2012): The Minimum Storage Regeneration
(MSR) and Minimum Bandwidth Regeneration (MBR) points are
achievable with exact repair
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Structure of Polytope Code for DSS

Initial file to store m ∈ {1,2, . . . ,2k }R×N

Covariance Σ? =mmT

All packets are of the form (Σ?,A,xN ) where initially xN = Am

For storage packet xN ∈ {1,2, . . . ,2k }α ×N

For transmission packet xN ∈ {1,2, . . . ,2k }β ×N
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Messages for new node

Choose linear transformation B ∈ Zβ ×α



New Node Construction

Given (Σ?,Ai ,y
N
i ) for i = 1,2, . . . ,d

Recover Σ? using majority rule

Form A =



A1

A2
...

Ad


and yN =



yN1
yN2
...

yNd


Compare AΣ?AT to Σy = (yN ) (yN )T

Form syndrome graph on the vertex set {1,2, . . . ,d }
with edge (i, j ) if[

Ai
A j

]
Σ?

[
Ai
A j

]T
=

[
yNi
yNj

] [
yNi
yNj

]T
Goal: Find trustworthy packets from which to form stored data
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Algorithm to find trustworthy packets

1 Discard all packets not in a clique of size d − z

2 Pick packets i where edge (i, j ) is in the syndrome graph for all
remaining packets j

Any chosen adversarial packet must match covariances with all
d − z honest nodes
If R ≤ (d − z)β , then linear constraints ensure all stored data is
uncorrupted
This procedure always finds at least d − vz packets where

vz = (b z2 c + 1) (d z2 e + 1)

z 1 2 3 4 5 6
vz 2 4 6 9 12 16

Note vz = 2z only for z ≤ 3
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Resulting Achievability Bound

Theorem (Kosut (2013))

There exists a distributed storage code achieving rate

min


 k−vz−1∑

i=0

min{(d − vz − i )β ,α }, (d − z)β , (k − z)α


.

where vz = (b z2 c + 1) (d z2 e + 1).



Achievability Plot
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Outline

Polytope codes in general

Polytope codes in network coding

Polytope codes in distributed storage systems

Polytope codes in multiple descriptions



Adversarial Multiple Descriptions

Problem formulated in Fan-Wagner-Ahmed (2013)

Construct a single code that fails gracefully — fewer adversarial
packets gives smaller distortion

V n ∈ {0,1}n

Ci ∈ {1,2, . . . ,2
nR }

Adversary controls z packets

Distortion: D =
n∑
i=1

d (X i ,X̂ i ) where d is the erasure distortion
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3-Description Example

R = 1/2

Write V n = (xN ,yN ) where xN ,yN ∈ {1,2, . . . ,2k }N

zN = xN + yN

If z = 0, then entire source sequence can be decoded, so D = 0

If z = 1, then one trustworthy packet (half the message) can be
identified, so D = 1/2

Problem: zN is not a systematic part of source V n
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Conclusions

Polytope codes operate on the integers and can mimic most
finite field codes

Covariances are used as checksums, allowing for:
Partial decoding
Distributed error detection/correction

Polytope codes outperform finite field codes, but many
achievable results have no matching converse
— seems to be very hard to find the best polytope code

All results for omniscient adversary — weaker adversary
models require different techniques


