# Polytope Codes in Networks, Storage, and Multiple Descriptions 

Oliver Kosut

Joint work with Lang Tong, David Tse, Aaron Wagner, and Xiaoqing Fan

April 1, 2015

## Networks with Active Adversaries



Distributed system in the presence of active omniscient adversaries

## Networks with Active Adversaries



Distributed system in the presence of active omniscient adversaries
Applications:

- Man-in-the-middle attacks
- Wireless jamming attacks
- Distributed storage systems


## Polytope Codes

A new-ish coding paradigm using:

- linear constructions on the integers
- covariance matrices as checksums


## Polytope Codes

A new-ish coding paradigm using:

- linear constructions on the integers
- covariance matrices as checksums

Advantages:

- Partial decoding
- Distributed detection and correction of adversarial errors


## Classical Coding Formulation



- $X_{i}$ in finite field $\mathbb{F}$
- Adversary may replace any $z$ packets (min. distance $d \geq 2 z+1$ )
- Decoder must output all packets without error
- Fundamental limit: Singleton bound $k \leq n-2 z$ where $k$ is dimension of message - achievable by MDS codes

Classical setting
Must decode all information

Network setting
Partial information may do

- any partial information

Classical setting
Must decode all information

## Network setting

Partial information may do

- any partial information



## Motivating Toy Problem



- $M \in\left\{1,2, \ldots, 2^{q R}\right\}$
- $X_{i} \in\left\{1,2, \ldots, 2^{q}\right\}$
- $M$ must be recoverable from any two of $X_{1}, X_{2}, X_{3}$
- Adversary may replace one of the three packets
- Decoder must output one packet without error


## Finite Field Constructions

$(3,1)$ MDS code: Let $M \in \mathbb{F}$


Achieves $R=1$

## Finite Field Constructions

$(3,2)$ MDS code: Let $M=(x, y), x, y \in \mathbb{F}$


## Finite Field Constructions

$(3,2)$ MDS code: Let $M=(x, y), x, y \in \mathbb{F}$


- If adversary alters one of the packets, decoder cannot tell which


## Finite Field Constructions

$(3,2)$ MDS code: Let $M=(x, y), x, y \in \mathbb{F}$


- If adversary alters one of the packets, decoder cannot tell which
- Finite field code cannot do better than $R=1$


## What would it take to achieve $R=2$ ?



## What would it take to achieve $R=2$ ?



■ $H\left(X_{i}, X_{j}\right)=H(M)=2 q$

## What would it take to achieve $R=2$ ?



- $H\left(X_{i}, X_{j}\right)=H(M)=2 q$
- Thus $I\left(X_{i} ; X_{j}\right)=0$


## What would it take to achieve $R=2$ ?



- $H\left(X_{i}, X_{j}\right)=H(M)=2 q$
- Thus $I\left(X_{i} ; X_{j}\right)=0$
- But if the packets are pairwise independent, then adversary may replace $X_{3}$ with an independent copy, yielding distribution

$$
p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3}\right)
$$

Decoder cannot tell which is correct

## What would it take to achieve $R=2$ ?



- $H\left(X_{i}, X_{j}\right)=H(M)=2 q(2-\epsilon) q$
- Thus $I\left(X_{i} ; X_{j}\right)=\emptyset \in q$
- But if the packets are pairwise independent, then adversary may replace $X_{3}$ with an independent copy, yielding distribution

$$
p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3}\right)
$$

Decoder cannot tell which is correct

## A Polytope Code Construction

- Let $M=\left(x^{N}, y^{N}\right)$ where $x^{N}, y^{N} \in\left\{1,2,3, \ldots, 2^{k}\right\}^{N}$


## A Polytope Code Construction

Let $M=\left(x^{N}, y^{N}\right)$ where $x^{N}, y^{N} \in\left\{1,2,3, \ldots, 2^{k}\right\}^{N}$

- Let $z^{N}=x^{N}+y^{N} \quad\left[x^{N}, y^{N}, z^{N}\right.$ sit in a polytope $]$


## A Polytope Code Construction

$\square$ Let $M=\left(x^{N}, y^{N}\right)$ where $x^{N}, y^{N} \in\left\{1,2,3, \ldots, 2^{k}\right\}^{N}$

- Let $z^{N}=x^{N}+y^{N} \quad\left[x^{N}, y^{N}, z^{N}\right.$ sit in a polytope]
- Construct the covariance

$$
\Sigma^{\star}=\left[\begin{array}{l}
x^{N} \\
y^{N} \\
z^{N}
\end{array}\right]\left[\begin{array}{l}
x^{N} \\
y^{N} \\
z^{N}
\end{array}\right]^{T}=\left[\begin{array}{ccc}
\left\langle x^{N}, x^{N}\right\rangle & \left\langle x^{N}, y^{N}\right\rangle & \left\langle x^{N}, z^{N}\right\rangle \\
\left\langle x^{N}, y^{N}\right\rangle & \left\langle y^{N}, y^{N}\right\rangle & \left\langle y^{N}, z^{N}\right\rangle \\
\left\langle x^{N}, z^{N}\right\rangle & \left\langle y^{N}, z^{N}\right\rangle & \left\langle z^{N}, z^{N}\right\rangle
\end{array}\right]
$$

## A Polytope Code Construction

$\square$ Let $M=\left(x^{N}, y^{N}\right)$ where $x^{N}, y^{N} \in\left\{1,2,3, \ldots, 2^{k}\right\}^{N}$

- Let $z^{N}=x^{N}+y^{N} \quad\left[x^{N}, y^{N}, z^{N}\right.$ sit in a polytope]
- Construct the covariance

$$
\Sigma^{\star}=\left[\begin{array}{l}
x^{N} \\
y^{N} \\
z^{N}
\end{array}\right]\left[\begin{array}{l}
x^{N} \\
y^{N} \\
z^{N}
\end{array}\right]^{T}=\left[\begin{array}{lll}
\left\langle x^{N}, x^{N}\right\rangle & \left\langle x^{N}, y^{N}\right\rangle & \left\langle x^{N}, z^{N}\right\rangle \\
\left\langle x^{N}, y^{N}\right\rangle & \left\langle y^{N}, y^{N}\right\rangle & \left\langle y^{N}, z^{N}\right\rangle \\
\left\langle x^{N}, z^{N}\right\rangle & \left\langle y^{N}, z^{N}\right\rangle & \left\langle z^{N}, z^{N}\right\rangle
\end{array}\right]
$$

- $\Sigma^{\star}$ takes infinitesimal rate compared to $x^{N}$ for large $N$


## A Polytope Code Construction

- Let $M=\left(x^{N}, y^{N}\right)$ where $x^{N}, y^{N} \in\left\{1,2,3, \ldots, 2^{k}\right\}^{N}$
- Let $z^{N}=x^{N}+y^{N} \quad\left[x^{N}, y^{N}, z^{N}\right.$ sit in a polytope]
- Construct the covariance

$$
\Sigma^{\star}=\left[\begin{array}{l}
x^{N} \\
y^{N} \\
z^{N}
\end{array}\right]\left[\begin{array}{l}
x^{N} \\
y^{N} \\
z^{N}
\end{array}\right]^{T}=\left[\begin{array}{ccc}
\left\langle x^{N}, x^{N}\right\rangle & \left\langle x^{N}, y^{N}\right\rangle & \left\langle x^{N}, z^{N}\right\rangle \\
\left\langle x^{N}, y^{N}\right\rangle & \left\langle y^{N}, y^{N}\right\rangle & \left\langle y^{N}, z^{N}\right\rangle \\
\left\langle x^{N}, z^{N}\right\rangle & \left\langle y^{N}, z^{N}\right\rangle & \left\langle z^{N}, z^{N}\right\rangle
\end{array}\right]
$$

■ $\Sigma^{\star}$ takes infinitesimal rate compared to $x^{N}$ for large $N$


## MDS structure



## MDS structure



- $x^{N}, y^{N} \in\left\{1,2, \ldots, 2^{k}\right\}^{N}$ : Number of bits $=k N$


## MDS structure


$\square x^{N}, y^{N} \in\left\{1,2, \ldots, 2^{k}\right\}^{N}$ : Number of bits $=k N$
$\square z^{N} \in\left\{1,2, \ldots, 2^{k+1}\right\}^{N}$ : Number of bits $=(k+1) N \approx k N$ for large $k$

## MDS structure



- $x^{N}, y^{N} \in\left\{1,2, \ldots, 2^{k}\right\}^{N}$ : Number of bits $=k N$
- $z^{N} \in\left\{1,2, \ldots, 2^{k+1}\right\}^{N}$ : Number of bits $=(k+1) N \approx k N$ for large $k$
- Thus $x^{N}, y^{N}, z^{N}$ are nearly pairwise independent


## MDS structure



- $x^{N}, y^{N} \in\left\{1,2, \ldots, 2^{k}\right\}^{N}$ : Number of bits $=k N$
- $z^{N} \in\left\{1,2, \ldots, 2^{k+1}\right\}^{N}$ : Number of bits $=(k+1) N \approx k N$ for large $k$
- Thus $x^{N}, y^{N}, z^{N}$ are nearly pairwise independent
- ( $x^{N}, y^{N}, z^{N}$ ) form a (3,2) MDS polytope code


## Decoding



## Decoding



- Recover the should-be covariance $\Sigma^{\star}$ using majority rule


## Decoding



- Recover the should-be covariance $\Sigma^{\star}$ using majority rule
- Given $x^{N}, y^{N}, z^{N}$ form the actually-is covariance

$$
\Sigma=\left[\begin{array}{ccc}
\left\langle x^{N}, x^{N}\right\rangle & \left\langle x^{N}, y^{N}\right\rangle & \left\langle x^{N}, z^{N}\right\rangle \\
\left\langle x^{N}, y^{N}\right\rangle & \left\langle y^{N}, y^{N}\right\rangle & \left\langle y^{N}, z^{N}\right\rangle \\
\left\langle x^{N}, z^{N}\right\rangle & \left\langle y^{N}, z^{N}\right\rangle & \left\langle z^{N}, z^{N}\right\rangle
\end{array}\right]
$$

## Decoding



■ Recover the should-be covariance $\Sigma^{\star}$ using majority rule

- Given $x^{N}, y^{N}, z^{N}$ form the actually-is covariance

$$
\Sigma=\left[\begin{array}{lll}
\left\langle x^{N}, x^{N}\right\rangle & \left\langle x^{N}, y^{N}\right\rangle & \left\langle x^{N}, z^{N}\right\rangle \\
\left\langle x^{N}, y^{N}\right\rangle & \left\langle y^{N}, y^{N}\right\rangle & \left\langle y^{N}, z^{N}\right\rangle \\
\left\langle x^{N}, z^{N}\right\rangle & \left\langle y^{N}, z^{N}\right\rangle & \left\langle z^{N}, z^{N}\right\rangle
\end{array}\right]
$$

$\square$ By comparing $\Sigma^{\star}$ with $\Sigma$, the decoder can always find a trustworthy packet

## Decoding



Suppose $\Sigma \neq \Sigma^{\star}$ :

## Decoding



Suppose $\Sigma \neq \Sigma^{\star}$ :
$\square$ If $\Sigma_{x x} \neq \Sigma_{x x}^{\star}$, then $x^{N}$ is corrupted - $y^{N}$ and $z^{N}$ are safe

## Decoding



Suppose $\Sigma \neq \Sigma^{\star}$ :

- If $\Sigma_{x x} \neq \Sigma_{x x}^{\star}$, then $x^{N}$ is corrupted - $y^{N}$ and $z^{N}$ are safe
- If $\Sigma_{x y} \neq \Sigma_{x y}^{\star}$, then either $x^{N}$ or $y^{N}$ is corrupted - $z^{N}$ is safe


## Decoding



Suppose $\Sigma \neq \Sigma^{\star}$ :

- If $\Sigma_{x x} \neq \Sigma_{x x}^{\star}$, then $x^{N}$ is corrupted - $y^{N}$ and $z^{N}$ are safe
- If $\Sigma_{x y} \neq \Sigma_{x y}^{\star}$, then either $x^{N}$ or $y^{N}$ is corrupted - $z^{N}$ is safe
- Can always identify one safe packet


## Decoding



Suppose $\Sigma=\Sigma^{\star}$ :

## Decoding



Suppose $\Sigma=\Sigma^{\star}$ :
All quadratic functions of $x^{N}, y^{N}, z^{N}$ must be uncorrupted

## Decoding



Suppose $\Sigma=\Sigma^{\star}$ :

- All quadratic functions of $x^{N}, y^{N}, z^{N}$ must be uncorrupted
- $\left\|x^{N}+y^{N}-z^{N}\right\|^{2}=0 \quad \Longrightarrow \quad x^{N}+y^{N}-z^{N}=0$


## Decoding



Suppose $\Sigma=\Sigma^{\star}$ :
All quadratic functions of $x^{N}, y^{N}, z^{N}$ must be uncorrupted

- $\left\|x^{N}+y^{N}-z^{N}\right\|^{2}=0 \quad \Longrightarrow \quad x^{N}+y^{N}-z^{N}=0$
- Therefore all packets are trustworthy


## Outline

- Polytope codes in general
- Polytope codes in network coding
- Polytope codes in distributed storage systems
- Polytope codes in multiple descriptions


## Outline

- Polytope codes in general
- Polytope codes in network coding
- Polytope codes in distributed storage systems
- Polytope codes in multiple descriptions


## Generic polytope code constructions

- Message $m \in\left\{1,2, \ldots, 2^{k}\right\}^{R \times N}$


## Generic polytope code constructions

- Message $m \in\left\{1,2, \ldots, 2^{k}\right\}^{R \times N}$
$\square$ Calculate covariance $\Sigma^{\star}=m m^{T}$ - included in all packets


## Generic polytope code constructions

- Message $m \in\left\{1,2, \ldots, 2^{k}\right\}^{R \times N}$
- Calculate covariance $\Sigma^{\star}=m m^{T}$ — included in all packets
$\square$ Packet data is in the form $x^{N}=a^{T} m$ for integer vector $a \in \mathbb{Z}^{R}$


## Generic polytope code constructions

- Message $m \in\left\{1,2, \ldots, 2^{k}\right\}^{R \times N}$
- Calculate covariance $\Sigma^{\star}=m m^{T}$ — included in all packets
$\square$ Packet data is in the form $x^{N}=a^{T} m$ for integer vector $a \in \mathbb{Z}^{R}$
$\square x_{i}=\sum_{j} a_{j} m_{j i} \leq \sum_{j} a_{j} 2^{k} \leq 2^{k+\Delta}$ for sufficiently large $k$
- requires $(k+\Delta) N$ bits to store


## Generic polytope code constructions

- Message $m \in\left\{1,2, \ldots, 2^{k}\right\}^{R \times N}$
$\square$ Calculate covariance $\Sigma^{\star}=m m^{T}$ - included in all packets
- Packet data is in the form $x^{N}=a^{T} m$ for integer vector $a \in \mathbb{Z}^{R}$
$\square x_{i}=\sum_{j} a_{j} m_{j i} \leq \sum_{j} a_{j} 2^{k} \leq 2^{k+\Delta}$ for sufficiently large $k$
- requires $(k+\Delta) N$ bits to store

These constructions can mimic most finite field linear codes

## Main property

Given some subset of packets $y^{N}=\left[\begin{array}{c}x_{1}^{N} \\ x_{2}^{N} \\ \vdots \\ x_{p}^{N}\end{array}\right]=A m$

## Main property

Given some subset of packets $y^{N}=\left[\begin{array}{c}x_{1}^{N} \\ x_{2}^{N} \\ \vdots \\ x_{p}^{N}\end{array}\right]=A m$

- Form $\Sigma_{y}=\left(y^{N}\right)\left(y^{N}\right)^{T}$


## Main property

Given some subset of packets $y^{N}=\left[\begin{array}{c}x_{1}^{N} \\ x_{2}^{N} \\ \vdots \\ x_{p}^{N}\end{array}\right]=A m$

- Form $\Sigma_{y}=\left(y^{N}\right)\left(y^{N}\right)^{T}$
- Without corruption, $\Sigma_{y}=A \Sigma^{\star} A^{T}$


## Main property

Given some subset of packets $y^{N}=\left[\begin{array}{c}x_{1}^{N} \\ x_{2}^{N} \\ \vdots \\ x_{p}^{N}\end{array}\right]=A m$

- Form $\Sigma_{y}=\left(y^{N}\right)\left(y^{N}\right)^{T}$
- Without corruption, $\Sigma_{y}=A \Sigma^{\star} A^{T}$

■ If $\Sigma \neq A^{T} \Sigma^{\star} A$, then corrupted packets may be localized

## Main property

Given some subset of packets $y^{N}=\left[\begin{array}{c}x_{1}^{N} \\ x_{2}^{N} \\ \vdots \\ x_{p}^{N}\end{array}\right]=A m$

- Form $\Sigma_{y}=\left(y^{N}\right)\left(y^{N}\right)^{T}$
- Without corruption, $\Sigma_{y}=A \Sigma^{\star} A^{T}$
- If $\Sigma \neq A^{T} \Sigma^{\star} A$, then corrupted packets may be localized
- If $\Sigma=A^{T} \Sigma^{\star} A$, then all quadratic functions are uncorrupted:

For $C$ satisfying $C A=0,\left\|C y^{N}\right\|^{2}=0$, so $C y^{N}=0$, i.e. all linear constraints match

## Outline

- Polytope codes in general
- Polytope codes in network coding
- Polytope codes in distributed storage systems
- Polytope codes in multiple descriptions


## Network Error Correction



- Directed graph of rate-limited noise-free channels

■ Omniscient adversary can control some subset of the network

- Possible adversary control models:
- Any $z$ edges
- Any $z$ nodes
- Any $z$ edges/nodes from a specific area


## Network Error Correction



- Directed graph of rate-limited noise-free channels
- Omniscient adversary can control some subset of the network
- Possible adversary control models:
- Any $z$ edges
- Any $z$ nodes
- Any $z$ edges/nodes from a specific area


## Theorem (Cai-Yeung (2006))

For a single multicast, and an adversary that controls any $z$ unit-capacity edges:

$$
C=\text { min-cut }-2 z
$$

## Theorem (Cai-Yeung (2006))

For a single multicast, and an adversary that controls any z unit-capacity edges:

$$
C=\text { min-cut }-2 z
$$

- Converse via network version of the Singleton bound
- Achievability via network version of (linear) MDS codes


## Theorem (Cai-Yeung (2006))

For a single multicast, and an adversary that controls any z unit-capacity edges:

$$
C=\text { min-cut }-2 z
$$

- Converse via network version of the Singleton bound
- Achievability via network version of (linear) MDS codes

Can be viewed as a separation theorem:


## Theorem (Cai-Yeung (2006))

For a single multicast, and an adversary that controls any z unit-capacity edges:

$$
C=\text { min-cut }-2 z
$$

- Converse via network version of the Singleton bound
- Achievability via network version of (linear) MDS codes

Can be viewed as a separation theorem:


Polytope codes allow error detection/correction inside the network

## The Caterpillar Network



- Single unicast from $S$ to $D$
- All links have unit capacity
- Adversary may control any one of the red edges
- Simple upper bound: $C \leq 2$


## Polytope Code Achievability

Let message $m=\left(x^{N}, y^{N}\right)$, where $x^{N}, y^{N} \in\left\{1, \ldots, 2^{k}\right\}^{N}$


## Polytope Code Achievability

Let message $m=\left(x^{N}, y^{N}\right)$, where $x^{N}, y^{N} \in\left\{1, \ldots, 2^{k}\right\}^{N}$

$$
\begin{aligned}
z^{N} & =x^{N}+y^{N} \\
w^{N} & =x^{N}+2 y^{N} \\
\Sigma^{\star} & =m m^{T}
\end{aligned}
$$



## Polytope Code Achievability

Let message $m=\left(x^{N}, y^{N}\right)$, where $x^{N}, y^{N} \in\left\{1, \ldots, 2^{k}\right\}^{N}$

$$
\begin{aligned}
z^{N} & =x^{N}+y^{N} \\
w^{N} & =x^{N}+2 y^{N} \\
\Sigma^{\star} & =m m^{T}
\end{aligned}
$$

$\left(x^{N}, y^{N}, z^{N}, w^{N}\right)$ form a
$(4,2)$ MDS polytope code


## Polytope Code Achievability

Let message $m=\left(x^{N}, y^{N}\right)$, where $x^{N}, y^{N} \in\left\{1, \ldots, 2^{k}\right\}^{N}$

$$
\begin{aligned}
z^{N} & =x^{N}+y^{N} \\
w^{N} & =x^{N}+2 y^{N} \\
\Sigma^{\star} & =m m^{T}
\end{aligned}
$$

$\left(x^{N}, y^{N}, z^{N}, w^{N}\right)$ form a
$(4,2)$ MDS polytope code


## Polytope Code Achievability

Let message $m=\left(x^{N}, y^{N}\right)$, where $x^{N}, y^{N} \in\left\{1, \ldots, 2^{k}\right\}^{N}$

$$
\begin{aligned}
z^{N} & =x^{N}+y^{N} \\
w^{N} & =x^{N}+2 y^{N} \\
\Sigma^{\star} & =m m^{T}
\end{aligned}
$$

$\left(x^{N}, y^{N}, z^{N}, w^{N}\right)$ form a
$(4,2)$ MDS polytope code


- At node 5, determine one uncorrupted packet


## Polytope Code Achievability

Let message $m=\left(x^{N}, y^{N}\right)$, where $x^{N}, y^{N} \in\left\{1, \ldots, 2^{k}\right\}^{N}$

$$
\begin{aligned}
z^{N} & =x^{N}+y^{N} \\
w^{N} & =x^{N}+2 y^{N} \\
\Sigma^{\star} & =m m^{T}
\end{aligned}
$$

$\left(x^{N}, y^{N}, z^{N}, w^{N}\right)$ form a
$(4,2)$ MDS polytope code


- At node 5, determine one uncorrupted packet
- At node 6, decode the message and transmit a different uncorrupted packet


## Polytope Code Achievability

Let message $m=\left(x^{N}, y^{N}\right)$, where $x^{N}, y^{N} \in\left\{1, \ldots, 2^{k}\right\}^{N}$

$$
\begin{aligned}
z^{N} & =x^{N}+y^{N} \\
w^{N} & =x^{N}+2 y^{N} \\
\Sigma^{\star} & =m m^{T}
\end{aligned}
$$

$\left(x^{N}, y^{N}, z^{N}, w^{N}\right)$ form a
$(4,2)$ MDS polytope code


- At node 5, determine one uncorrupted packet
- At node 6, decode the message and transmit a different uncorrupted packet

No finite field linear code achieves this rate

## Cockroach Network



- One node is controlled by the adversary - controls all outgoing messages


## Cockroach Network


$\square$ One node is controlled by the adversary - controls all outgoing messages
$\square$ Let $\left(x^{N}, y^{N}, z^{N}, w^{N}, v^{N}, u^{N}\right)$ be a $(6,2)$ MDS polytope code

## Cockroach Network


$\square$ One node is controlled by the adversary - controls all outgoing messages
$\square$ Let $\left(x^{N}, y^{N}, z^{N}, w^{N}, v^{N}, u^{N}\right)$ be a $(6,2)$ MDS polytope code
$\square \Sigma^{\star}$ included in all packets

## Cockroach Network



- One node is controlled by the adversary - controls all outgoing messages
Let $\left(x^{N}, y^{N}, z^{N}, w^{N}, v^{N}, u^{N}\right)$ be a $(6,2)$ MDS polytope code
$\square \Sigma^{\star}$ included in all packets
- Nodes 4 and 5 compare covariance of incoming pair of packets
- transmit outcome of comparison


## A Class of Networks Solved by Polytope Codes

## Theorem (Kosut-Tong-Tse (2014))

Polytope codes achieve the cut-set bound if

- Network is planar
- 1 adversary node
- No node has more than 2 unit-capacity output edges
- No node has more outputs than inputs


## A Class of Networks Solved by Polytope Codes

## Theorem (Kosut-Tong-Tse (2014))

Polytope codes achieve the cut-set bound if

- Network is planar
- 1 adversary node
- No node has more than 2 unit-capacity output edges
- No node has more outputs than inputs

Examples:


## Outline

- Polytope codes in general
- Polytope codes in network coding
- Polytope codes in distributed storage systems

■ Polytope codes in multiple descriptions

## Distributed Storage Systems



## Distributed Storage Systems



## Distributed Storage Systems



## Distributed Storage Systems



## Distributed Storage Systems

■ Single adversarial node may transmit many times

## Distributed Storage Systems

- Single adversarial node may transmit many times
- Naturally suited to the node-based adversary model


## Distributed Storage Systems

- Single adversarial node may transmit many times
- Naturally suited to the node-based adversary model
- Functional repair rather than exact repair


## Parameters

- $\alpha$ : Storage capacity of single node
- $\beta$ : Download bandwidth when forming new node
- $n$ : Number of active storage nodes
- $k$ : Number of nodes contacted by data collector (DC) to recover file
- d: Number of nodes contacted to construct new node
- $z$ : Number of (simultaneous) adversarial nodes


## Existing Bounds

- Pawar-El Rouayheb-Ramchandran (2011): Storage capacity is upper bounded by

$$
C \leq \sum_{i=0}^{k-2 z-1} \min \{(d-2 z-i) \beta, \alpha\}
$$

Identical to bound without adversaries where $k \rightarrow k-2 z$ and $d \rightarrow d-2 z$

■ Rashmi et al (2012): The Minimum Storage Regeneration (MSR) and Minimum Bandwidth Regeneration (MBR) points are achievable with exact repair

## Existing Bounds, Ctd.

Parameters: $n=8, k=d=7, z=1$


## Structure of Polytope Code for DSS

- Initial file to store $m \in\left\{1,2, \ldots, 2^{k}\right\}^{R \times N}$


## Structure of Polytope Code for DSS

- Initial file to store $m \in\left\{1,2, \ldots, 2^{k}\right\}^{R \times N}$
- Covariance $\Sigma^{\star}=m m^{T}$


## Structure of Polytope Code for DSS

- Initial file to store $m \in\left\{1,2, \ldots, 2^{k}\right\}^{R \times N}$
- Covariance $\Sigma^{\star}=m m^{T}$
- All packets are of the form $\left(\Sigma^{\star}, A, x^{N}\right)$ where initially $x^{N}=A m$


## Structure of Polytope Code for DSS

- Initial file to store $m \in\left\{1,2, \ldots, 2^{k}\right\}^{R \times N}$
- Covariance $\Sigma^{\star}=m m^{T}$
- All packets are of the form $\left(\Sigma^{\star}, A, x^{N}\right)$ where initially $x^{N}=A m$
- For storage packet $x^{N} \in\left\{1,2, \ldots, 2^{k}\right\}^{\alpha \times N}$

For transmission packet $x^{N} \in\left\{1,2, \ldots, 2^{k}\right\}^{\beta \times N}$

## Messages for new node

Choose linear transformation $B \in \mathbb{Z}^{\beta \times \alpha}$


## New Node Construction

Given $\left(\Sigma^{\star}, A_{i}, y_{i}^{N}\right)$ for $i=1,2, \ldots, d$

## New Node Construction

Given $\left(\Sigma^{\star}, A_{i}, y_{i}^{N}\right)$ for $i=1,2, \ldots, d$

- Recover $\Sigma^{\star}$ using majority rule


## New Node Construction

Given $\left(\Sigma^{\star}, A_{i}, y_{i}^{N}\right)$ for $i=1,2, \ldots, d$

- Recover $\Sigma^{\star}$ using majority rule
- Form $A=\left[\begin{array}{c}A_{1} \\ A_{2} \\ \vdots \\ A_{d}\end{array}\right]$ and $y^{N}=\left[\begin{array}{c}y_{1}^{N} \\ y_{2}^{N} \\ \vdots \\ y_{d}^{N}\end{array}\right]$


## New Node Construction

Given $\left(\Sigma^{\star}, A_{i}, y_{i}^{N}\right)$ for $i=1,2, \ldots, d$

- Recover $\Sigma^{\star}$ using majority rule
$\square$ Form $A=\left[\begin{array}{c}A_{1} \\ A_{2} \\ \vdots \\ A_{d}\end{array}\right]$ and $y^{N}=\left[\begin{array}{c}y_{1}^{N} \\ y_{2}^{N} \\ \vdots \\ y_{d}^{N}\end{array}\right]$
- Compare $A \Sigma^{\star} A^{T}$ to $\Sigma_{y}=\left(y^{N}\right)\left(y^{N}\right)^{T}$


## New Node Construction

Given $\left(\Sigma^{\star}, A_{i}, y_{i}^{N}\right)$ for $i=1,2, \ldots, d$

- Recover $\Sigma^{\star}$ using majority rule
$\square$ Form $A=\left[\begin{array}{c}A_{1} \\ A_{2} \\ \vdots \\ A_{d}\end{array}\right]$ and $y^{N}=\left[\begin{array}{c}y_{1}^{N} \\ y_{2}^{N} \\ \vdots \\ y_{d}^{N}\end{array}\right]$
- Compare $A \Sigma^{\star} A^{T}$ to $\Sigma_{y}=\left(y^{N}\right)\left(y^{N}\right)^{T}$
- Form syndrome graph on the vertex set $\{1,2, \ldots, d\}$ with edge $(i, j)$ if

$$
\left[\begin{array}{c}
A_{i} \\
A_{j}
\end{array}\right] \Sigma^{\star}\left[\begin{array}{c}
A_{i} \\
A_{j}
\end{array}\right]^{T}=\left[\begin{array}{l}
y_{i}^{N} \\
y_{j}^{N}
\end{array}\right]\left[\begin{array}{l}
y_{i}^{N} \\
y_{j}^{N}
\end{array}\right]^{T}
$$

## New Node Construction

Given $\left(\Sigma^{\star}, A_{i}, y_{i}^{N}\right)$ for $i=1,2, \ldots, d$

- Recover $\Sigma^{\star}$ using majority rule
$\square$ Form $A=\left[\begin{array}{c}A_{1} \\ A_{2} \\ \vdots \\ A_{d}\end{array}\right]$ and $y^{N}=\left[\begin{array}{c}y_{1}^{N} \\ y_{2}^{N} \\ \vdots \\ y_{d}^{N}\end{array}\right]$
- Compare $A \Sigma^{\star} A^{T}$ to $\Sigma_{y}=\left(y^{N}\right)\left(y^{N}\right)^{T}$
- Form syndrome graph on the vertex set $\{1,2, \ldots, d\}$ with edge $(i, j)$ if

$$
\left[\begin{array}{c}
A_{i} \\
A_{j}
\end{array}\right] \Sigma^{\star}\left[\begin{array}{c}
A_{i} \\
A_{j}
\end{array}\right]^{T}=\left[\begin{array}{l}
y_{i}^{N} \\
y_{j}^{N}
\end{array}\right]\left[\begin{array}{l}
y_{i}^{N} \\
y_{j}^{N}
\end{array}\right]^{T}
$$

- Goal: Find trustworthy packets from which to form stored data


## Syndrome Graphs

The honest nodes form a clique of size $d-z$

## Syndrome Graphs

The honest nodes form a clique of size $d-z$

Example: $d=4$ and $z=1$ :


## Syndrome Graphs

The honest nodes form a clique of size $d-z$

Example: $d=4$ and $z=1$ :


- Use packets 1 and 2 to form stored data
- This is the typical case where $d-2 z$ trustworthy packets can be identified


## Syndrome Graphs

The honest nodes form a clique of size $d-z$

Example: $d=4$ and $z=1$ :


## Syndrome Graphs

The honest nodes form a clique of size $d-z$

Example: $d=4$ and $z=1$ :


- Use all packets to form stored data
- Linear constraints (because covariances match) mean the adversary data is uncorrupted


## Syndrome Graphs

The honest nodes form a clique of size $d-z$

Example: $d=10$ and $z=4$

- Call honest nodes $1,2,3,4,5,6$ and adversary nodes A,B,C,D
- Three cliques of size 6:

123456<br>456ABC<br>234BCD



## Syndrome Graphs

The honest nodes form a clique of size $d-z$

Example: $d=10$ and $z=4$

- Call honest nodes $1,2,3,4,5,6$ and adversary nodes A,B,C,D
- Three cliques of size 6:

- Use packet 4 to form stored data
- Less than $d-2 z$ trustworthy packets!


## Algorithm to find trustworthy packets

1 Discard all packets not in a clique of size $d-z$
2 Pick packets $i$ where edge $(i, j)$ is in the syndrome graph for all remaining packets $j$

## Algorithm to find trustworthy packets

1 Discard all packets not in a clique of size $d-z$
2 Pick packets $i$ where edge $(i, j)$ is in the syndrome graph for all remaining packets $j$

- Any chosen adversarial packet must match covariances with all $d-z$ honest nodes


## Algorithm to find trustworthy packets

1 Discard all packets not in a clique of size $d-z$
2 Pick packets $i$ where edge $(i, j)$ is in the syndrome graph for all remaining packets $j$

- Any chosen adversarial packet must match covariances with all $d-z$ honest nodes
- If $R \leq(d-z) \beta$, then linear constraints ensure all stored data is uncorrupted


## Algorithm to find trustworthy packets

1 Discard all packets not in a clique of size $d-z$
2 Pick packets $i$ where edge $(i, j)$ is in the syndrome graph for all remaining packets $j$

- Any chosen adversarial packet must match covariances with all $d-z$ honest nodes
- If $R \leq(d-z) \beta$, then linear constraints ensure all stored data is uncorrupted
- This procedure always finds at least $d-v_{z}$ packets where

$$
\left.\left.\begin{array}{c}
v_{z}=\left(\left\lfloor\frac{z}{2}\right\rfloor+1\right)\left(\left\lceil\frac{z}{2}\right\rceil+1\right) \\
z
\end{array} \right\rvert\, \begin{array}{cccccc} 
\\
v_{z} & 2 & 4 & 3 & 4 & 9
\end{array}\right)
$$

Note $v_{z}=2 z$ only for $z \leq 3$

## Resulting Achievability Bound

## Theorem (Kosut (2013))

There exists a distributed storage code achieving rate

$$
\min \left\{\sum_{i=0}^{k-v_{z}-1} \min \left\{\left(d-v_{z}-i\right) \beta, \alpha\right\},(d-z) \beta,(k-z) \alpha\right\} .
$$

where $v_{z}=\left(\left\lfloor\frac{z}{2}\right\rfloor+1\right)\left(\left\lceil\frac{z}{2}\right\rceil+1\right)$.

## Achievability Plot

Parameters: $n=8, k=d=7, z=1$


## Outline

- Polytope codes in general
- Polytope codes in network coding
- Polytope codes in distributed storage systems
- Polytope codes in multiple descriptions


## Adversarial Multiple Descriptions

Problem formulated in Fan-Wagner-Ahmed (2013)


Construct a single code that fails gracefully — fewer adversarial packets gives smaller distortion

## Adversarial Multiple Descriptions

Problem formulated in Fan-Wagner-Ahmed (2013)


Construct a single code that fails gracefully - fewer adversarial packets gives smaller distortion

- $V^{n} \in\{0,1\}^{n}$
- $C_{i} \in\left\{1,2, \ldots, 2^{n R}\right\}$
$\square$ Adversary controls $z$ packets
- Distortion: $D=\sum_{i=1}^{n} d\left(X_{i}, \hat{X}_{i}\right)$ where $d$ is the erasure distortion


## 3-Description Example

■ $R=1 / 2$

- Write $V^{n}=\left(x^{N}, y^{N}\right)$ where $x^{N}, y^{N} \in\left\{1,2, \ldots, 2^{k}\right\}^{N}$
- $z^{N}=x^{N}+y^{N}$

- If $z=0$, then entire source sequence can be decoded, so $D=0$
- If $z=1$, then one trustworthy packet (half the message) can be identified, so $D=1 / 2$


## 3-Description Example

■ $R=1 / 2$

- Write $V^{n}=\left(x^{N}, y^{N}\right)$ where $x^{N}, y^{N} \in\left\{1,2, \ldots, 2^{k}\right\}^{N}$
- $z^{N}=x^{N}+y^{N}$

- If $z=0$, then entire source sequence can be decoded, so $D=0$
- If $z=1$, then one trustworthy packet (half the message) can be identified, so $D=1 / 2$
Problem: $z^{N}$ is not a systematic part of source $V^{n}$


## 3-Description Example

$\square V^{n}=\left(V_{1}^{n / 3}, V_{2}^{n / 3}, V_{3}^{n / 3}\right)$, and write $V_{i}^{n / 3}=\left(x_{i}^{N}, y_{i}^{N}\right)$

## 3-Description Example

$\square V^{n}=\left(V_{1}^{n / 3}, V_{2}^{n / 3}, V_{3}^{n / 3}\right)$, and write $V_{i}^{n / 3}=\left(x_{i}^{N}, y_{i}^{N}\right)$
$\square z_{i}^{N}=x_{i}^{N}+y_{i}^{N}$ for $i=1,2,3$

## 3-Description Example

$\square V^{n}=\left(V_{1}^{n / 3}, V_{2}^{n / 3}, V_{3}^{n / 3}\right)$, and write $V_{i}^{n / 3}=\left(x_{i}^{N}, y_{i}^{N}\right)$

- $z_{i}^{N}=x_{i}^{N}+y_{i}^{N}$ for $i=1,2,3$



## 3-Description Example

$\square V^{n}=\left(V_{1}^{n / 3}, V_{2}^{n / 3}, V_{3}^{n / 3}\right)$, and write $V_{i}^{n / 3}=\left(x_{i}^{N}, y_{i}^{N}\right)$

- $z_{i}^{N}=x_{i}^{N}+y_{i}^{N}$ for $i=1,2,3$

- Decoder can always identify one trustworthy packet, containing two systematic parts of $V^{n}$
- Thus $D=2 / 3$


## Conclusions

- Polytope codes operate on the integers and can mimic most finite field codes
- Covariances are used as checksums, allowing for:
- Partial decoding

■ Distributed error detection/correction

- Polytope codes outperform finite field codes, but many achievable results have no matching converse - seems to be very hard to find the best polytope code
- All results for omniscient adversary - weaker adversary models require different techniques

