On the Computational Security of the Static Distributed Storage System

Annina Bracher, Eran Hof, and Amos Lapidoth

ETH Zürich, Switzerland
02.04.2015

Model

Model

■ $X \sim P_{X}$ is a password with finite support \mathcal{X}

Model

■ $X \sim P_{X}$ is a password with finite support \mathcal{X}
$■$ Alice describes X by δs-bit hints $\boldsymbol{M}=\left(M_{1}, \ldots, M_{\delta}\right) \in \mathbb{F}_{2}^{\delta}$

Model

■ $X \sim P_{X}$ is a password with finite support \mathcal{X}
■ Alice describes X by δs-bit hints $\boldsymbol{M}=\left(M_{1}, \ldots, M_{\delta}\right) \in \mathbb{F}_{2^{s}}^{\boldsymbol{\delta}}$

- $M_{1}, \ldots, M_{\delta}$ are stored in different locations

Model

■ $X \sim P_{X}$ is a password with finite support \mathcal{X}
■ Alice describes X by δs-bit hints $\boldsymbol{M}=\left(M_{1}, \ldots, M_{\delta}\right) \in \mathbb{F}_{2^{s}}^{\boldsymbol{\delta}}$

- $M_{1}, \ldots, M_{\delta}$ are stored in different locations

■ Robustness: Bob observes $\nu \leq \delta$ hints $\boldsymbol{M}_{\mathcal{B}}, \mathcal{B} \subseteq\{1, \ldots, \delta\}$

- Security: \quad Eve observes $\eta<\nu$ hints $\boldsymbol{M}_{\mathcal{E}}, \mathcal{E} \subseteq\{1, \ldots, \delta\}$

Model

■ $X \sim P_{X}$ is a password with finite support \mathcal{X}
■ Alice describes X by δs-bit hints $\boldsymbol{M}=\left(M_{1}, \ldots, M_{\delta}\right) \in \mathbb{F}_{2^{s}}^{\boldsymbol{\delta}}$
■ $M_{1}, \ldots, M_{\delta}$ are stored in different locations
■ Robustness: Bob observes $\nu \leq \delta$ hints $\boldsymbol{M}_{\mathcal{B}}, \mathcal{B} \subseteq\{1, \ldots, \delta\}$
■ Security: \quad Eve observes $\eta<\nu$ hints $\boldsymbol{M}_{\mathcal{E}}, \mathcal{E} \subseteq\{1, \ldots, \delta\}$
■ Bob and Eve want to access the account secured by X

Ambiguity

■ Hopefully, Bob succeeds and Eve does not. Therefore:

Goal

Bob's ambiguity about X shall be small and Eve's large.

Ambiguity

■ Hopefully, Bob succeeds and Eve does not. Therefore:

Goal

Bob's ambiguity about X shall be small and Eve's large.
We measure ambiguity by ...
1 ... the number of guesses that are necessary to find X
2 ... the size of the smallest list that contains X

Ambiguity

■ Hopefully, Bob succeeds and Eve does not. Therefore:

Goal

Bob's ambiguity about X shall be small and Eve's large.
We measure ambiguity by ...
1 ... the number of guesses that are necessary to find X
2 ... the size of the smallest list that contains X
Two versions: guessing and list

	Bob	Eve
Guessing version	1	1
List version	2	1

Guesses and List-Size

$(X, Y) \sim P_{X, Y}$ takes value in a finite set $\mathcal{X} \times \mathcal{Y}$, and $\rho>0$ is fixed

Guesses and List-Size

$(X, Y) \sim P_{X, Y}$ takes value in a finite set $\mathcal{X} \times \mathcal{Y}$, and $\rho>0$ is fixed

Guessing Massey 1994, Arikan 1996
$\square G(\cdot \mid y): \mathcal{X} \rightarrow[1:|\mathcal{X}|]$ is for all $y \in \mathcal{Y}$ one-to-one

Guesses and List-Size

$(X, Y) \sim P_{X, Y}$ takes value in a finite set $\mathcal{X} \times \mathcal{Y}$, and $\rho>0$ is fixed

Guessing Massey 1994, Arikan 1996
$\square G(\cdot \mid y): \mathcal{X} \rightarrow[1:|\mathcal{X}|]$ is for all $y \in \mathcal{Y}$ one-to-one
$\square G(\cdot \mid Y)$ is a guessing function:

$$
G(x \mid y)=l \Leftrightarrow " \text { Is } X=x ? " \text { is the } \ell \text {-th guess given } Y=y
$$

Guesses and List-Size

$(X, Y) \sim P_{X, Y}$ takes value in a finite set $\mathcal{X} \times \mathcal{Y}$, and $\rho>0$ is fixed

Guessing Massey 1994, Arikan 1996
$\square G(\cdot \mid y): \mathcal{X} \rightarrow[1:|\mathcal{X}|]$ is for all $y \in \mathcal{Y}$ one-to-one

- $G(\cdot \mid Y)$ is a guessing function:

$$
G(x \mid y)=l \Leftrightarrow " \text { Is } X=x ? " \text { is the } \ell \text {-th guess given } Y=y
$$

- The ambiguity about X is $\mathbb{E}\left[G(X \mid Y)^{\rho}\right]$

Guesses and List-Size

$(X, Y) \sim P_{X, Y}$ takes value in a finite set $\mathcal{X} \times \mathcal{Y}$, and $\rho>0$ is fixed

Guessing Massey 1994, Arikan 1996
$\square G(\cdot \mid y): \mathcal{X} \rightarrow[1:|\mathcal{X}|]$ is for all $y \in \mathcal{Y}$ one-to-one

- $G(\cdot \mid Y)$ is a guessing function:

$$
G(x \mid y)=l \Leftrightarrow " \text { Is } X=x ? " \text { is the } \ell \text {-th guess given } Y=y
$$

- The ambiguity about X is $\mathbb{E}\left[G(X \mid Y)^{\rho}\right]$

List-Decoding Bunte \& Lapidoth 2014

■ For all $y \in \mathcal{Y}$, define $\mathcal{L}_{y} \triangleq\left\{x \in \mathcal{X}: P_{X \mid Y}(x \mid y)>0\right\}$

Guesses and List-Size

$(X, Y) \sim P_{X, Y}$ takes value in a finite set $\mathcal{X} \times \mathcal{Y}$, and $\rho>0$ is fixed

Guessing Massey 1994, Arikan 1996
$■ G(\cdot \mid y): \mathcal{X} \rightarrow[1:|\mathcal{X}|]$ is for all $y \in \mathcal{Y}$ one-to-one

- $G(\cdot \mid Y)$ is a guessing function:

$$
G(x \mid y)=l \Leftrightarrow " \text { Is } X=x ? \text { " is the } \ell \text {-th guess given } Y=y
$$

- The ambiguity about X is $\mathbb{E}\left[G(X \mid Y)^{\rho}\right]$

List-Decoding Bunte \& Lapidoth 2014

- For all $y \in \mathcal{Y}$, define $\mathcal{L}_{y} \triangleq\left\{x \in \mathcal{X}: P_{X \mid Y}(x \mid y)>0\right\}$
- \mathcal{L}_{y} is the smallest list \mathcal{L} such that $P_{X \mid Y}(\mathcal{L} \mid y)=1$

Guesses and List-Size

$(X, Y) \sim P_{X, Y}$ takes value in a finite set $\mathcal{X} \times \mathcal{Y}$, and $\rho>0$ is fixed

Guessing Massey 1994, Arikan 1996
$\square G(\cdot \mid y): \mathcal{X} \rightarrow[1:|\mathcal{X}|]$ is for all $y \in \mathcal{Y}$ one-to-one

- $G(\cdot \mid Y)$ is a guessing function:

$$
G(x \mid y)=l \Leftrightarrow " \text { Is } X=x ? " \text { is the } \ell \text {-th guess given } Y=y
$$

- The ambiguity about X is $\mathbb{E}\left[G(X \mid Y)^{\rho}\right]$

List-Decoding Bunte \& Lapidoth 2014

■ For all $y \in \mathcal{Y}$, define $\mathcal{L}_{y} \triangleq\left\{x \in \mathcal{X}: P_{X \mid Y}(x \mid y)>0\right\}$

- \mathcal{L}_{y} is the smallest list \mathcal{L} such that $P_{X \mid Y}(\mathcal{L} \mid y)=1$
- The ambiguity about X is $\mathbb{E}\left[\left|\mathcal{L}_{Y}\right|^{\rho}\right]$

Ambiguity: the Definition

Bob's ambiguity

$$
\begin{array}{ll}
\mathscr{A}_{\mathrm{B}}^{(\mathrm{g})}\left(P_{X}\right)=\min _{G_{\mathcal{B}}} \mathbb{E}\left[\max _{\mathcal{B}} G_{\mathcal{B}}\left(X \mid \boldsymbol{M}_{\mathcal{B}}\right)^{\rho}\right] & \text { (Guessing Version) } \\
\mathscr{A}_{\mathrm{B}}^{(1)}\left(P_{X}\right)=\mathbb{E}\left[\max _{\mathcal{B}}\left|\mathcal{L}_{\boldsymbol{M}_{\mathcal{B}}}\right|^{\rho}\right] & \text { (List Version) }
\end{array}
$$

Eve's ambiguity
$\mathscr{A}_{\mathrm{E}}\left(P_{X}\right)=\min _{G_{\mathcal{E}}} \mathbb{E}\left[\min _{\mathcal{E}} G_{\mathcal{E}}\left(X \mid \boldsymbol{M}_{\mathcal{E}}\right)^{\rho}\right]$
■ $\mathcal{B} \subseteq\{1, \ldots, \delta\}$ has size $\nu \leq \delta$
■ $\mathcal{E} \subseteq\{1, \ldots, \delta\}$ has size $\eta<\nu$
■ Worst-case: given X Bob observes the worst ν hints $\boldsymbol{M}_{\mathcal{B}}$ and Eve the best η hints $\boldsymbol{M}_{\mathcal{E}}$

Finite-Blocklength Results: Guessing Version

1 We can achieve $\mathscr{A}_{\mathrm{B}}^{(\mathrm{g})}\left(P_{X}\right) \leq \mathscr{U}_{\mathrm{B}}$ for

$$
\begin{aligned}
\mathscr{U}_{\mathrm{B}} & \geq 1+2^{\rho\left(H_{\tilde{\rho}}(X)-\nu s+1\right)}, \\
\mathscr{A}_{\mathrm{E}}\left(P_{X}\right) & \geq \frac{c_{\rho, \delta, \eta}}{(1+\ln |\mathcal{X}|)^{\rho}}\left[\left(2^{\rho(\nu-\eta) s}\left(\mathscr{U}_{\mathrm{B}}-1\right)\right) \wedge 2^{\rho H_{\tilde{\rho}}(X)}\right] .
\end{aligned}
$$

2 Conversely, if $\mathscr{A}_{\mathrm{B}}^{(\mathrm{g})}\left(P_{X}\right) \leq \mathscr{U}_{\mathrm{B}}$ holds, then

$$
\begin{aligned}
\mathscr{U}_{\mathrm{B}} & \geq \frac{2^{\rho\left(H_{\tilde{\rho}}(X)-\nu s\right)}}{(1+\ln |\mathcal{X}|)^{\rho}} \vee 1, \\
\mathscr{A}_{\mathrm{E}}\left(P_{X}\right) & \leq 2^{\rho(\nu-\eta) s} \mathscr{A}_{\mathrm{B}}^{(\mathrm{g})}\left(P_{X}\right) \wedge 2^{\rho H_{\tilde{\rho}}(X)} .
\end{aligned}
$$

$H_{\tilde{\rho}}(X)=\frac{1}{\rho} \log \left(\sum_{x \in \mathcal{X}} P_{X}(x)^{\tilde{\rho}}\right)^{\frac{1}{\bar{\rho}}}$ is the Rényi entropy of order $\tilde{\rho}=\frac{1}{1+\rho}$

Finite-Blocklength Results: List Version

1 We can achieve $\mathscr{A}_{\mathrm{B}}^{(1)}\left(P_{X}\right) \leq \mathscr{U}_{\mathrm{B}}$ for

$$
\begin{aligned}
\mathscr{U}_{\mathrm{B}} & \geq 1+2^{\rho\left(H_{\tilde{\rho}}(X)-\log \left(2^{\nu s}-\log |\mathcal{X}|-2\right)+2\right)}, \\
\mathscr{A}_{\mathrm{E}}\left(P_{X}\right) & \geq \frac{c_{\rho, \delta, \eta}}{(1+\ln |\mathcal{X}|)^{\rho}}\left[\left(2^{\rho(\nu-\eta) s}\left(\mathscr{U}_{\mathrm{B}}-1\right)\right) \wedge 2^{\rho H_{\tilde{\rho}}(X)}\right] .
\end{aligned}
$$

2 Conversely, if $\mathscr{A}_{\mathrm{B}}^{(1)}\left(P_{X}\right) \leq \mathscr{U}_{\mathrm{B}}$ holds, then

$$
\begin{aligned}
\mathscr{U}_{\mathrm{B}} & \geq 2^{\rho\left(H_{\tilde{\rho}}(X)-\nu s\right)} \vee 1, \\
\mathscr{A}_{\mathrm{E}}\left(P_{X}\right) & \leq 2^{\rho(\nu-\eta) s} \mathscr{A}_{\mathrm{B}}^{(1)}\left(P_{X}\right) \wedge 2^{\rho H_{\tilde{\rho}}(X)} .
\end{aligned}
$$

$H_{\tilde{\rho}}(X)=\frac{1}{\rho} \log \left(\sum_{x \in \mathcal{X}} P_{X}(x)^{\tilde{\rho}}\right)^{\frac{1}{\tilde{\rho}}}$ is the Rényi entropy of order $\tilde{\rho}=\frac{1}{1+\rho}$

Guessing and List-Decoding

A link between guessing and list-decoding
Let $(X, Y) \sim P_{X, Y}$ take value in a finite set $\mathcal{X} \times \mathcal{Y}$.
$1 \mathbb{E}\left[G^{*}(X \mid Y)^{\rho}\right] \leq \mathbb{E}\left[\left|\mathcal{L}_{Y}\right|^{\rho}\right]$
2 $\mathbb{E}\left[\left|\mathcal{L}_{Y, Z}\right|^{\rho}\right] \leq \mathbb{E}\left[G^{*}(X \mid Y)^{\rho}\right]$ holds for $Z=\left\lfloor\log G^{*}(X \mid Y)\right\rfloor$

Guessing and List-Decoding

A link between guessing and list-decoding
Let $(X, Y) \sim P_{X, Y}$ take value in a finite set $\mathcal{X} \times \mathcal{Y}$.
$1 \mathbb{E}\left[G^{*}(X \mid Y)^{\rho}\right] \leq \mathbb{E}\left[\left|\mathcal{L}_{Y}\right|^{\rho}\right]$
$2 \mathbb{E}\left[\left|\mathcal{L}_{Y, Z}\right|^{\rho}\right] \leq \mathbb{E}\left[G^{*}(X \mid Y)^{\rho}\right]$ holds for $Z=\left\lfloor\log G^{*}(X \mid Y)\right\rfloor$
Proof:
$1 x \in \mathcal{L}_{y} \Rightarrow G^{*}(x \mid y) \leq\left|\mathcal{L}_{y}\right|$

$$
x \notin \mathcal{L}_{y} \Rightarrow P_{X \mid Y}(x \mid y)=0
$$

च $x \in \mathcal{L}_{y, z} \Rightarrow\left|\mathcal{L}_{y, z}\right| \leq 2^{\left\lfloor\log G^{*}(x \mid y)\right\rfloor} \leq G^{*}(x \mid y)$

Guessing and List-Decoding

A link between guessing and list-decoding
Let $(X, Y) \sim P_{X, Y}$ take value in a finite set $\mathcal{X} \times \mathcal{Y}$.
$1 \mathbb{E}\left[G^{*}(X \mid Y)^{\rho}\right] \leq \mathbb{E}\left[\left|\mathcal{L}_{Y}\right|^{\rho}\right]$
$2 \mathbb{E}\left[\left|\mathcal{L}_{Y, Z}\right|^{\rho}\right] \leq \mathbb{E}\left[G^{*}(X \mid Y)^{\rho}\right]$ holds for $Z=\left\lfloor\log G^{*}(X \mid Y)\right\rfloor$
Proof:
$\begin{array}{rl}1 & x \in \mathcal{L}_{y} \\ x & \Rightarrow G^{*}(x \mid y) \leq\left|\mathcal{L}_{y}\right| \\ x & \Rightarrow P_{X \mid Y}(x \mid y)=0\end{array}$
च $x \in \mathcal{L}_{y, z} \Rightarrow\left|\mathcal{L}_{y, z}\right| \leq 2^{\left\lfloor\log G^{*}(x \mid y)\right\rfloor} \leq G^{*}(x \mid y)$
Remarks:
$\square|\mathcal{Z}| \leq 1+\log |\mathcal{X}|$

- $\frac{|\mathcal{Z}|^{-\rho} 2^{\rho H_{\tilde{\rho}}(X \mid Y)}}{(1+\ln |\mathcal{X}|)^{-\rho}} \leq \mathbb{E}\left[G^{*}(X \mid Y, Z)^{\rho}\right] \leq 2^{\rho H_{\tilde{\rho}}(X \mid Y)}$

Asymptotic Results

■ $X=X^{n}$ is an n-tuple produced by the source $\left\{X_{i}\right\}$

- The Rényi entropy-rate $H_{\tilde{\rho}}(\boldsymbol{X})=\lim _{n \rightarrow \infty} H_{\tilde{\rho}}\left(X^{n}\right) / n$ exists

■ $s=n R_{s}$, where $R_{s}>0$ is the per-hint storage-rate

Asymptotic Results

■ $X=X^{n}$ is an n-tuple produced by the source $\left\{X_{i}\right\}$

- The Rényi entropy-rate $H_{\tilde{\rho}}(\boldsymbol{X})=\lim _{n \rightarrow \infty} H_{\tilde{\rho}}\left(X^{n}\right) / n$ exists

■ $s=n R_{s}$, where $R_{s}>0$ is the per-hint storage-rate

- Achievable ambiguity exponent: $E_{\mathrm{E}} \geq 0$ such that

$$
\lim _{n \rightarrow \infty} \mathscr{A}_{\mathrm{B}}\left(P_{X^{n}}\right)=1, \quad \liminf _{n \rightarrow \infty} \frac{\log \left(\mathscr{A}_{\mathrm{E}}\left(P_{X^{n}}\right)\right)}{n} \geq E_{\mathrm{E}}
$$

hold for some sequence of stochastic encoders

Asymptotic Results

■ $X=X^{n}$ is an n-tuple produced by the source $\left\{X_{i}\right\}$
■ The Rényi entropy-rate $H_{\tilde{\rho}}(\boldsymbol{X})=\lim _{n \rightarrow \infty} H_{\tilde{\rho}}\left(X^{n}\right) / n$ exists
■ $s=n R_{s}$, where $R_{s}>0$ is the per-hint storage-rate

- Achievable ambiguity exponent: $E_{\mathrm{E}} \geq 0$ such that

$$
\lim _{n \rightarrow \infty} \mathscr{A}_{\mathrm{B}}\left(P_{X^{n}}\right)=1, \quad \liminf _{n \rightarrow \infty} \frac{\log \left(\mathscr{A}_{\mathrm{E}}\left(P_{X^{n}}\right)\right)}{n} \geq E_{\mathrm{E}}
$$

hold for some sequence of stochastic encoders
$■$ Privacy-exponent: $\overline{E_{\mathrm{E}}} \triangleq \sup E_{\mathrm{E}}$ (possibly $-\infty$)

Asymptotic Results

■ $X=X^{n}$ is an n-tuple produced by the source $\left\{X_{i}\right\}$

- The Rényi entropy-rate $H_{\tilde{\rho}}(\boldsymbol{X})=\lim _{n \rightarrow \infty} H_{\tilde{\rho}}\left(X^{n}\right) / n$ exists

■ $s=n R_{s}$, where $R_{s}>0$ is the per-hint storage-rate

- Achievable ambiguity exponent: $E_{\mathrm{E}} \geq 0$ such that

$$
\lim _{n \rightarrow \infty} \mathscr{A}_{\mathrm{B}}\left(P_{X^{n}}\right)=1, \quad \liminf _{n \rightarrow \infty} \frac{\log \left(\mathscr{A}_{\mathrm{E}}\left(P_{X^{n}}\right)\right)}{n} \geq E_{\mathrm{E}}
$$

hold for some sequence of stochastic encoders
■ Privacy-exponent: $\overline{E_{\mathrm{E}}} \triangleq \sup E_{\mathrm{E}}$ (possibly $-\infty$)

$$
\overline{E_{\mathrm{E}}}= \begin{cases}\rho\left(R_{s}(\nu-\eta) \wedge H_{\tilde{\rho}}(\boldsymbol{X})\right), & \nu R_{s}>H_{\tilde{\rho}}(\boldsymbol{X}) \\ -\infty, & \nu R_{s}<H_{\tilde{\rho}}(\boldsymbol{X})\end{cases}
$$

Optimal Guessing

$(X, Y) \sim P_{X, Y}$ takes value in a finite set $\mathcal{X} \times \mathcal{Y}$, and $\rho>0$ is fixed

What is $\min _{G} \mathbb{E}\left[G(X \mid Y)^{\rho}\right]=\mathbb{E}\left[G^{*}(X \mid Y)^{\rho}\right]$?

Optimal Guessing

$(X, Y) \sim P_{X, Y}$ takes value in a finite set $\mathcal{X} \times \mathcal{Y}$, and $\rho>0$ is fixed

What is $\min _{G} \mathbb{E}\left[G(X \mid Y)^{\rho}\right]=\mathbb{E}\left[G^{*}(X \mid Y)^{\rho}\right]$?

Optimal Guessing

$(X, Y) \sim P_{X, Y}$ takes value in a finite set $\mathcal{X} \times \mathcal{Y}$, and $\rho>0$ is fixed

What is $\min _{G} \mathbb{E}\left[G(X \mid Y)^{\rho}\right]=\mathbb{E}\left[G^{*}(X \mid Y)^{\rho}\right]$?

Optimal guessing Arikan 1996

$$
\frac{2^{\rho H_{\tilde{\rho}}(X \mid Y)}}{(1+\ln |\mathcal{X}|)^{-\rho}} \vee 1 \leq \mathbb{E}\left[G^{*}(X \mid Y)^{\rho}\right] \leq 2^{\rho H_{\tilde{\rho}}(X \mid Y)}
$$

$$
H_{\tilde{\rho}}(X \mid Y)=\frac{1}{\rho} \log \sum_{y \in \mathcal{Y}}\left(\sum_{x \in \mathcal{X}} P_{X, Y}(x, y)^{\tilde{\rho}}\right)^{\frac{1}{\rho}} \text { is Arimoto's }
$$

conditional Rényi entropy of order $\tilde{\rho}=\frac{1}{1+\rho}$

Benefit of Additional SI

$■(X, Y) \sim P_{X, Y}$ takes value in a finite set $\mathcal{X} \times \mathcal{Y}$
■ Given the support \mathcal{Z} of Z, we choose $P_{Z \mid X, Y}$

Benefit of Additional SI

$■(X, Y) \sim P_{X, Y}$ takes value in a finite set $\mathcal{X} \times \mathcal{Y}$
■ Given the support \mathcal{Z} of Z, we choose $P_{Z \mid X, Y}$

$$
\text { Q: What is } \min _{G, P_{Z \mid X, Y}} \mathbb{E}\left[G(X \mid Y, Z)^{\rho}\right] \text { ? }
$$

Benefit of Additional SI

$■(X, Y) \sim P_{X, Y}$ takes value in a finite set $\mathcal{X} \times \mathcal{Y}$

- Given the support \mathcal{Z} of Z, we choose $P_{Z \mid X, Y}$

$$
\mathcal{Z}=\{\star, \bullet, \diamond\}
$$

$$
\text { Q: What is } \min _{G, P_{Z \mid X, Y}} \mathbb{E}\left[G(X \mid Y, Z)^{\rho}\right] \text { ? }
$$

For an optimal $P_{Z \mid X, Y} \ldots$

$$
\begin{aligned}
& ■ Z=z(X, Y) \\
& \ldots G(x \mid y, z(x, y))=\left\lceil G^{*}(x \mid y) /|\mathcal{Z}|\right\rceil
\end{aligned}
$$

Benefit of Additional SI

$■(X, Y) \sim P_{X, Y}$ takes value in a finite set $\mathcal{X} \times \mathcal{Y}$
■ Given the support \mathcal{Z} of Z, we choose $P_{Z \mid X, Y}$

$$
\text { Q: What is } \min _{G, P_{Z \mid X, Y}} \mathbb{E}\left[G(X \mid Y, Z)^{\rho}\right] \text { ? }
$$

For an optimal $P_{Z \mid X, Y} \ldots$

$$
\begin{aligned}
& \square \\
& \ldots \\
& \ldots \\
& \ldots(x \mid y, z(x, y))=\left\lceil G^{*}(x \mid y) /|\mathcal{Z}|\right\rceil
\end{aligned}
$$

A: $\mathbb{E}\left[\left\lceil G^{*}(X \mid Y) /|\mathcal{Z}|\right\rceil^{\rho}\right]$

Proof of the Results

The Result in a Nutshell

An ambiguity pair $\left(\mathscr{A}_{\mathrm{B}}\left(P_{X}\right), \mathscr{A}_{\mathrm{E}}\left(P_{X}\right)\right)$ is achievable iff $\mathscr{A}_{\mathrm{B}}\left(P_{X}\right) \gtrsim 2^{\rho\left(H_{\tilde{\rho}}(X)-\nu s\right)} \vee 1$ $\mathscr{A}_{\mathrm{E}}\left(P_{X}\right) \lesssim 2^{\rho(\nu-\eta) s} \mathscr{A}_{\mathrm{B}}\left(P_{X}\right) \wedge 2^{\rho H_{\tilde{\rho}}(X)}$.

- The converse holds by the results on optimal guessing

Proof of the Results

The Result in a Nutshell

An ambiguity pair $\left(\mathscr{A}_{\mathrm{B}}\left(P_{X}\right), \mathscr{A}_{\mathrm{E}}\left(P_{X}\right)\right)$ is achievable iff $\mathscr{A}_{\mathrm{B}}\left(P_{X}\right) \gtrsim 2^{\rho\left(H_{\tilde{\rho}}(X)-\nu s\right)} \vee 1$ $\mathscr{A}_{\mathrm{E}}\left(P_{X}\right) \lesssim 2^{\rho(\nu-\eta) s} \mathscr{A}_{\mathrm{B}}\left(P_{X}\right) \wedge 2^{\rho H_{\tilde{\rho}}(X)}$.

- The converse holds by the results on optimal guessing
- Achievability can be proved using nested MDS codes

Proof of the Results: Achievability

Insecure Encoding:

- Describe X by $V \in \mathbb{F}_{2^{s}}^{\nu}$ s.t. $\mathbb{E}\left[G(X \mid V)^{\rho}\right] \approx 2^{\rho\left(H_{\tilde{\rho}}(X)-\nu s\right)}$
- Alice encodes V using a (δ, ν) MDS code

■ She stores each codeword-symbol on a different hint

Proof of the Results: Achievability

Insecure Encoding:

- Describe X by $V \in \mathbb{F}_{2^{s}}^{\nu}$ s.t. $\mathbb{E}\left[G(X \mid V)^{\rho}\right] \approx 2^{\rho\left(H_{\tilde{\rho}}(X)-\nu s\right)}$
- Alice encodes V using a (δ, ν) MDS code

■ She stores each codeword-symbol on a different hint
$\square \mathscr{A}_{\mathrm{B}}\left(P_{X}\right)=\mathbb{E}\left[G(X \mid V)^{\rho}\right] \approx 2^{\rho\left(H_{\tilde{\rho}}(X)-\nu s\right)}$

- $\mathscr{A}_{\mathrm{E}}\left(P_{X}\right) \gtrsim 2^{\rho\left(H_{\tilde{\rho}}(X)-\eta s\right)} \approx 2^{\rho(\nu-\eta) s} \mathscr{A}_{\mathrm{B}}\left(P_{X}\right)$

Proof of the Results: Achievability

Insecure Encoding:

- Describe X by $V \in \mathbb{F}_{2^{s}}^{\nu}$ s.t. $\mathbb{E}\left[G(X \mid V)^{\rho}\right] \approx 2^{\rho\left(H_{\tilde{\rho}}(X)-\nu s\right)}$
- Alice encodes V using a (δ, ν) MDS code

■ She stores each codeword-symbol on a different hint

- $\mathscr{A}_{\mathrm{B}}\left(P_{X}\right)=\mathbb{E}\left[G(X \mid V)^{\rho}\right] \approx 2^{\rho\left(H_{\tilde{\rho}}(X)-\nu s\right)}$
- $\mathscr{A}_{\mathrm{E}}\left(P_{X}\right) \gtrsim 2^{\rho\left(H_{\tilde{\rho}}(X)-\eta s\right)} \approx 2^{\rho(\nu-\eta) s} \mathscr{A}_{\mathrm{B}}\left(P_{X}\right)$

Secure Encoding:
$■$ Describe X by $W \in \mathbb{F}_{2^{s}}^{\nu-\eta}$ s.t. $\mathbb{E}\left[G(X \mid W)^{\rho}\right] \approx 2^{\rho\left(H_{\tilde{\rho}}(X)-(\nu-\eta) s\right)}$
■ Generate $U \sim \operatorname{Unif}\left(\mathbb{F}_{2^{s}}^{\eta}\right)$ independently of X

- Alice encodes (U, W) using a nested (δ, ν) MDS code
- She stores each codeword-symbol on a different hint

Proof of the Results: Achievability

Insecure Encoding:

- Describe X by $V \in \mathbb{F}_{2^{s}}^{\nu}$ s.t. $\mathbb{E}\left[G(X \mid V)^{\rho}\right] \approx 2^{\rho\left(H_{\tilde{\rho}}(X)-\nu s\right)}$
- Alice encodes V using a (δ, ν) MDS code

■ She stores each codeword-symbol on a different hint

- $\mathscr{A}_{\mathrm{B}}\left(P_{X}\right)=\mathbb{E}\left[G(X \mid V)^{\rho}\right] \approx 2^{\rho\left(H_{\tilde{\rho}}(X)-\nu s\right)}$
- $\mathscr{A}_{\mathrm{E}}\left(P_{X}\right) \gtrsim 2^{\rho\left(H_{\tilde{\rho}}(X)-\eta s\right)} \approx 2^{\rho(\nu-\eta) s} \mathscr{A}_{\mathrm{B}}\left(P_{X}\right)$

Secure Encoding:
■ Describe X by $W \in \mathbb{F}_{2^{s}}^{\nu-\eta}$ s.t. $\mathbb{E}\left[G(X \mid W)^{\rho}\right] \approx 2^{\rho\left(H_{\tilde{\rho}}(X)-(\nu-\eta) s\right)}$
■ Generate $U \sim \operatorname{Unif}\left(\mathbb{F}_{2^{s}}^{\eta}\right)$ independently of X

- Alice encodes (U, W) using a nested (δ, ν) MDS code
- She stores each codeword-symbol on a different hint
- $\mathscr{A}_{\mathrm{B}}\left(P_{X}\right)=\mathbb{E}\left[G(X \mid U, W)^{\rho}\right] \approx 2^{\rho\left(H_{\tilde{\rho}}(X)-(\nu-\eta) s\right)}$
- $\mathscr{A}_{\mathrm{E}}\left(P_{X}\right) \approx 2^{\rho H_{\tilde{\rho}}(X)} \approx 2^{\rho(\nu-\eta) s} \mathscr{A}_{\mathrm{B}}\left(P_{X}\right)$

Proof of the Results: Achievability

Insecure Encoding:

- Describe X by $V \in \mathbb{F}_{2^{s}}^{\nu}$ s.t. $\mathbb{E}\left[G(X \mid V)^{\rho}\right] \approx 2^{\rho\left(H_{\tilde{\rho}}(X)-\nu s\right)}$
- Alice encodes V using a (δ, ν) MDS code

■ She stores each codeword-symbol on a different hint

- $\mathscr{A}_{\mathrm{B}}\left(P_{X}\right)=\mathbb{E}\left[G(X \mid V)^{\rho}\right] \approx 2^{\rho\left(H_{\tilde{\rho}}(X)-\nu s\right)}$
- $\mathscr{A}_{\mathrm{E}}\left(P_{X}\right) \gtrsim 2^{\rho\left(H_{\tilde{\rho}}(X)-\eta s\right)} \approx 2^{\rho(\nu-\eta) s} \mathscr{A}_{\mathrm{B}}\left(P_{X}\right)$

Secure Encoding:
■ Describe X by $W \in \mathbb{F}_{2^{s}}^{\nu-\eta}$ s.t. $\mathbb{E}\left[G(X \mid W)^{\rho}\right] \approx 2^{\rho\left(H_{\tilde{\rho}}(X)-(\nu-\eta) s\right)}$

- Generate $U \sim \operatorname{Unif}\left(\mathbb{F}_{2^{s}}^{\eta}\right)$ independently of X
- Alice encodes (U, W) using a nested (δ, ν) MDS code
- She stores each codeword-symbol on a different hint
- $\mathscr{A}_{\mathrm{B}}\left(P_{X}\right)=\mathbb{E}\left[G(X \mid U, W)^{\rho}\right] \approx 2^{\rho\left(H_{\tilde{\rho}}(X)-(\nu-\eta) s\right)}$
- $\mathscr{A}_{\mathrm{E}}\left(P_{X}\right) \approx 2^{\rho H_{\tilde{\rho}}(X)} \approx 2^{\rho(\nu-\eta) s} \mathscr{A}_{\mathrm{B}}\left(P_{X}\right)$

To achieve any ambiguity-pair: $(V, W) \in \mathbb{F}_{2^{p}}^{\nu} \times \mathbb{F}_{2^{r}}^{\nu}$ s.t. $p+r=s$

Thank you

