On the Computational Security of the Static Distributed Storage System

Annina Bracher, Eran Hof, and Amos Lapidoth

ETH Zürich, Switzerland

02.04.2015

• $X \sim P_X$ is a password with finite support \mathcal{X}

• Alice describes X by δ s-bit hints $\boldsymbol{M} = (M_1, \dots, M_{\delta}) \in \mathbb{F}_{2^s}^{\delta}$

- Alice describes X by δ s-bit hints $\boldsymbol{M} = (M_1, \dots, M_{\delta}) \in \mathbb{F}_{2^s}^{\delta}$
- M_1, \ldots, M_{δ} are stored in different locations

- Alice describes X by δ s-bit hints $\boldsymbol{M} = (M_1, \dots, M_{\delta}) \in \mathbb{F}_{2^s}^{\delta}$
- \blacksquare M_1, \ldots, M_{δ} are stored in different locations
- Robustness: Bob observes $\nu \leq \delta$ hints $M_{\mathcal{B}}, \mathcal{B} \subseteq \{1, \ldots, \delta\}$
- Security: Eve observes $\eta < \nu$ hints $M_{\mathcal{E}}, \mathcal{E} \subseteq \{1, \ldots, \delta\}$

- Alice describes X by δ s-bit hints $\boldsymbol{M} = (M_1, \dots, M_{\delta}) \in \mathbb{F}_{2^s}^{\delta}$
- M_1, \ldots, M_{δ} are stored in different locations
- Robustness: Bob observes $\nu \leq \delta$ hints $M_{\mathcal{B}}, \mathcal{B} \subseteq \{1, \ldots, \delta\}$
- Security: Eve observes $\eta < \nu$ hints $M_{\mathcal{E}}, \mathcal{E} \subseteq \{1, \ldots, \delta\}$
- **\blacksquare** Bob and Eve want to access the account secured by X

Ambiguity

■ Hopefully, Bob succeeds and Eve does not. Therefore:

Goal

Bob's ambiguity about X shall be small and Eve's large.

Ambiguity

■ Hopefully, Bob succeeds and Eve does not. Therefore:

Goal

Bob's ambiguity about X shall be small and Eve's large.

We measure ambiguity by ...

- \blacksquare ... the number of guesses that are necessary to find X
- $\ensuremath{\mathbbm 2}$... the size of the smallest list that contains X

Ambiguity

■ Hopefully, Bob succeeds and Eve does not. Therefore:

Goal

Bob's ambiguity about X shall be small and Eve's large.

We measure ambiguity by ...

- \blacksquare ... the number of guesses that are necessary to find X
- $\ensuremath{ 2 }$... the size of the smallest list that contains X

Two versions: guessing and list		
	Bob	Eve
Guessing version	1	1
List version	2	1

 $(X,Y) \sim P_{X,Y}$ takes value in a finite set $\mathcal{X} \times \mathcal{Y}$, and $\rho > 0$ is fixed

 $(X, Y) \sim P_{X,Y}$ takes value in a finite set $\mathcal{X} \times \mathcal{Y}$, and $\rho > 0$ is fixed

Guessing Massey 1994, Arikan 1996

 $\blacksquare \ G(\cdot|y) \colon \mathcal{X} \to [1:|\mathcal{X}|] \text{ is for all } y \in \mathcal{Y} \text{ one-to-one}$

 $(X,Y) \sim P_{X,Y}$ takes value in a finite set $\mathcal{X} \times \mathcal{Y}$, and $\rho > 0$ is fixed

Guessing Massey 1994, Arikan 1996

- $\blacksquare G(\cdot|y) \colon \mathcal{X} \to [1:|\mathcal{X}|] \text{ is for all } y \in \mathcal{Y} \text{ one-to-one}$
- $G(\cdot|Y)$ is a guessing function: $G(x|y) = l \iff$ "Is X = x?" is the ℓ -th guess given Y = y

 $(X,Y) \sim P_{X,Y}$ takes value in a finite set $\mathcal{X} \times \mathcal{Y}$, and $\rho > 0$ is fixed

Guessing Massey 1994, Arikan 1996

- $\blacksquare \ G(\cdot|y) \colon \mathcal{X} \to [1:|\mathcal{X}|] \text{ is for all } y \in \mathcal{Y} \text{ one-to-one}$
- $G(\cdot|Y)$ is a guessing function: $G(x|y) = l \iff$ "Is X = x?" is the ℓ -th guess given Y = y

 \blacksquare The ambiguity about X is $\mathbb{E}[G(X|Y)^{\rho}]$

 $(X,Y) \sim P_{X,Y}$ takes value in a finite set $\mathcal{X} \times \mathcal{Y}$, and $\rho > 0$ is fixed

Guessing Massey 1994, Arikan 1996

 $\blacksquare G(\cdot|y) \colon \mathcal{X} \to [1:|\mathcal{X}|] \text{ is for all } y \in \mathcal{Y} \text{ one-to-one}$

• $G(\cdot|Y)$ is a guessing function: $G(x|y) = l \Leftrightarrow$ "Is X = x?" is the ℓ -th guess given Y = y

• The ambiguity about X is $\mathbb{E}[G(X|Y)^{\rho}]$

List-Decoding Bunte & Lapidoth 2014

For all
$$y \in \mathcal{Y}$$
, define $\mathcal{L}_y \triangleq \{x \in \mathcal{X} \colon P_{X|Y}(x|y) > 0\}$

 $(X,Y) \sim P_{X,Y}$ takes value in a finite set $\mathcal{X} \times \mathcal{Y}$, and $\rho > 0$ is fixed

Guessing Massey 1994, Arikan 1996

 $\blacksquare \ G(\cdot|y) \colon \mathcal{X} \to [1:|\mathcal{X}|] \text{ is for all } y \in \mathcal{Y} \text{ one-to-one}$

• $G(\cdot|Y)$ is a guessing function: $G(x|y) = l \Leftrightarrow$ "Is X = x?" is the ℓ -th guess given Y = y

 \blacksquare The ambiguity about X is $\mathbb{E}[G(X|Y)^{\rho}]$

List-Decoding Bunte & Lapidoth 2014

- For all $y \in \mathcal{Y}$, define $\mathcal{L}_y \triangleq \{x \in \mathcal{X} \colon P_{X|Y}(x|y) > 0\}$
- \mathcal{L}_y is the smallest list \mathcal{L} such that $P_{X|Y}(\mathcal{L}|y) = 1$

 $(X,Y) \sim P_{X,Y}$ takes value in a finite set $\mathcal{X} \times \mathcal{Y}$, and $\rho > 0$ is fixed

Guessing Massey 1994, Arikan 1996

 $\blacksquare \ G(\cdot|y) \colon \mathcal{X} \to [1:|\mathcal{X}|] \text{ is for all } y \in \mathcal{Y} \text{ one-to-one}$

■ $G(\cdot|Y)$ is a guessing function: $G(x|y) = l \iff$ "Is X = x?" is the ℓ -th guess given Y = y

 \blacksquare The ambiguity about X is $\mathbb{E}[G(X|Y)^{\rho}]$

List-Decoding Bunte & Lapidoth 2014

- For all $y \in \mathcal{Y}$, define $\mathcal{L}_y \triangleq \{x \in \mathcal{X} \colon P_{X|Y}(x|y) > 0\}$
- \mathcal{L}_y is the smallest list \mathcal{L} such that $P_{X|Y}(\mathcal{L}|y) = 1$
- The ambiguity about X is $\mathbb{E}[|\mathcal{L}_Y|^{\rho}]$

Ambiguity: the Definition

Bob's ambiguity

$$\mathscr{A}_{\mathrm{B}}^{(\mathrm{g})}(P_X) = \min_{G_{\mathcal{B}}} \mathbb{E}\left[\max_{\mathcal{B}} G_{\mathcal{B}}(X|M_{\mathcal{B}})^{\rho}\right] \quad (\text{Guessing Version})$$
$$\mathscr{A}_{\mathrm{B}}^{(\mathrm{l})}(P_X) = \mathbb{E}\left[\max_{\mathcal{B}} |\mathcal{L}_{M_{\mathcal{B}}}|^{\rho}\right] \quad (\text{List Version})$$

Eve's ambiguity

$$\mathscr{A}_{\mathrm{E}}(P_X) = \min_{G_{\mathcal{E}}} \mathbb{E}\left[\min_{\mathcal{E}} G_{\mathcal{E}}(X \mid \boldsymbol{M}_{\mathcal{E}})^{\rho}\right]$$

 $\blacksquare \mathcal{B} \subseteq \{1, \ldots, \delta\} \text{ has size } \nu \leq \delta$

•
$$\mathcal{E} \subseteq \{1, \ldots, \delta\}$$
 has size $\eta < \nu$

• Worst-case: given X Bob observes the worst ν hints $M_{\mathcal{B}}$ and Eve the best η hints $M_{\mathcal{E}}$

Finite-Blocklength Results: Guessing Version

I We can achieve $\mathscr{A}_{\mathrm{B}}^{(\mathrm{g})}(P_X) \leq \mathscr{U}_{\mathrm{B}}$ for

$$\mathscr{U}_{\mathrm{B}} \geq 1 + 2^{\rho(H_{\tilde{\rho}}(X) - \nu s + 1)},$$

$$\mathscr{A}_{\mathrm{E}}(P_X) \geq \frac{c_{\rho,\delta,\eta}}{(1 + \ln|\mathcal{X}|)^{\rho}} \Big[(2^{\rho(\nu - \eta)s}(\mathscr{U}_{\mathrm{B}} - 1)) \wedge 2^{\rho H_{\tilde{\rho}}(X)} \Big].$$

2 Conversely, if $\mathscr{A}_{\mathrm{B}}^{(\mathrm{g})}(P_X) \leq \mathscr{U}_{\mathrm{B}}$ holds, then

$$\mathscr{U}_{\mathrm{B}} \geq \frac{2^{\rho(H_{\tilde{\rho}}(X)-\nu s)}}{(1+\ln|\mathcal{X}|)^{\rho}} \vee 1,$$
$$\mathscr{A}_{\mathrm{E}}(P_X) \leq 2^{\rho(\nu-\eta)s} \mathscr{A}_{\mathrm{B}}^{(\mathrm{g})}(P_X) \wedge 2^{\rho H_{\tilde{\rho}}(X)}$$

$$H_{\tilde{\rho}}(X) = \frac{1}{\rho} \log \left(\sum_{x \in \mathcal{X}} P_X(x)^{\tilde{\rho}} \right)^{\frac{1}{\tilde{\rho}}} \text{ is the } \mathbf{R} \text{ényi entropy of order } \tilde{\rho} = \frac{1}{1+\rho}$$

Finite-Blocklength Results: List Version

1 We can achieve $\mathscr{A}_{\mathrm{B}}^{(\mathrm{l})}(P_X) \leq \mathscr{U}_{\mathrm{B}}$ for

$$\mathscr{U}_{\mathrm{B}} \geq 1 + 2^{\rho(H_{\tilde{\rho}}(X) - \log(2^{\nu s} - \log|\mathcal{X}| - 2) + 2)},$$

$$\mathscr{A}_{\mathrm{E}}(P_X) \geq \frac{c_{\rho,\delta,\eta}}{(1 + \ln|\mathcal{X}|)^{\rho}} \Big[(2^{\rho(\nu - \eta)s}(\mathscr{U}_{\mathrm{B}} - 1)) \wedge 2^{\rho H_{\tilde{\rho}}(X)} \Big].$$

2 Conversely, if $\mathscr{A}_{\mathrm{B}}^{(\mathrm{l})}(P_X) \leq \mathscr{U}_{\mathrm{B}}$ holds, then

$$\mathscr{U}_{\mathrm{B}} \ge 2^{\rho(H_{\tilde{\rho}}(X) - \nu s)} \vee 1,$$

$$\mathscr{A}_{\mathrm{E}}(P_X) \le 2^{\rho(\nu - \eta)s} \mathscr{A}_{\mathrm{B}}^{(\mathrm{l})}(P_X) \wedge 2^{\rho H_{\tilde{\rho}}(X)}.$$

$$H_{\tilde{\rho}}(X) = \frac{1}{\rho} \log \left(\sum_{x \in \mathcal{X}} P_X(x)^{\tilde{\rho}} \right)^{\frac{1}{\tilde{\rho}}} \text{ is the Rényi entropy of order } \tilde{\rho} = \frac{1}{1+\rho}$$

Guessing and List-Decoding

A link between guessing and list-decoding Let $(X, Y) \sim P_{X,Y}$ take value in a finite set $\mathcal{X} \times \mathcal{Y}$. $\mathbb{E}[G^*(X|Y)^{\rho}] \leq \mathbb{E}[|\mathcal{L}_Y|^{\rho}]$ $\mathbb{E}[|\mathcal{L}_{Y,Z}|^{\rho}] \leq \mathbb{E}[G^*(X|Y)^{\rho}]$ holds for $Z = \lfloor \log G^*(X|Y) \rfloor$

Guessing and List-Decoding

A link between guessing and list-decoding Let $(X, Y) \sim P_{X,Y}$ take value in a finite set $\mathcal{X} \times \mathcal{Y}$. $\mathbb{I} \mathbb{E}[G^*(X|Y)^{\rho}] \leq \mathbb{E}[|\mathcal{L}_Y|^{\rho}]$ $\mathbb{E} \mathbb{E}[|\mathcal{L}_{Y,Z}|^{\rho}] \leq \mathbb{E}[G^*(X|Y)^{\rho}]$ holds for $Z = \lfloor \log G^*(X|Y) \rfloor$

Proof:

$$\begin{array}{ll} \mathbf{I} & x \in \mathcal{L}_y \Rightarrow G^*(x|y) \le |\mathcal{L}_y| \\ & x \notin \mathcal{L}_y \Rightarrow P_{X|Y}(x|y) = 0 \\ \\ \mathbf{I} & x \in \mathcal{L}_{y,z} \Rightarrow |\mathcal{L}_{y,z}| \le 2^{\lfloor \log G^*(x|y) \rfloor} \le G^*(x|y) \end{array}$$

Guessing and List-Decoding

A link between guessing and list-decoding Let $(X, Y) \sim P_{X,Y}$ take value in a finite set $\mathcal{X} \times \mathcal{Y}$. $\mathbb{I} \mathbb{E}[G^*(X|Y)^{\rho}] \leq \mathbb{E}[|\mathcal{L}_Y|^{\rho}]$ $\mathbb{E} \mathbb{E}[|\mathcal{L}_{Y,Z}|^{\rho}] \leq \mathbb{E}[G^*(X|Y)^{\rho}]$ holds for $Z = \lfloor \log G^*(X|Y) \rfloor$

Proof:

$$\begin{array}{l} \mathbf{I} \quad x \in \mathcal{L}_y \Rightarrow G^*(x|y) \le |\mathcal{L}_y| \\ x \notin \mathcal{L}_y \Rightarrow P_{X|Y}(x|y) = 0 \\ \\ \mathbf{I} \quad x \in \mathcal{L}_{y,z} \Rightarrow |\mathcal{L}_{y,z}| \le 2^{\lfloor \log G^*(x|y) \rfloor} \le G^*(x|y) \end{array}$$

Remarks:

$$\begin{aligned} & \quad \|\mathcal{Z}\| \leq 1 + \log |\mathcal{X}| \\ & \quad \frac{|\mathcal{Z}|^{-\rho} 2^{\rho H_{\tilde{\rho}}(X|Y)}}{(1+\ln |\mathcal{X}|)^{-\rho}} \leq \mathbb{E}[G^*(X|Y,Z)^{\rho}] \leq 2^{\rho H_{\tilde{\rho}}(X|Y)} \end{aligned}$$

- $X = X^n$ is an *n*-tuple produced by the source $\{X_i\}$
- The Rényi entropy-rate $H_{\tilde{\rho}}(\mathbf{X}) = \lim_{n \to \infty} H_{\tilde{\rho}}(X^n)/n$ exists
- \blacksquare $s = nR_s$, where $R_s > 0$ is the per-hint storage-rate

- $X = X^n$ is an *n*-tuple produced by the source $\{X_i\}$
- The Rényi entropy-rate $H_{\tilde{\rho}}(\mathbf{X}) = \lim_{n \to \infty} H_{\tilde{\rho}}(X^n)/n$ exists
- $s = nR_s$, where $R_s > 0$ is the per-hint storage-rate
- Achievable ambiguity exponent: $E_{\rm E} \ge 0$ such that

$$\lim_{n \to \infty} \mathscr{A}_{\mathcal{B}}(P_{X^n}) = 1, \quad \liminf_{n \to \infty} \frac{\log(\mathscr{A}_{\mathcal{E}}(P_{X^n}))}{n} \ge E_{\mathcal{E}}$$

hold for some sequence of stochastic encoders

- $X = X^n$ is an *n*-tuple produced by the source $\{X_i\}$
- The Rényi entropy-rate $H_{\tilde{\rho}}(\mathbf{X}) = \lim_{n \to \infty} H_{\tilde{\rho}}(X^n)/n$ exists
- $s = nR_s$, where $R_s > 0$ is the per-hint storage-rate
- Achievable ambiguity exponent: $E_{\rm E} \ge 0$ such that

$$\lim_{n \to \infty} \mathscr{A}_{\mathcal{B}}(P_{X^n}) = 1, \quad \liminf_{n \to \infty} \frac{\log(\mathscr{A}_{\mathcal{E}}(P_{X^n}))}{n} \ge E_{\mathcal{E}}$$

hold for some sequence of stochastic encoders Privacy-exponent: $\overline{E_{\rm E}} \triangleq \sup E_{\rm E} \text{ (possibly } -\infty)$

- $X = X^n$ is an *n*-tuple produced by the source $\{X_i\}$
- The Rényi entropy-rate $H_{\tilde{\rho}}(\mathbf{X}) = \lim_{n \to \infty} H_{\tilde{\rho}}(X^n)/n$ exists
- $s = nR_s$, where $R_s > 0$ is the per-hint storage-rate
- Achievable ambiguity exponent: $E_{\rm E} \ge 0$ such that

$$\lim_{n \to \infty} \mathscr{A}_{\mathcal{B}}(P_{X^n}) = 1, \quad \liminf_{n \to \infty} \frac{\log(\mathscr{A}_{\mathcal{E}}(P_{X^n}))}{n} \ge E_{\mathcal{E}}$$

hold for some sequence of stochastic encoders

Privacy-exponent: $\overline{E_{\rm E}} \triangleq \sup E_{\rm E} \ (\text{possibly } -\infty)$

$$\overline{E_{\rm E}} = \begin{cases} \rho \big(R_s(\nu - \eta) \wedge H_{\tilde{\rho}}(\boldsymbol{X}) \big), & \nu R_s > H_{\tilde{\rho}}(\boldsymbol{X}) \\ -\infty, & \nu R_s < H_{\tilde{\rho}}(\boldsymbol{X}). \end{cases}$$

Optimal Guessing

 $(X, Y) \sim P_{X,Y}$ takes value in a finite set $\mathcal{X} \times \mathcal{Y}$, and $\rho > 0$ is fixed

What is $\min_G \mathbb{E}[G(X|Y)^{\rho}] = \mathbb{E}[G^*(X|Y)^{\rho}]$?

Optimal Guessing

 $(X, Y) \sim P_{X,Y}$ takes value in a finite set $\mathcal{X} \times \mathcal{Y}$, and $\rho > 0$ is fixed

What is $\min_G \mathbb{E}[G(X|Y)^{\rho}] = \mathbb{E}[G^*(X|Y)^{\rho}]$?

Optimal Guessing

 $(X, Y) \sim P_{X,Y}$ takes value in a finite set $\mathcal{X} \times \mathcal{Y}$, and $\rho > 0$ is fixed

What is $\min_G \mathbb{E}[G(X|Y)^{\rho}] = \mathbb{E}[G^*(X|Y)^{\rho}]$?

 \mathbf{O}

ptimal guessing Arikan 1996
$$\frac{2^{\rho H_{\tilde{\rho}}(X|Y)}}{(1+\ln|\mathcal{X}|)^{-\rho}} \vee 1 \leq \mathbb{E}[G^*(X|Y)^{\rho}] \leq 2^{\rho H_{\tilde{\rho}}(X|Y)}.$$

$$H_{\tilde{\rho}}(X|Y) = \frac{1}{\rho} \log \sum_{y \in \mathcal{Y}} \left(\sum_{x \in \mathcal{X}} P_{X,Y}(x,y)^{\tilde{\rho}} \right)^{\frac{1}{\tilde{\rho}}} \text{ is Arimoto's}$$

conditional Rényi entropy of order $\tilde{\rho} = \frac{1}{1+\rho}$

- $\blacksquare (X,Y) \sim P_{X,Y} \text{ takes value in a finite set } \mathcal{X} \times \mathcal{Y}$
- Given the support \mathcal{Z} of Z, we choose $P_{Z|X,Y}$

- $(X,Y) \sim P_{X,Y} \text{ takes value in a finite set } \mathcal{X} \times \mathcal{Y}$
- Given the support \mathcal{Z} of Z, we choose $P_{Z|X,Y}$

Q: What is $\min_{G, P_{Z|X,Y}} \mathbb{E}[G(X|Y, Z)^{\rho}]$?

 $(X, Y) \sim P_{X,Y} \text{ takes value in a finite set } \mathcal{X} \times \mathcal{Y}$ Given the support \mathcal{Z} of Z, we choose $P_{Z|X,Y}$

Q: What is $\min_{G, P_{Z|X,Y}} \mathbb{E}[G(X|Y,Z)^{\rho}]$?

For an optimal
$$P_{Z|X,Y}$$
 ...
 $Z = z(X,Y)$
 $G(x|y, z(x,y)) = \lceil G^*(x|y)/|\mathcal{Z}|$

 $(X, Y) \sim P_{X,Y} \text{ takes value in a finite set } \mathcal{X} \times \mathcal{Y}$ Given the support \mathcal{Z} of Z, we choose $P_{Z|X,Y}$

Q: What is $\min_{G, P_{Z|X,Y}} \mathbb{E}[G(X|Y,Z)^{\rho}]$?

For an optimal
$$P_{Z|X,Y}$$
 ...
 $Z = z(X,Y)$
 $G(x|y, z(x,y)) = \lceil G^*(x|y)/|\mathcal{Z}|$

A: $\mathbb{E}[\lceil G^*(X|Y)/|\mathcal{Z}|\rceil^{\rho}]$

The Result in a Nutshell

An ambiguity pair $(\mathscr{A}_{\mathrm{B}}(P_X), \mathscr{A}_{\mathrm{E}}(P_X))$ is achievable iff $\mathscr{A}_{\mathrm{B}}(P_X) \gtrsim 2^{\rho(H_{\tilde{\rho}}(X) - \nu s)} \vee 1$ $\mathscr{A}_{\mathrm{E}}(P_X) \lesssim 2^{\rho(\nu - \eta)s} \mathscr{A}_{\mathrm{B}}(P_X) \wedge 2^{\rho H_{\tilde{\rho}}(X)}.$

■ The converse holds by the results on optimal guessing

The Result in a Nutshell

An ambiguity pair $(\mathscr{A}_{\mathrm{B}}(P_X), \mathscr{A}_{\mathrm{E}}(P_X))$ is achievable iff $\mathscr{A}_{\mathrm{B}}(P_X) \gtrsim 2^{\rho(H_{\tilde{\rho}}(X) - \nu s)} \vee 1$ $\mathscr{A}_{\mathrm{E}}(P_X) \lesssim 2^{\rho(\nu - \eta)s} \mathscr{A}_{\mathrm{B}}(P_X) \wedge 2^{\rho H_{\tilde{\rho}}(X)}.$

- The converse holds by the results on optimal guessing
- Achievability can be proved using nested MDS codes

Insecure Encoding:

- Describe X by $V \in \mathbb{F}_{2^s}^{\nu}$ s.t. $\mathbb{E}[G(X|V)^{\rho}] \approx 2^{\rho(H_{\tilde{\rho}}(X) \nu s)}$
- \blacksquare Alice encodes V using a (δ,ν) MDS code
- She stores each codeword-symbol on a different hint

Insecure Encoding:

- Describe X by $V \in \mathbb{F}_{2^s}^{\nu}$ s.t. $\mathbb{E}[G(X|V)^{\rho}] \approx 2^{\rho(H_{\tilde{\rho}}(X) \nu s)}$
- \blacksquare Alice encodes V using a (δ,ν) MDS code
- She stores each codeword-symbol on a different hint
- $\blacksquare \mathscr{A}_{\mathrm{B}}(P_X) = \mathbb{E}[G(X|V)^{\rho}] \approx 2^{\rho(H_{\tilde{\rho}}(X) \nu s)}$
- $\blacksquare \mathscr{A}_{\mathrm{E}}(P_X) \gtrsim 2^{\rho(H_{\tilde{\rho}}(X) \eta s)} \approx 2^{\rho(\nu \eta)s} \mathscr{A}_{\mathrm{B}}(P_X)$

Insecure Encoding:

- Describe X by $V \in \mathbb{F}_{2^s}^{\nu}$ s.t. $\mathbb{E}[G(X|V)^{\rho}] \approx 2^{\rho(H_{\tilde{\rho}}(X) \nu s)}$
- \blacksquare Alice encodes V using a (δ,ν) MDS code
- She stores each codeword-symbol on a different hint
- $\blacksquare \mathscr{A}_{\mathcal{B}}(P_X) = \mathbb{E}[G(X|V)^{\rho}] \approx 2^{\rho(H_{\tilde{\rho}}(X) \nu s)}$
- $\blacksquare \mathscr{A}_{\mathrm{E}}(P_X) \gtrsim 2^{\rho(H_{\tilde{\rho}}(X) \eta s)} \approx 2^{\rho(\nu \eta)s} \mathscr{A}_{\mathrm{B}}(P_X)$

Secure Encoding:

- Describe X by $W \in \mathbb{F}_{2^s}^{\nu-\eta}$ s.t. $\mathbb{E}[G(X|W)^{\rho}] \approx 2^{\rho(H_{\tilde{\rho}}(X) (\nu-\eta)s)}$
- Generate $U \sim \text{Unif}(\mathbb{F}_{2^s}^{\eta})$ independently of X
- Alice encodes (U, W) using a nested (δ, ν) MDS code
- She stores each codeword-symbol on a different hint

Insecure Encoding:

- Describe X by $V \in \mathbb{F}_{2^s}^{\nu}$ s.t. $\mathbb{E}[G(X|V)^{\rho}] \approx 2^{\rho(H_{\tilde{\rho}}(X) \nu s)}$
- \blacksquare Alice encodes V using a (δ,ν) MDS code
- She stores each codeword-symbol on a different hint
- $\blacksquare \mathscr{A}_{\mathcal{B}}(P_X) = \mathbb{E}[G(X|V)^{\rho}] \approx 2^{\rho(H_{\tilde{\rho}}(X) \nu s)}$
- $\blacksquare \mathscr{A}_{\mathrm{E}}(P_X) \gtrsim 2^{\rho(H_{\tilde{\rho}}(X) \eta s)} \approx 2^{\rho(\nu \eta)s} \mathscr{A}_{\mathrm{B}}(P_X)$

Secure Encoding:

- Describe X by $W \in \mathbb{F}_{2^s}^{\nu-\eta}$ s.t. $\mathbb{E}[G(X|W)^{\rho}] \approx 2^{\rho(H_{\tilde{\rho}}(X) (\nu-\eta)s)}$
- Generate $U \sim \text{Unif}(\mathbb{F}_{2^s}^{\eta})$ independently of X
- Alice encodes (U, W) using a nested (δ, ν) MDS code
- She stores each codeword-symbol on a different hint

$$\blacksquare \mathscr{A}_{\mathcal{B}}(P_X) = \mathbb{E}[G(X|U,W)^{\rho}] \approx 2^{\rho(H_{\tilde{\rho}}(X) - (\nu - \eta)s)}$$

 $\blacksquare \mathscr{A}_{\mathrm{E}}(P_X) \approx 2^{\rho H_{\tilde{\rho}}(X)} \approx 2^{\rho(\nu - \eta)s} \mathscr{A}_{\mathrm{B}}(P_X)$

Insecure Encoding:

- Describe X by $V \in \mathbb{F}_{2^s}^{\nu}$ s.t. $\mathbb{E}[G(X|V)^{\rho}] \approx 2^{\rho(H_{\tilde{\rho}}(X) \nu s)}$
- \blacksquare Alice encodes V using a (δ,ν) MDS code
- She stores each codeword-symbol on a different hint
- $\blacksquare \mathscr{A}_{\mathrm{B}}(P_X) = \mathbb{E}[G(X|V)^{\rho}] \approx 2^{\rho(H_{\tilde{\rho}}(X) \nu s)}$
- $\blacksquare \mathscr{A}_{\mathrm{E}}(P_X) \gtrsim 2^{\rho(H_{\tilde{\rho}}(X) \eta s)} \approx 2^{\rho(\nu \eta)s} \mathscr{A}_{\mathrm{B}}(P_X)$

Secure Encoding:

- Describe X by $W \in \mathbb{F}_{2^s}^{\nu-\eta}$ s.t. $\mathbb{E}[G(X|W)^{\rho}] \approx 2^{\rho(H_{\tilde{\rho}}(X) (\nu-\eta)s)}$
- Generate $U \sim \text{Unif}(\mathbb{F}_{2^s}^{\eta})$ independently of X
- Alice encodes (U, W) using a nested (δ, ν) MDS code
- She stores each codeword-symbol on a different hint
- $\blacksquare \mathscr{A}_{\mathcal{B}}(P_X) = \mathbb{E}[G(X|U,W)^{\rho}] \approx 2^{\rho(H_{\tilde{\rho}}(X) (\nu \eta)s)}$
- $\blacksquare \mathscr{A}_{\mathrm{E}}(P_X) \approx 2^{\rho H_{\tilde{\rho}}(X)} \approx 2^{\rho(\nu-\eta)s} \mathscr{A}_{\mathrm{B}}(P_X)$

To achieve any ambiguity-pair: $(V,W)\in \mathbb{F}_{2^p}^\nu\times \mathbb{F}_{2^r}^\nu$ s.t. p+r=s

Thank you