# How to Store a Secret

# Salim El Rouayheb Illinois Institute of Technology

# A Brief History of Codes for Storage According to Emina



1982 Reed Solomon paper (1960)







# What if some nodes cannot be trusted?

#### Adversary (passive for now) controls one node



## Wiretap Network



Secure network coding [Cai & Yeung '02] [ElRouayheb, Soljanin '07] [ElRouayheb, Sprintson, Soljanin '10]



#### Multicast Network with Wiretapped Edges

Main Message There: Separation is optimal Coset code + Network Code



# Coset Codes/Secret Sharing are Not Enough



- Because storage systems are dynamic
- Can we still protect the stored secret?

Two surprising results



# **General Problem Formulation**



- (n,k) system
- d: repair degree
- α: storage per node
- β: repair bandwidth
- b: nbr of compromised nodes
- Adversary: passive/active

Pawar, ElRouayheb, Ramchandran, '10

# What is the largest secret I can store in this system without loosing it or revealing it?

## A Divide and Share Scheme



Rashmi, Shah, Kumar & Ramchandran '09

# Secure Code

Secret: X1 X2 X3



# Secure Code in Bandwidth-Limited Regime and d<n-1

 $\{X_{16}, X_{17}\}$ 

 $\{X_{26}, X_{27}\}$ 

 $\{X_{36}, X_{37}\}$ 

 $\{X_{46}, X_{47}\}$ 

 $\{X_{56}, X_{57}\}$ 

 $\{X_{65}, X_{67}\}$ 

 $\{X_{75}, X_{76}\}$ 

#### (n,k,d)=(7,3,4)

 $X_{13}$ 

 $X_{23}$ 

 $X_{32}$ 

 $X_{42}$ 

 $X_{52}$ 

 $X_{62}$ 

 $X_{72}$ 

 $X_{12}$ 

 $X_{21}$ 

 $X_{31}$ 

 $X_{41}$ 

 $X_{51}$ 

 $X_{61}$ 

 $X_{71}$ 

 $X_{14}$ 

 $\overline{X}_{24}$ 

 $X_{34}$ 

 $X_{43}$ 

 $X_{53}$ 

 $X_{63}$ 

 $X_{73}$ 

 $X_{15}$ 

 $\overline{X}_{25}$ 

 $X_{35}$ 

 $X_{45}$ 

 $X_{54}$ 

 $\overline{X_{64}}$ 

 $\overline{X_{74}}$ 

#### AN OPTIMAL CLASS OF SYMMETRIC KEY

GENERATION SYSTEMS

| Rolf | Blom |
|------|------|
|      |      |

Ericsson Radio Systems AB

S-163 80 Stockholm, Sweden



Iwan's Observation





Optimal Exact-Regenerating Codes for Distributed Storage at the MSR and MBR Points via a Product-Matrix Construction

Full Text as PDF

Full Text in HTML

Date of Publication : Aug. 2011

Rashmi, K.V.; Dept. of Electr. Communication Eng., Indian Inst. of Sci., Bangalore, India; Shah, N.B.; Kumar, P.V.



node 1

node 2

node 3

node 4

node 5

node 6

node 7

### Upper Bound on Secrecy Capacity



Pawar, ElRouayheb, Ramchandran, '10

$$C(\alpha,\beta) \leq \sum_{i=l+1}^{k} \min\{(d-i+1)\beta,\alpha\}$$

Previous codes achieve this upper bound for bandwidth-limited regime  $\alpha \ge d\beta$ 

# **General Secure Codes**



Limited Regime

### Surprising result #1: Separation is NOT Optimal



#### Secret Size=1/2MB

Secret Size=2/3MB

#### It may be better not to use all your budgeted bandwidth or storage!

Falling back to bandwidth-limited regime codes is always optimal for (n,n-1,n-1) systems Tandon et al. '10

### Finding the Optimal Inner Code is not trivial



## What is the best we can do with a Separation Scheme



- Simpler design if we want different files with different security requirements
- Cloud user: does not have control over the code

Theorem: [Goparaju, R., Calderbank, Poor Netcod '13]Surprising
$$C_s^* = (k-b)\left(1-\frac{1}{n-k}\right)^b \alpha$$
result #2

# Proof based on Geometry of Repair Spaces



Secure (linear) capacity= ka – amount observed by Eve  $C_s^* \leq (k-b) \frac{\alpha}{2^b}$ 

<u>Theorem</u>: [Goparaju, R., Calderbank, Poor Netcod '13]  $\dim(S_{i_1} + S_{i_2} + \dots + S_{i_b}) \ge \frac{\alpha}{2} + \frac{\alpha}{2^2} + \dots + \frac{\alpha}{2^b}$ 

# A Taste of the Proof...



- Analogy to interference alignment
- Write these subspace conditions for all failures
- Use them to proof theorem by induction

### **Open Problems**





# **QUESTIONS?**