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Secure Networking

“Imagine a world seamlessly networked . . . ”
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Secure Networking

“Imagine a world seamlessly networked . . . ” and full of bad guys:
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The Glory Days of Cryptanalysis

German Enigma
cryptosystem

Alan Turing

Colossus code breaker

World War II: The German Enigma cryptosystem is broken.
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Traditional Secrecy Tool: Cryptography

Bob

Eve

Alice

secret
key

message

Symmetric key cryptography (AES): assumes “secure channel”
between Alice and Bob to communicate common key.

Key generation: can use public key cryptography, and/or
common randomness, and/or quantum techniques, and/or . . .

When many Alices and Bobs exist, key management becomes
a weak link.

Kerckhoffs’s Principle (1883)

A cryptosystem should be secure even if everything about the
system, except the key, is public knowledge.
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Fast Forward to the Present

Great advances in cryptography:

Cryptographic
message strength has
improved steadily
(AES and beyond)

What about the key?

Super
secure
door

key
under
mat
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Today’s World: The Weak Link

Today’s cryptography is
“strong”. But:

Security hinges on key
distribution: keys are
“entrusted” to humans.

It’s much easier to hack
humans than to break
crypto systems.

http://www.washingtonpost.com/investigations/in-cyberattacks-hacking-humans-is-highly-effective-way-to-access-
systems/2012/09/26/2da66866-ddab-11e1-8e43-4a3c4375504a story.html
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Wikileaks

Top secret, classified information
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Digital Rights/Restriction Management (DRM)

On DRM keys:

“No one has ever implemented a
DRM system that does not
depend on secret keys for its
operation. There are many smart
people in the world, who love to
discover such secrets and
publish them. It’s a
cat-and-mouse game.”

—Steve Jobs

http://web.archive.org/web/20080517114107/http:/www.apple.com/hotnews/thoughtsonmusic
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Other examples of leaked keys

Content Scrambling System (CSS). Designed to impose
separate geographic pricing regimes for DVDs.

⇒ leaked key gave rise to DeCSS

Sony Playstation 3:

⇒ leaked decryption keys for PSJailBreak and LV0: can now boot
“other OS”.

Many others . . .

http://en.wikipedia.org/wiki/DeCSS
http://www.eurogamer.net/articles/digitalfoundry-ps3-the-final-hack
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Keyless Security

Can we secure data & communications without using keys?

Yes, using coding for the wiretap channel:

 U
(auxiliary
variable)

Alice X Bob

Eve

Channel

Z 

Y 

Secrecy capacity = sup
U→X→(Y,Z)

(
I(U, Y)− I(U, Z)

)

→ CA→B − CA→E

When secrecy capacity is negative, a two-way protocol by Maurer
(1993) gives virtual channels, ensuring Eve’s is worse than Bob’s.
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Code design

Message m determines code word x according to

[
0
m

]
=

[
H1
H∆

]

︸ ︷︷ ︸
H

x =

Bob estimates message according to

x̂ = arg min
ξ

d(y, ξ) subject to 0 = H1ξ

⇒ m̂ = H∆x̂

H and H1 define nested codes according to

C = {ξ : H ξ = 0}
C1 = {ξ : H1ξ = 0} ⇒ C ⊂ C1
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Code design

Specifications:

C1 is a “fine code” (higher rate) that is capacity approaching
for Bob’s channel (RB < CB);

C(m) is a “coarse code” (lower rate, one code-book per
candidate message m) that is capacity saturating for Eve’s
channel (RE > CE);

Each coarse code is contained in the fine code: C(m) ⊂ C1;

The code word sent by Alice is chosen randomly from C(m).

Actual secrecy rate is then RS = RB − RE.

⇒ Same code construct as in dirty paper coding, information
hiding, watermarking, steganography, . . .
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Wish list

“Rateless” or “universal” secure
codes: secrecy without knowing
channel state;

Multi-terminal extensions (beyond
“successively degraded” channels);

Multi-layer integration;

Active adversaries
(Byzantine nodes);

“Human-proof” secure key
agreement: Agree on secret
message rather than secret key;

Strong versus weak secrecy.

http://www.theargylesweater.com/
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Strong versus Weak Secrecy

Weak secrecy: The rate of information leakage is bounded:

I(X n
1 ; Z

n
1 )

n
≤ ε, for n > n∗

Strong secrecy: The total information leakage is bounded:

I(X n
1 ; Z

n
1 ) ≤ ε, for all n

Secrecy capacity essentially the same, although achievable strong
secrecy methods tend to be more cumbersome.

Exception: Erasure codes/channels

Strong secrecy can be verified using linear algebra (rank of certain
matrices).
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Distributed Storage

Modern/updated application of erasure
codes: hard disk failures, power losses,
sabotage, . . . , all appear as network
erasures.

Code design has focused on data
recovery at minimal cost (repair
bandwidth; locality constraints;
maximum failure rate; . . . ).

Can also encode resilience to data theft
(using bounded theft model). Strong
secrecy is applicable.
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Threshold Secret Sharing

Blakley 1979; Shamir 1979; Karnin, Greene & Hellman 1983:

Secret S
(k bits)

…V1 V2 VN

N “shares”
| {z }

Involves a threshold t such that:

With any combination of fewer than t shares, no information
is leaked on the secret: I(S; Vi1 , Vi2 , . . . , Vit−1) = 0.

With any combination of t or more shares, secret is
reconstructed: H(S | Vi1 , Vi2 , . . . , Vit) = 0.

According to KGH (1983), this implies H(Vi) ≥ H(S) for each i, and
thus

Storage Capacity =
Maximum data size

Total storage available
=

1
N
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Wiretap channel (Wyner, 1975; Cziszar, 1976; Maurer,1993)

Bob

Eve

Alice

Z

Y
↵
1 � ↵S ! X

Let α = maximum tolerable theft ratio. Storage capacity:

CS = CA→B − CA→E

= (1− α)− α = 1− 2α

Equating α = (t− 1)/N,

1− 2α >
1
N
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Internet of Things

Security needs to be built in by
design;

Careful consideration needed for
transportation systems, medical
devices, critical infrastructure, . . .
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Computer & Information Science & Engineering (CISE) Directorate

CISE Organization and Core Research Programs 
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Research agenda is non-prescriptive;
We cast a wide net, and fund the best ideas.



Background Classical Tools Beyond Cryptography NSF

Communications and Information Foundations (CIF)

CIF supports transformative research that addresses the
theoretical underpinnings and current and future enabling
technologies for information acquisition, transmission, and
processing in communication and information networks.

Foundations of communications and information theory and
signal processing, including secure and/or reliable
communications, in:

wireless and multimedia networks;

biological networks;

networks of quantum devices;

secure communications and storage at the physical layer.
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Algorithmic Foundations (AF)

AF funds innovative and transformative research characterized
by algorithmic thinking and algorithm design, accompanied
by rigorous analysis, including: Algorithmic foundations for all
areas of computer science.

Fundamental limits of resource (space, time, communication,
energy) bounded computation;
Optimal solutions to computational problems under resource
bounds;
Quantum computation: secure key generation, quantum
communication capacity, . . . ;
Algorithmic thinking and algorithms for other disciplines (e.g.,
biology, physics, economics, social sciences).

Rsmall

Alice Bob

Eve

Rsmall RbigRbig
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Electrical, Communications and Cyber Systems (ECCS)

ECCS addresses fundamental research issues underlying device
and component technologies, power, controls, computation,
networking, communications and cyber technologies.

Integration and networking of intelligent systems principles at
the nano, micro and macro scales;

Application domains in healthcare, homeland security,
disaster mitigation, energy, telecommunications, environment,
transportation, manufacturing, and others;

Next generation of devices and systems: convergence of
technologies, interdisciplinary research, reaching the goals of
the American Competitiveness Initiative.
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Secure and Trustworthy Cyberspace (SaTC)

Aims to support fundamental scientific advances and technologies
to protect cyber-systems (including host machines, the Internet and
other cyber-infrastructure) from malicious behavior, while
preserving privacy and promoting usability.
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SaTC Perspective Goals

Cybersecurity cannot be fully addressed by only technical
approaches.

SaTC emphasizes different approaches and research
communities by introducing perspectives:

Trustworthy Computing Systems (TC-S);

Social, Behavioral & Economic (SBE);

Transition to Practice (TtoP).

Each proposal must address at least one perspective.

Proposals are goal-oriented.

Kerckhoffs’s last principle (1883)

A crypto system must be easy to use, requiring no mental
gymnastics nor memorization of a long series of steps.
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Cyber-Physical Systems (CPS)

Many partners this year:

Department of Homeland Security, Science &
Technology Directorate;

Department of Transportation, Federal Highway
Administration

National Aeronautic and Space Administration

National Institute of Health, Biomedial Engineering and
Bio-Imaging

Security (in broad sense) is of particular concern in future
transportation systems and medical devices and medical
informatics.

(NSF 15-541, due April 20 – May 4, 2015)
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NSF Grant Selection

How we work
“NSF’s task of identifying and funding work at the frontiers of
science and engineering is not a ‘top-down’ process. NSF operates
from the ‘bottom up,’ keeping close track of research around the
United States and the world, maintaining constant contact with the
research community to identify ever-moving horizons of inquiry,
monitoring which areas are most likely to result in spectacular
progress and choosing the most promising people to conduct the
research.”

http://www.nsf.gov/about/how.jsp
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Thanks!

Questions?
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