On the Connection Between Multiple-Unicast Network Coding and Single-Source Single-Sink Network Error Correction

Jörg Kliewer
NJIT

Joint work with Wentao Huang and Michael Langberg

Network Error Correction

Problem:

- Adversary has control of some edges in a network
- Objective: Design coding scheme that is resilient against adversary
- Which rates are achievable?

Network Error Correction

Problem:

- Adversary has control of some edges in a network
- Objective: Design coding scheme that is resilient against adversary
- Which rates are achievable?

Known Cases

- Adversary controls z links in the network
- Single source multicast, equal capacity links
- Capacity: mincut $-2 z$
- Code design, e.g., in [Cai \& Yeung 06], [Koetter \& Kschischang 08], [Jaggi et al. 08], [Silva et al. 08], [Brito, Kliewer 13]

Less Known and Studied Cases

- Single source multicast: different edge capacities, node adversaries, restricted adversaries (e.g., [Kosut, Tong, Tse 09], [Kim et al. 11], [Wang, Silva, Kschischang 08])
- Multiple sources and terminals: Upper and lower capacity bounds [Vyetrenko, Ho, Dikaliotis 10], [Liang, Agrawal, Vaidya 10]

This Work

- Single-source single-sink
- Acyclic network
- Edges may not have unit capacity

This Work

- Single-source single-sink
- Acyclic network
- Edges may not have unit capacity
- Adversary controls single link

This Work

- Single-source single-sink
- Acyclic network
- Edges may not have unit capacity
- Adversary controls single link
- Some edges cannot be accessed by the adversary

This Work

- Single-source single-sink
- Acyclic network
- Edges may not have unit capacity
- Adversary controls single link
- Some edges cannot be accessed by the adversary
- Reliable communication rate?

Results

Results

Network error correction problem:

Results

Network error correction problem:

Computing capacity is as hard as computing the capacity of an error-free multiple unicast network coding problem.

Results

Network error correction problem:

Computing capacity is as hard as computing the capacity of an error-free multiple unicast network coding problem.

Results

Network error correction problem:

Computing capacity is as hard as computing the capacity of an error-free multiple unicast network coding problem.

Results

Network error correction problem:

Computing capacity is as hard as computing the capacity of an error-free multiple unicast network coding problem.

Results

Network error correction problem:

Computing capacity is as hard as computing the capacity of an error-free multiple unicast network coding problem.

Reductions

- Result proved by reduction
- Significant interest recently
- Index coding/network coding, index coding/interference alignment, network equivalence, multiple unicast vs. multiple multicast NC, edge removal problem, ...

Reductions

- Result proved by reduction
- Significant interest recently
- Index coding/network coding, index coding/interference alignment, network equivalence, multiple unicast vs. multiple multicast NC, edge removal problem, ...
- Generate a clustering of network communication problems via reductions

Reductions

- Result proved by reduction
- Significant interest recently
- Index coding/network coding, index coding/interference alignment, network equivalence, multiple unicast vs. multiple multicast NC, edge removal problem, ...
- Generate a clustering of network communication problems via reductions

Reductions

- Result proved by reduction
- Significant interest recently
- Index coding/network coding, index coding/interference alignment, network equivalence, multiple unicast vs. multiple multicast NC, edge removal problem, ...
- Generate a clustering of network communication problems via reductions
- Identify canonical problems (central problems that are related to several other problems)

Reductions

- Result proved by reduction
- Significant interest recently
- Index coding/network coding, index coding/interference alignment, network equivalence, multiple unicast vs. multiple multicast NC, edge removal problem, ...
- Generate a clustering of network communication problems via reductions
- Identify canonical problems (central problems that are related to several other problems)

Computing error correcting capacity is as hard as computing the capacity of an error-free multiple unicast network coding problem.

- Proof for zero error communication
- Result also holds for both the case of asymptotic rate and asymptotic error

Computing error correcting capacity is as hard as computing the capacity of an error-free multiple unicast network coding problem.

- Proof for zero error communication
- Result also holds for both the case of asymptotic rate and asymptotic error
- Starting point: MU NC problem \mathcal{N}
- Is rate tuple $(1,1, \ldots, 1)$ achievable with zero error?

Proof

Computing error correcting capacity is as hard as computing the capacity of an error-free multiple unicast network coding problem.

- Proof for zero error communication
- Result also holds for both the case of asymptotic rate and asymptotic error
- Starting point: MU NC problem \mathcal{N}
- Is rate tuple $(1,1, \ldots, 1)$ achievable with zero error?
- Reduction: Construct new network \mathcal{N}^{\prime}

Proof

Computing error correcting capacity is as hard as computing the capacity of an error-free multiple unicast network coding problem.

- Proof for zero error communication
- Result also holds for both the case of asymptotic rate and asymptotic error
- Starting point: MU NC problem \mathcal{N}
- Is rate tuple $(1,1, \ldots, 1)$ achievable with zero error?
- Reduction: Construct new network \mathcal{N}^{\prime}
- Adversary can access any single link except links leaving s and t

Zero Error Case

Theorem

Rates $(1,1, \ldots, 1)$ achievable on \mathcal{N} iff rate k is achievable on \mathcal{N}^{\prime}.

Zero Error Case

Theorem

Rates $(1,1, \ldots, 1)$ achievable on \mathcal{N} iff rate k is achievable on \mathcal{N}^{\prime}.

Proof sketch: \prec

Zero Error Case

Theorem

Rates $(1,1, \ldots, 1)$ achievable on \mathcal{N} iff rate k is achievable on \mathcal{N}^{\prime}.

Proof sketch: \prec

- Assume $(1,1, \ldots, 1)$ on \mathcal{N}
- Source sends information on a_{i}

Zero Error Case

Theorem

Rates $(1,1, \ldots, 1)$ achievable on \mathcal{N} iff rate k is achievable on \mathcal{N}^{\prime}.

Proof sketch: \prec

- Assume $(1,1, \ldots, 1)$ on \mathcal{N}
- Source sends information on a_{i}
- One error may occur on $x_{i}, y_{i}, z_{i}, z_{i}^{\prime}$

Zero Error Case

Theorem

Rates $(1,1, \ldots, 1)$ achievable on \mathcal{N} iff rate k is achievable on \mathcal{N}.

Proof sketch: \prec

- Assume $(1,1, \ldots, 1)$ on \mathcal{N}
- Source sends information on a_{i}
- One error may occur on $x_{i}, y_{i}, z_{i}, z_{i}^{\prime}$
- Bi performs majority decoding
- Rate k is possible on \mathcal{N}^{\prime}

Zero Error Case

Zero Error Case

Proof sketch: \Rightarrow

Zero Error Case

Proof sketch: \Rightarrow

- Assume rate k achievable on \mathcal{N}^{\prime} : show rate $(1,1, \ldots, 1)$ on \mathcal{N}

Zero Error Case

Proof sketch: \Rightarrow

- Assume rate k achievable on \mathcal{N}^{\prime} : show rate $(1,1, \ldots, 1)$ on \mathcal{N}
- Full rate (cut): 1-1 corresp. between message $M, a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k}$

Zero Error Case

Proof sketch: \Rightarrow

- Assume rate k achievable on \mathcal{N}^{\prime} : show rate $(1,1, \ldots, 1)$ on \mathcal{N}
- Full rate (cut): 1-1 corresp. between message $M, a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k}$
- Error correction: For $M_{1} \neq M_{2}$ if $b_{i}\left(M_{1}\right) \neq b_{i}\left(M_{2}\right)$ then $z_{i}^{\prime}\left(M_{1}\right) \neq z_{i}^{\prime}\left(M_{2}\right)$
- For $z_{i}^{\prime}\left(M_{1}\right)=z_{i}^{\prime}\left(M_{2}\right)$ terminal cannot distinguish between M_{1}, M_{2}

Zero Error Case

Proof sketch: \Rightarrow

- Assume rate k achievable on \mathcal{N}^{\prime} : show rate $(1,1, \ldots, 1)$ on \mathcal{N}
- Full rate (cut): 1-1 corresp. between message $M, a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k}$
- Error correction: For $M_{1} \neq M_{2}$ if $b_{i}\left(M_{1}\right) \neq b_{i}\left(M_{2}\right)$ then $z_{i}^{\prime}\left(M_{1}\right) \neq z_{i}^{\prime}\left(M_{2}\right)$
- For $z_{i}^{\prime}\left(M_{1}\right)=z_{i}^{\prime}\left(M_{2}\right)$ terminal cannot distinguish between M_{1}, M_{2}

Zero Error Case

Proof sketch: \Rightarrow

- Assume rate k achievable on \mathcal{N}^{\prime} : show rate $(1,1, \ldots, 1)$ on \mathcal{N}
- Full rate (cut): 1-1 corresp. between message $M, a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k}$
- Error correction: For $M_{1} \neq M_{2}$ if $b_{i}\left(M_{1}\right) \neq b_{i}\left(M_{2}\right)$ then $z_{i}^{\prime}\left(M_{1}\right) \neq z_{i}^{\prime}\left(M_{2}\right)$
- For $z_{i}^{\prime}\left(M_{1}\right)=z_{i}^{\prime}\left(M_{2}\right)$ terminal cannot distinguish between M_{1}, M_{2}

Zero Error Case

Proof sketch: \Rightarrow

- Assume rate k achievable on \mathcal{N}^{\prime} : show rate $(1,1, \ldots, 1)$ on \mathcal{N}
- Full rate (cut): 1-1 corresp. between message $M, a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k}$
- Error correction: For $M_{1} \neq M_{2}$ if $b_{i}\left(M_{1}\right) \neq b_{i}\left(M_{2}\right)$ then $z_{i}^{\prime}\left(M_{1}\right) \neq z_{i}^{\prime}\left(M_{2}\right)$
- For $z_{i}^{\prime}\left(M_{1}\right)=z_{i}^{\prime}\left(M_{2}\right)$ terminal cannot distinguish between M_{1}, M_{2}

Zero Error Case

Proof sketch: \Rightarrow

- Assume rate k achievable on \mathcal{N}^{\prime} : show rate $(1,1, \ldots, 1)$ on \mathcal{N}
- Full rate (cut): 1-1 corresp. between message $M, a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k}$
- Error correction: For $M_{1} \neq M_{2}$ if $b_{i}\left(M_{1}\right) \neq b_{i}\left(M_{2}\right)$ then $z_{i}^{\prime}\left(M_{1}\right) \neq z_{i}^{\prime}\left(M_{2}\right)$
- For $z_{i}^{\prime}\left(M_{1}\right)=z_{i}^{\prime}\left(M_{2}\right)$ terminal cannot distinguish between M_{1}, M_{2}
- 1-1 correspondence between $b_{i} \leftrightarrow z_{i}^{\prime}$

Zero Error Case

Proof sketch: \Rightarrow

- Assume rate k achievable on \mathcal{N}^{\prime} : show rate $(1,1, \ldots, 1)$ on \mathcal{N}
- Full rate (cut): 1-1 corresp. between message $M, a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k}$
- 1-1 correspondence between $b_{i} \leftrightarrow z_{i}^{\prime}$

Zero Error Case

Proof sketch: \Rightarrow

- Assume rate k achievable on \mathcal{N}^{\prime} : show rate $(1,1, \ldots, 1)$ on \mathcal{N}
- Full rate (cut): 1-1 corresp. between message $M, a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k}$
- 1-1 correspondence between $b_{i} \leftrightarrow z_{i}^{\prime}$
- Same argument: 1-1 correspondence between $\mathrm{a}_{i} \leftrightarrow x_{i} \leftrightarrow y_{i} \leftrightarrow z_{i}$

Zero Error Case

Proof sketch: \Rightarrow

- Assume rate k achievable on \mathcal{N}^{\prime} : show rate $(1,1, \ldots, 1)$ on \mathcal{N}
- Full rate (cut): 1-1 corresp. between message $M, a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k}$
- 1-1 correspondence between $b_{i} \leftrightarrow z_{i}^{\prime}$
- Same argument: 1-1 correspondence between $\mathrm{a}_{i} \leftrightarrow x_{i} \leftrightarrow y_{i} \leftrightarrow z_{i}$

Zero Error Case

Proof sketch: \Rightarrow

- Assume rate k achievable on \mathcal{N}^{\prime} : show rate $(1,1, \ldots, 1)$ on \mathcal{N}
- Full rate (cut): 1-1 corresp. between message $M, a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k}$
- 1-1 correspondence between $b_{i} \leftrightarrow z_{i}^{\prime}$
- Same argument: 1-1 correspondence between $a_{i} \leftrightarrow x_{i} \leftrightarrow y_{i} \leftrightarrow z_{i}$
- In summary: $z_{i} \leftrightarrow x_{i} \leftrightarrow b_{i} \leftrightarrow z_{i}^{\prime}$
- Implies $z_{i} \leftrightarrow z_{i}^{\prime}$: multiple unicast

Zero Error Case

Proof sketch: \Rightarrow

- Assume rate k achievable on \mathcal{N}^{\prime} : show rate $(1,1, \ldots, 1)$ on \mathcal{N}
- Full rate (cut): 1-1 corresp. between message $M, a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k}$
- 1-1 correspondence between $b_{i} \leftrightarrow z_{i}^{\prime}$
- Same argument: 1-1 correspondence between $a_{i} \leftrightarrow x_{i} \leftrightarrow y_{i} \leftrightarrow z_{i}$
- In summary: $z_{i} \leftrightarrow x_{i} \leftrightarrow b_{i} \leftrightarrow z_{i}^{\prime}$
- Implies $z_{i} \leftrightarrow z_{i}^{\prime}$: multiple unicast

Asymptotic Error Case

Proof sketch:

Asymptotic Error Case

Proof sketch:

- Arguments are more complicated
- Essentially the same

Asymptotic Error Case

Proof sketch:

- Arguments are more complicated
- Essentially the same
- \Rightarrow We show:
$\lim _{n \rightarrow \infty, \epsilon \rightarrow 0} I\left(a_{i} ; b_{i}\right) / n=1$
$\lim _{n \rightarrow \infty, \epsilon \rightarrow 0} I\left(a_{i} ; z_{i}\right) / n=1$
$\lim _{n \rightarrow \infty, \epsilon \rightarrow 0} I\left(b_{i} ; z_{i}^{\prime}\right) / n=1$

Asymptotic Error Case

Proof sketch:

- Arguments are more complicated
- Essentially the same
- \Rightarrow We show:
$\lim _{n \rightarrow \infty, \epsilon \rightarrow 0} I\left(a_{i} ; b_{i}\right) / n=1$
$\lim _{n \rightarrow \infty, \epsilon \rightarrow 0} I\left(a_{i} ; z_{i}\right) / n=1$
$\lim _{n \rightarrow \infty, \epsilon \rightarrow 0} I\left(b_{i} ; z_{i}^{\prime}\right) / n=1$

Asymptotic Error Case

Proof sketch:

- Arguments are more complicated
- Essentially the same
- \Rightarrow We show:
$\lim _{n \rightarrow \infty, \epsilon \rightarrow 0} I\left(a_{i} ; b_{i}\right) / n=1$
$\lim _{n \rightarrow \infty, \epsilon \rightarrow 0} I\left(a_{i} ; z_{i}\right) / n=1$
$\lim _{n \rightarrow \infty, \epsilon \rightarrow 0} I\left(b_{i} ; z_{i}^{\prime}\right) / n=1$
- In summary: $\lim _{n \rightarrow \infty, \epsilon \rightarrow 0} I\left(z_{i} ; z_{i}^{\prime}\right) / n=1$
- Block codes: MU with $\epsilon>0$ possible

Current Understanding

Infeasibility of Multiple Unicast

Theorem

There exist networks \mathcal{N} and \mathcal{N}^{\prime} such that rate k is asymptotically achievable on \mathcal{N}^{\prime} but $(1,1, \ldots, 1)$ is not asymp. achievable on \mathcal{N}.

Infeasibility of Multiple Unicast

Theorem

There exist networks \mathcal{N} and \mathcal{N}^{\prime} such that rate k is asymptotically achievable on \mathcal{N}^{\prime} but $(1,1, \ldots, 1)$ is not asymp. achievable on \mathcal{N}.

Proof (constructive):

Infeasibility of Multiple Unicast

Theorem

There exist networks \mathcal{N} and \mathcal{N}^{\prime} such that rate k is asymptotically achievable on \mathcal{N}^{\prime} but $(1,1, \ldots, 1)$ is not asymp. achievable on \mathcal{N}.

Proof (constructive):

- Unit capacity edges, messages
$M=\left(M_{1}, M_{2}\right), \mathrm{H}\left(M_{1}\right)=\mathrm{H}\left(M_{2}\right)=n-1$ bits, adversary can access one link
- Network code:

Infeasibility of Multiple Unicast

Theorem

There exist networks \mathcal{N} and \mathcal{N}^{\prime} such that rate k is asymptotically achievable on \mathcal{N}^{\prime} but $(1,1, \ldots, 1)$ is not asymp. achievable on \mathcal{N}.

Proof (constructive):

- Unit capacity edges, messages
$M=\left(M_{1}, M_{2}\right), \mathrm{H}\left(M_{1}\right)=\mathrm{H}\left(M_{2}\right)=n-1$ bits, adversary can access one link
- Network code:

$$
a_{1}(M)=x_{1}(M)=y_{1}(M)=z_{1}(M)=M_{1}
$$

Infeasibility of Multiple Unicast

Theorem

There exist networks \mathcal{N} and \mathcal{N}^{\prime} such that rate k is asymptotically achievable on \mathcal{N}^{\prime} but $(1,1, \ldots, 1)$ is not asymp. achievable on \mathcal{N}.

Proof (constructive):

- Unit capacity edges, messages
$M=\left(M_{1}, M_{2}\right), \mathrm{H}\left(M_{1}\right)=\mathrm{H}\left(M_{2}\right)=n-1$ bits, adversary can access one link
- Network code:

$$
\begin{aligned}
& a_{1}(M)=x_{1}(M)=y_{1}(M)=z_{1}(M)=M_{1} \\
& a_{2}(M)=x_{2}(M)=y_{2}(M)=z_{2}(M)=M_{2}
\end{aligned}
$$

Infeasibility of Multiple Unicast

Theorem

There exist networks \mathcal{N} and \mathcal{N}^{\prime} such that rate k is asymptotically achievable on \mathcal{N}^{\prime} but $(1,1, \ldots, 1)$ is not asymp. achievable on \mathcal{N}.

Proof (constructive):

- Unit capacity edges, messages $M=\left(M_{1}, M_{2}\right), \mathrm{H}\left(M_{1}\right)=\mathrm{H}\left(M_{2}\right)=n-1$ bits, adversary can access one link
- Network code:

$$
\begin{aligned}
& a_{1}(M)=x_{1}(M)=y_{1}(M)=z_{1}(M)=M_{1} \\
& a_{2}(M)=x_{2}(M)=y_{2}(M)=z_{2}(M)=M_{2} \\
& z_{1}^{\prime}(M)=z_{2}^{\prime}(M)=M_{1}+M_{2}
\end{aligned}
$$

Infeasibility of Multiple Unicast

Theorem

There exist networks \mathcal{N} and \mathcal{N}^{\prime} such that rate k is asymptotically achievable on \mathcal{N}^{\prime} but $(1,1, \ldots, 1)$ is not asymp. achievable on \mathcal{N}.

Proof (cont.):

Infeasibility of Multiple Unicast

Theorem

There exist networks \mathcal{N} and \mathcal{N}^{\prime} such that rate k is asymptotically achievable on \mathcal{N}^{\prime} but $(1,1, \ldots, 1)$ is not asymp. achievable on \mathcal{N}.

Proof (cont.):

- $b_{i}\left(x_{i}, x_{i}, z_{i}^{\prime}\right)= \begin{cases}x_{i} & \text { if } x_{i}=y_{i} \text { (case 1) } \\ z_{i}^{\prime} & \text { if } x_{i} \neq y_{i} \text { (case 2) }\end{cases}$
- b_{i} reserves one bit to indicate if case 1 or 2 happens

Infeasibility of Multiple Unicast

Theorem

There exist networks \mathcal{N} and \mathcal{N}^{\prime} such that rate k is asymptotically achievable on \mathcal{N}^{\prime} but $(1,1, \ldots, 1)$ is not asymp. achievable on \mathcal{N}.

Proof (cont.):

- $b_{i}\left(x_{i}, x_{i}, z_{i}^{\prime}\right)= \begin{cases}x_{i} & \text { if } x_{i}=y_{i} \text { (case 1) } \\ z_{i}^{\prime} & \text { if } x_{i} \neq y_{i}(\text { case 2) }\end{cases}$
- b_{i} reserves one bit to indicate if case 1 or 2 happens
- t is able to decode $\left(M_{1}, M_{2}\right)$ correctly at asymptotic rate 2
- Multiple unicast with rate $(1,1)$ is not feasible

- Error correction in a simple network setting
- Single-source network error correction is at least as hard as multiple-unicast (error-free) network coding
- Falls into broader framework that connects different network communication problems via reductions
- Error correction in a simple network setting
- Single-source network error correction is at least as hard as multiple-unicast (error-free) network coding
- Falls into broader framework that connects different network communication problems via reductions
- [Huang, Langberg, Kliewer, accepted for ISIT 2015]

