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Known Cases

@ Adversary controls z links in the network
@ Single source multicast, equal capacity links
» Capacity: mincut — 2z

» Code design, e.g., in [Cai & Yeung 06], [Koetter &

Kschischang 08], [Jaggi et al. 08], [Silva et al. 08], [Brito,
Kliewer 13]
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Less Known and Studied Cases

@ Single source multicast: different edge capacities, node
adversaries, restricted adversaries (e.g., [Kosut, Tong, Tse 09],
[Kim et al. 11], [Wang, Silva, Kschischang 08])

@ Multiple sources and terminals: Upper and lower capacity
bounds [Vyetrenko, Ho, Dikaliotis 10], [Liang, Agrawal, Vaidya 10]
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Computing error correcting capacity is as hard as computing the
capacity of an error-free multiple unicast network coding problem.

Proof for zero error communication

Result also holds for both the case of asymptotic rate and
asymptotic error

Starting point: MU NC problem N/

Is rate tuple(1,1,...,1) achievable
with zero error?

@ Reduction: Construct new network N’

@ Adversary can access any single
link except links leaving s and t
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Proof sketch: <=
@ Assume (1,1,...,1)on NV
@ Source sends information on a;

® One error may occur onx;, yi, z;, Zi

@ Bi performs majority decoding

® Rate kis possible on N’
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Asymptotic Error Case

Proof sketch:
@ Arguments are more complicated

® <= Essentially the same M
¢ =P \We show:
> lim I(a,-;b,-)/n =1

n—o0,e—0

» lim  l(a;;z)/n=1
n—o0,e—0

» lim  I(b;zi)/n =1

n—o0,e—0

@ Insummary: |im  [(z;z)/n =1
n—o0,e—0

® Block codes: MU with ¢ > 0
possible
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® [Huang, Langberg, Kliewer, accepted for ISIT 2015]



