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Tampering Experiment
f

cm m*c*
DecEnc

(m) m g
g

(Real)

(Ideal)

• Consider a tamperable communication channel.

• To protect, send c = Enc(m) along the channel.

• The tampered codeword decodes to some m∗.

• Hope: m∗ "looks like" g(m) for some "good" g that we can
"tolerate".

We want

I Correctness: ∀m, Dec(Enc(m)) = m.

I Simulation: ∀ f ∈ F , ∃ g ∈ G, where
I F is large and realistic against attacks/channels.
I G small and "easy to handle".



Tampering Experiment
f

cm m*c*
DecEnc

(m) m g
g

(Real)

(Ideal)

• Consider a tamperable communication channel.

• To protect, send c = Enc(m) along the channel.

• The tampered codeword decodes to some m∗.

• Hope: m∗ "looks like" g(m) for some "good" g that we can
"tolerate".

We want

I Correctness: ∀m, Dec(Enc(m)) = m.

I Simulation: ∀ f ∈ F , ∃ g ∈ G, where
I F is large and realistic against attacks/channels.
I G small and "easy to handle".



Tampering Experiment
f

cm m*c*
DecEnc

(m) m g
g

(Real)

(Ideal)

• Consider a tamperable communication channel.

• To protect, send c = Enc(m) along the channel.

• The tampered codeword decodes to some m∗.

• Hope: m∗ "looks like" g(m) for some "good" g that we can
"tolerate".

We want

I Correctness: ∀m, Dec(Enc(m)) = m.

I Simulation: ∀ f ∈ F , ∃ g ∈ G, where
I F is large and realistic against attacks/channels.
I G small and "easy to handle".



Tampering Experiment
f

cm m*c*
DecEnc

(m) m g
g

(Real)

(Ideal)

• Consider a tamperable communication channel.

• To protect, send c = Enc(m) along the channel.

• The tampered codeword decodes to some m∗.

• Hope: m∗ "looks like" g(m) for some "good" g that we can
"tolerate".

We want

I Correctness: ∀m, Dec(Enc(m)) = m.

I Simulation: ∀ f ∈ F , ∃ g ∈ G, where
I F is large and realistic against attacks/channels.
I G small and "easy to handle".



Tampering Experiment
f

cm m*c*
DecEnc

(m) m g
g

(Real)

(Ideal)

• Consider a tamperable communication channel.

• To protect, send c = Enc(m) along the channel.

• The tampered codeword decodes to some m∗.

• Hope: m∗ "looks like" g(m) for some "good" g that we can
"tolerate".

We want

I Correctness: ∀m, Dec(Enc(m)) = m.

I Simulation: ∀ f ∈ F , ∃ g ∈ G, where
I F is large and realistic against attacks/channels.
I G small and "easy to handle".



Example: Error-correcting codes

f
cm m*c*

DecEnc

(m) m g
g

(Real)

(Ideal)

F G

(m) = mId

I G = {Id} is “easy to handle".

I F realistic/useful.

I Constructions: Hadamard, Reed-Solomon, Reed-Muller, etc..



Example: Error-correcting codes

f
cm m*c*

DecEnc

(m) m g
g

(Real)

(Ideal)

∆ ρ

F G

(m) = mId
(c,    ) <= c*

I G = {Id} is “easy to handle".

I F realistic/useful.

I Constructions: Hadamard, Reed-Solomon, Reed-Muller, etc..



Example: Error-detecting codes

f
cm m*c*

DecEnc

(m) m g
g

(Real)

(Ideal)

F G

(m) = m

(m) =

Id

AMD Codes: Application in robust fuzzy extractors and secret sharing
[CDFPW12], NM-codes [DPW10], etc.



Example: Error-detecting codes

f
cm m*c*

DecEnc

(m) m g
g

(Real)

(Ideal)

F G

(m) = m

(m) =

Id∆( c,     )<= c* 2ρ

Same constructions as those for ECC.secret sharing [CDFPW12],
NM-codes [DPW10], etc.



Example: Error-detecting codes

f
cm m*c*

DecEnc

(m) m g
g

(Real)

(Ideal)

F G

(m) = m

(m) =(c) = c + 
Id

f δ
δ

AMD Codes: Application in robust fuzzy extractors and secret sharing
[CDFPW12], NM-codes [DPW10], etc.



Error-correction/detection impossible

f
cm m*c*

DecEnc

(m) m g
g

(Real)

(Ideal)

F G

(m) = m

(m) =

Id

(c) = c*
c*
f

??
Constant

functions

Let c∗ = Enc(m′) for some fixed m′.

Thus, Dec(c∗) = m′ /∈ {m,⊥}.



Error-correction/detection impossible

f
cm m*c*

DecEnc

(m) m g
g

(Real)

(Ideal)

F G

(m) = m

(m) =

Id

(c) = c*
c*
f

Constant

functions

Let c∗ = Enc(m′) for some fixed m′.

Thus, Dec(c∗) = m′ /∈ {m,⊥}.



Non-malleable codes

f
cm m*c*

DecEnc

(m) m g
g

(Real)

(Ideal)

NM

Id (m) = m

g
m*

(m) = m*

F

Is NM "realistic/easy-to-handle"? When is it useful?



Non-malleable codes

f
cm m*c*

DecEnc

(m) m g
g

(Real)

(Ideal)

NM

Id (m) = m

g
m*

(m) = m*

F

Is NM "realistic/easy-to-handle"? When is it useful?



Application of Non-malleable codes

I Consider Signsk (userID, m).

I Task: How to protect sk against tampering attack.

I Encode sk using non-malleable code.

I Thus, sk∗ = Dec(f (Enc(sk))) is either equal to sk or unrelated.

I Thus, cannot use Signsk∗ (userID, ·) to forge Signsk (userID’ , ·).



Non-malleable codes: Formal Definition
Let (Enc,Dec) be a coding scheme with Enc randomized, and
Dec deterministic, s.t. ∀m Dec(Enc(m)) = m,

f
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g
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(Ideal)

The coding scheme is non-malleable w.r.t. family F , if

∀f ∈ F ,

∃T which is a probabilistic combination of:

I constant functions

I identity function

s.t.
∀m ∈M, m∗ ≈ T (m) .

Note: T is independent of m.
Thus, intuitively, either m∗ = m or they are unrelated.
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Non-malleable Codes in the t-split-state model
I Tamper t different memory-parts independently

I Application to non-malleable secret-sharing

I Includes ECC, EDC, Constant functions, bitwise tampering
functions but much more

I Existential result known [DPW10].

I Efficient construction for family of bitwise-tampering functions
(t = k , the no. of bits in m) [DPW10, CG14, FNVW14].

I Efficient construction for t = 2, k = 1 [DKO13]

I Open Question: Efficient construction for t constant, k large.

YES (this talk). We show several constructions, including
t = 2 and constant rate (i.e. code length is Θ(k)).
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NM-codes in the t-split state model
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The coding scheme is non-malleable w.r.t. family Ft-split , if

∀ f1, . . . , ft , ∃T which is a probabilistic combination of:

I constant functions

I identity function

s.t.
∀m ∈M, m∗ ≈ T (m) .



Common outline for our results: Non-malleable
reductions [ADKO15]



Non-malleable Reduction: Definition [ADKO15]
Let (Enc,Dec) be a coding scheme with Enc randomized, and
Dec deterministic, s.t. ∀m Dec(Enc(m)) = m,

f
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(Ideal)The scheme is a non-malleable reduction from F to G ,
denoted as F ⇒ G if

∀f ∈ F , ∃G which is a probabilistic combination of functions in G .

∀m ∈M, m∗ ≈ G(m) .

An NM-code for F can be viewed as F ⇒ NM , where NM is the
function family comprising of

I constant functions

I identity function
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Theorem
For all F , G, H, we have that

F ⇒ G, and G ⇒ H, implies F ⇒ H .
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Make families simpler, until non-malleable.
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Our results

F
split
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[ADL14] [ADL14, A14]

[CG14, CZ14]

[ADKO14]

[ADKO14]

ADL14 gives a scheme for encoding k -bit messages to Θ(k7)-bit
codewords.

ADKO15 gives a scheme for encoding k -bit messages to Θ(k)-bit
codewords.



Two simplifying assumptions for the talk

I Will only describe the decoding procedure.

I Enc(m) is a random c such that Dec(c) = m.

I Subtlety: Enc might be inefficient.

I This can be a problem at times, but for our constructions,
we can get around it.

I Argue non-malleability only for a uniformly random message M.
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Fsplit ⇒ Faffine

U = UFp , p = poly(k) is a prime

Enc1(U) = L,R ∈ Fn
p s.t. 〈L,R〉 = U, n = poly(log k).

U 
R

1Enc L
f

g

L*

R*

Dec1
<L*, R*>

We show:

∀ f ,g, (〈L,R〉, 〈f (L),g(R)〉) ≈ (U, Af ,gU + Bf ,g) .



Proof Step 1: Partitioning Lemma

Fix f , g. Let φ(L,R) := (〈L,R〉, 〈f (L), g(R)〉)

D := {D : D is a conv. comb. of (U, aU + b), a, b ∈ F}

B

G G

GG
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SS

S
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3

S
G

It is enough to partition Fn
p × Fn

p into
"good" and "bad" rectangles such
that

I If S is a good set, then
φ(L,R)|(L,R)∈S is close to some
distribution in D.

I The union of all bad sets has
size much smaller than p2n.



Our partitioning

We partition Fn
p × Fn

p into four type of rectangles.

• Type 1: g(R) = a for some a ∈ Fn
p. Then φ = (〈L,R〉 , 〈f (L), g(R)〉) is

close to (UFp , 〈f (L), a〉) which belongs to D.

• Type 2: φ = (〈L,R〉 , 〈f (L), g(R)〉) is close to UF2
p
, which belongs to D.

• Type 3: f (L) = AL for some A ∈ Fn×n
p , and AT g(R) = cR + d , for

c ∈ Fp , and d ∈ Fn
p , which implies

φ = (〈L,R〉 , c〈L,R〉+ 〈L, d〉) ,

which is in D if the partition S is large enough.

• Type 4: Bad sets.

We show that the set Fn
p × Fn

p can be partitioned into sets of the above four
types such that the total size of "bad" sets is much smaller than p2n.
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Main tools used for the proof

I Linearity test [BSG94, Sam07, San12] : For f : Fn
p 7→ Fn

p

Pr(f (L)− f (L′) = f (L− L′)) ≥ ε ⇒ ∃A Pr(f (L) = AL) ≥ p− log6(1/ε) .

I We need a generalized version, for which we show that
essentially the same proof works.

I Hadamard Extractor: 〈·, ·〉 is a strong 2-source extractor.

I (Generalized) Vazirani’s XOR Lemma:
(X1,X2) is close to uniform in Fp × Fp if and only if aX1 + bX2 is
close to uniform in Fp for all a, b ∈ Fp , not both zero.



F
2−split F

aff NM



Step two: Faffine ⇒ NM

cm 
Enc A, B

h
Ac + B

Dec
m*2 2

Define an affine-evasive set C of Fp as a set s.t. for C chosen uniformly at
random from C,

∀ a, b ∈ Fp × Fp s.t. a 6= 0 and (a, b) 6= (1, 0)

Pr(a · C + b ∈ C) ≈ 0 ,

Partition C into equal parts C1, . . . , C|M| and define

Dec2(c) = m, if c ∈ Cm, and ⊥, otherwise .

Thus,
∀m ∈M, m∗ ≈ T (m) .

An affine-evasive set construction modulo p [A14]:

S :=

{
1
q

(mod p)
∣∣∣ q is prime , q <

p1/4

2

}
.



Step two: Faffine ⇒ NM

cm 
Enc A, B

h
Ac + B

Dec
m*2 2

Define an affine-evasive set C of Fp as a set s.t. for C chosen uniformly at
random from C,

∀ a, b ∈ Fp × Fp s.t. a 6= 0 and (a, b) 6= (1, 0)

Pr(a · C + b ∈ C) ≈ 0 ,

Partition C into equal parts C1, . . . , C|M| and define

Dec2(c) = m, if c ∈ Cm, and ⊥, otherwise .

Thus,
∀m ∈M, m∗ ≈ T (m) .

An affine-evasive set construction modulo p [A14]:

S :=

{
1
q

(mod p)
∣∣∣ q is prime , q <

p1/4

2

}
.



Step two: Faffine ⇒ NM

cm 
Enc A, B

h
Ac + B

Dec
m*2 2

Define an affine-evasive set C of Fp as a set s.t. for C chosen uniformly at
random from C,

∀ a, b ∈ Fp × Fp s.t. a 6= 0 and (a, b) 6= (1, 0)

Pr(a · C + b ∈ C) ≈ 0 ,

Partition C into equal parts C1, . . . , C|M| and define

Dec2(c) = m, if c ∈ Cm, and ⊥, otherwise .

Thus,
∀m ∈M, m∗ ≈ T (m) .

An affine-evasive set construction modulo p [A14]:

S :=

{
1
q

(mod p)
∣∣∣ q is prime , q <

p1/4

2

}
.



Step two: Faffine ⇒ NM

cm 
Enc A, B

h
Ac + B

Dec
m*2 2

Define an affine-evasive set C of Fp as a set s.t. for C chosen uniformly at
random from C,

∀ a, b ∈ Fp × Fp s.t. a 6= 0 and (a, b) 6= (1, 0)

Pr(a · C + b ∈ C) ≈ 0 ,

Partition C into equal parts C1, . . . , C|M| and define

Dec2(c) = m, if c ∈ Cm, and ⊥, otherwise .

Thus,
∀m ∈M, m∗ ≈ T (m) .

An affine-evasive set construction modulo p [A14]:

S :=

{
1
q

(mod p)
∣∣∣ q is prime , q <

p1/4

2

}
.



Step two: Faffine ⇒ NM

cm 
Enc A, B

h
Ac + B

Dec
m*2 2

Define an affine-evasive set C of Fp as a set s.t. for C chosen uniformly at
random from C,

∀ a, b ∈ Fp × Fp s.t. a 6= 0 and (a, b) 6= (1, 0)

Pr(a · C + b ∈ C) ≈ 0 ,

Partition C into equal parts C1, . . . , C|M| and define

Dec2(c) = m, if c ∈ Cm, and ⊥, otherwise .

Thus,
∀m ∈M, m∗ ≈ T (m) .

An affine-evasive set construction modulo p [A14]:

S :=

{
1
q

(mod p)
∣∣∣ q is prime , q <

p1/4

2

}
.



F
2−split F

aff NM



Our second result [ADKO15]

NM-reduction from 2-split to t-split for large
constant t

k -bit messages =⇒ Θ(k)-bit codewords.

F
split F

2−la NM
F
t−split



Some natural tampering families

I S t
n denotes the tampering family in the t-split-state model with

each part having length n.

I L←t
n denotes the class of lookahead manipulation functions l that

can be rewritten as l = (l1, . . . , lt ), for li : {0,1}in → {0,1}n,
where

l(x) = l1(x1)||l2(x1, x2)|| . . . ||li (x1, . . . , xi )|| . . . ||lt (x1, . . . , xt )

.
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S2
3tn (⇒) L←t

n

Quentin: Q,S1 Wendy W

S1
S1

−−−−−−−−−−→
R1

←−−−−−−−−−− R1 = Ext(W ; S1)

S2 = Ext(Q; R1)
S2

−−−−−−−−−−→
R2

←−−−−−−−−−− R2 = Ext(W ; S2)

. . .

St = Ext(Q; Rt−1)
St

−−−−−−−−−−→
Rt = Ext(W ; St )

Figure: Alternating Extraction

I Dec((Q,S1),W ) = S1, . . . ,St .

I Alternating Extraction Theorem [DP07] shows:

Si+1, . . . ,St ≈ U, given S1, . . . ,Si ,S′1, . . . ,S
′
i .

I Intuitively, this implies

∀i , S′i is independent of Si+1, . . . ,St .
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L←t
2t` × L←t

2t` ⇒ S t
`

Define the reduction by the following:

Dec(L,R) := (〈Lt ,R1〉, 〈Lt−1,R2〉, . . . 〈L1,Rt〉) ,

where 〈·, ·〉 is the `-bit inner product (interpreting Li ,Ri as elements of
F2t

2n .

Intuitively, the result follows from the observation (using the
Hadamard two-source extractor property) that bi = 〈Lt−i+1,Ri〉 is
close to uniform given b′j = 〈L′t−j+1,R

′
j 〉 for j 6= i .

Formal proof: More subtle due to joint distributions. See paper.
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Summarizing and Composing the two reductions
We showed:

I S2
3tn (⇒) L←t

n

I L←t
2t` × L

←t
2t` ⇒ S t

`

By composing, we get

S4
6t2` (⇒) S t

` .

This, however is not efficiently invertible. We can add a fifth part
to make it efficiently invertible.

Using another more involved construction, we can modify the
first reduction to get the following efficiently invertible reduction.

I S2
O(t3n)

⇒ L←t
n ×L←t

n ∪ . . . (only works for constant t) .
This implies:

S2
poly(t)·` ⇒ S t

` .
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Concluding Non-malleability

Our work combined with an independent work [CZ14] gives
constant rate 2-split NM-Codes.

[CZ14] showed: S10
Θ(`) ⇒ NM`.

This combined with our reduction gives:

S2
Θ(`) ⇒ NM` .

F
split F

2−la NM
F

[CG14b]

[CZ14]
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Future work

The following are major open questions in this area.

I Optimizing the rate of the NM-code construction in split-state
model, either by improving our proof techniques, or using some
other construction.

I Proposing other useful tampering models.

I Other applications of NM-codes. There has been some recent
work in this direction by [CMTV14] and [AGMPP14].
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