Non-malleable codes in the split-state model

Divesh Aggarwal, Yevgeniy Dodis, Tomasz Kazana, Shachar Lovett, Maciej Obremski

New York University

Tampering Experiment

$$
\mathrm{c} \xrightarrow{\mathrm{f}} \mathrm{c}^{*}
$$

- Consider a tamperable communication channel.

Tampering Experiment

$$
\mathrm{m} \xrightarrow{\text { Enc }} \mathrm{c} \xrightarrow{\mathrm{f}} \mathrm{c}^{*}
$$

- Consider a tamperable communication channel.
- To protect, send $c=\operatorname{Enc}(m)$ along the channel.

Tampering Experiment

$$
\mathrm{m} \xrightarrow{\text { Enc }} \mathrm{c} \xrightarrow{\mathrm{f}} \mathrm{c}^{*} \xrightarrow{\text { Dec }} \mathrm{m}^{*} \quad \text { (Real) }
$$

- Consider a tamperable communication channel.
- To protect, send $c=\operatorname{Enc}(m)$ along the channel.
- The tampered codeword decodes to some m^{*}.

Tampering Experiment

$$
\begin{gathered}
\mathrm{m} \xrightarrow{\text { Enc }} \mathrm{c} \xrightarrow[\mathrm{~g}]{\mathrm{f}} \mathrm{c}^{*} \xrightarrow{\text { Dec }} \mathrm{m}^{*} \quad \mathrm{~g}(\mathrm{~m})
\end{gathered}
$$

- Consider a tamperable communication channel.
- To protect, send $c=\operatorname{Enc}(m)$ along the channel.
- The tampered codeword decodes to some m^{*}.
- Hope: m^{*} "looks like" $g(m)$ for some "good" g that we can "tolerate".

Tampering Experiment

$$
\begin{aligned}
& \mathrm{m} \xrightarrow{\text { Enc }} \mathrm{c} \xrightarrow{\mathrm{f}} \mathrm{c}^{*} \xrightarrow{\text { Dec }} \mathrm{m}^{*} \quad \text { (Real) } \\
& \mathrm{m} \longrightarrow \mathrm{~g}(\mathrm{~m})
\end{aligned}
$$

- Consider a tamperable communication channel.
- To protect, send $c=\operatorname{Enc}(m)$ along the channel.
- The tampered codeword decodes to some m^{*}.
- Hope: m^{*} "looks like" $g(m)$ for some "good" g that we can "tolerate".

We want

- Correctness: $\forall m, \operatorname{Dec}(\operatorname{Enc}(m))=m$.
- Simulation: $\forall f \in \mathcal{F}, \quad \exists g \in \mathcal{G}, \quad$ where
- \mathcal{F} is large and realistic against attacks/channels.
- \mathcal{G} small and "easy to handle".

Example: Error-correcting codes

- $\mathcal{G}=\{l d\}$ is "easy to handle".

Example: Error-correcting codes

- $\mathcal{G}=\{l d\}$ is "easy to handle".
- \mathcal{F} realistic/useful.
- Constructions: Hadamard, Reed-Solomon, Reed-Muller, etc..

Example: Error-detecting codes

Example: Error-detecting codes

$$
\begin{gathered}
\mathrm{m} \xrightarrow{\text { Enc }} \mathrm{c} \xrightarrow[\mathrm{~g}]{\mathrm{f}} \mathrm{c}^{*} \xrightarrow{\text { Dec }} \mathrm{m}^{*} \quad \underset{\text { (Real) }}{\text { (Ideal) }} \text { (m) }
\end{gathered}
$$

Same constructions as those for ECC.

Example: Error-detecting codes

AMD Codes: Application in robust fuzzy extractors and secret sharing [CDFPW12], NM-codes [DPW10], etc.

Error-correction/detection impossible

Error-correction/detection impossible

$$
\begin{gathered}
\mathrm{m} \xrightarrow{\text { Enc }} \mathrm{c} \xrightarrow{\mathrm{f}} \mathrm{c}^{*} \xrightarrow{\text { Dec }} \mathrm{m}^{*} \quad \mathrm{~g}(\mathrm{~m})
\end{gathered}
$$

Let $c^{*}=\operatorname{Enc}\left(m^{\prime}\right)$ for some fixed m^{\prime}.

Thus, $\operatorname{Dec}\left(c^{*}\right)=m^{\prime} \notin\{m, \perp\}$.

Non-malleable codes

Non-malleable codes

Is NM "realistic/easy-to-handle"? When is it useful?

Application of Non-malleable codes

- Consider Sign $_{s k}$ (userID, m).
- Task: How to protect sk against tampering attack.
- Encode sk using non-malleable code.
- Thus, $s k^{*}=\operatorname{Dec}(f(\operatorname{Enc}(s k)))$ is either equal to $s k$ or unrelated.
- Thus, cannot use $\operatorname{Sign}_{s k^{*}}($ userID, $\cdot)$ to forge $\operatorname{Sign}_{s k}($ userID',$\cdot)$.

Non-malleable codes: Formal Definition

Let (Enc, Dec) be a coding scheme with Enc randomized, and Dec deterministic, s.t. $\forall m \operatorname{Dec}(\operatorname{Enc}(m))=m$,

$$
\mathrm{m} \xrightarrow{\text { Enc }} \mathrm{c} \xrightarrow{\mathrm{f}} \mathrm{c}^{*} \xrightarrow{\text { Dec }} \mathrm{m}^{*}
$$

The coding scheme is non-malleable w.r.t. family \mathcal{F}, if
$\forall f \in \mathcal{F}$,

Non-malleable codes: Formal Definition

Let (Enc, Dec) be a coding scheme with Enc randomized, and Dec deterministic, s.t. $\forall m \operatorname{Dec}(\operatorname{Enc}(m))=m$,

$$
\mathrm{m} \xrightarrow{\text { Enc }} \mathrm{c} \xrightarrow{\mathrm{f}} \mathrm{c}^{*} \xrightarrow{\text { Dec }} \mathrm{m}^{*}
$$

The coding scheme is non-malleable w.r.t. family \mathcal{F}, if
$\forall f \in \mathcal{F}, \exists T$ which is a probabilistic combination of:

- constant functions
- identity function
s.t.

Non-malleable codes: Formal Definition

Let (Enc, Dec) be a coding scheme with Enc randomized, and Dec deterministic, s.t. $\forall m \operatorname{Dec}(\operatorname{Enc}(m))=m$,

$$
\mathrm{m} \xrightarrow{\text { Enc }} \mathrm{c} \xrightarrow{\mathrm{f}} \mathrm{c}^{*} \xrightarrow{\text { Dec }} \mathrm{m}^{*}
$$

The coding scheme is non-malleable w.r.t. family \mathcal{F}, if
$\forall f \in \mathcal{F}, \exists T$ which is a probabilistic combination of:

- constant functions
- identity function
s.t.

$$
\forall m \in \mathcal{M}, \quad m^{*} \approx T(m)
$$

Non-malleable codes: Formal Definition

Let (Enc, Dec) be a coding scheme with Enc randomized, and Dec deterministic, s.t. $\forall m \operatorname{Dec}(\operatorname{Enc}(m))=m$,

$$
\mathrm{m} \xrightarrow{\text { Enc }} \mathrm{c} \xrightarrow{\mathrm{f}} \mathrm{c}^{*} \xrightarrow{\text { Dec }} \mathrm{m}^{*}
$$

The coding scheme is non-malleable w.r.t. family \mathcal{F}, if
$\forall f \in \mathcal{F}, \quad \exists T$ which is a probabilistic combination of:

- constant functions
- identity function
s.t.

$$
\forall m \in \mathcal{M}, \quad m^{*} \approx T(m)
$$

Note: T is independent of m.
Thus, intuitively, either $m^{*}=m$ or they are unrelated.

Which realistic families \mathcal{F} can we tolerate?

Impossible [DPW10].

Which realistic families \mathcal{F} can we tolerate?

Impossible [DPW10].
$\forall g \in \mathcal{F}_{\text {all }}$, let $f(c)=\operatorname{Enc}(g(\operatorname{Dec}(c)))$.

Non-malleable Codes in the t-split-state model

- Tamper t different memory-parts independently

Non-malleable Codes in the t-split-state model

- Tamper t different memory-parts independently
- Application to non-malleable secret-sharing

Non-malleable Codes in the t-split-state model

- Tamper t different memory-parts independently
- Application to non-malleable secret-sharing
- Includes ECC, EDC, Constant functions, bitwise tampering functions but much more

Non-malleable Codes in the t-split-state model

- Tamper t different memory-parts independently
- Application to non-malleable secret-sharing
- Includes ECC, EDC, Constant functions, bitwise tampering functions but much more
- Existential result known [DPW10].

Non-malleable Codes in the t-split-state model

- Tamper t different memory-parts independently
- Application to non-malleable secret-sharing
- Includes ECC, EDC, Constant functions, bitwise tampering functions but much more
- Existential result known [DPW10].
- Efficient construction for family of bitwise-tampering functions ($t=k$, the no. of bits in m) [DPW10, CG14, FNVW14].

Non-malleable Codes in the t-split-state model

- Tamper t different memory-parts independently
- Application to non-malleable secret-sharing
- Includes ECC, EDC, Constant functions, bitwise tampering functions but much more
- Existential result known [DPW10].
- Efficient construction for family of bitwise-tampering functions ($t=k$, the no. of bits in m) [DPW10, CG14, FNVW14].
- Efficient construction for $t=2, k=1$ [DKO13]

Non-malleable Codes in the t-split-state model

- Tamper t different memory-parts independently
- Application to non-malleable secret-sharing
- Includes ECC, EDC, Constant functions, bitwise tampering functions but much more
- Existential result known [DPW10].
- Efficient construction for family of bitwise-tampering functions ($t=k$, the no. of bits in m) [DPW10, CG14, FNVW14].
- Efficient construction for $t=2, k=1$ [DKO13]
- Open Question: Efficient construction for t constant, k large.

Non-malleable Codes in the t-split-state model

- Tamper t different memory-parts independently
- Application to non-malleable secret-sharing
- Includes ECC, EDC, Constant functions, bitwise tampering functions but much more
- Existential result known [DPW10].
- Efficient construction for family of bitwise-tampering functions ($t=k$, the no. of bits in m) [DPW10, CG14, FNVW14].
- Efficient construction for $t=2, k=1$ [DKO13]
- Open Question: Efficient construction for t constant, k large.

YES (this talk). We show several constructions, including $t=2$ and constant rate (i.e. code length is $\Theta(k)$).

NM-codes in the t-split state model

$$
\left.\mathrm{m} \xrightarrow{\text { Enc }} \left\lvert\, \begin{array}{lll}
\mathrm{X}_{1} \xrightarrow[\mathrm{X}_{1}]{\mathrm{f}_{1}} & \mathrm{X}_{1}^{*} \\
\rightarrow \mathrm{X}_{2} \xrightarrow[2]{\mathrm{f}_{2}} & \mathrm{X}_{2}^{*} \\
\rightarrow \mathrm{X}_{3} \xrightarrow[\mathrm{f}_{3}]{ } & \mathrm{X}_{3}^{*} \\
\rightarrow \mathrm{X}_{4} \xrightarrow[\mathrm{f}_{4}]{ } & \mathrm{X}_{4}^{*} \\
-\mathrm{X}_{5} \xrightarrow[5]{\mathrm{f}_{5}} \mathrm{X}_{5}^{*}
\end{array}\right.\right] \xrightarrow{\text { Dec }} \mathrm{m}^{*}
$$

The coding scheme is non-malleable w.r.t. family $\mathcal{F}_{\text {t-split }}$, if
$\forall f_{1}, \ldots, f_{t}, \exists T$ which is a probabilistic combination of:

- constant functions
- identity function
s.t.

$$
\forall m \in \mathcal{M}, \quad m^{*} \approx T(m)
$$

Common outline for our results: Non-malleable reductions [ADKO15]

Non-malleable Reduction: Definition [ADKO15]

Let (Enc, Dec) be a coding scheme with Enc randomized, and Dec deterministic, s.t. $\forall m \operatorname{Dec}(\operatorname{Enc}(m))=m$,

Non-malleable Reduction: Definition [ADKO15]

Let (Enc, Dec) be a coding scheme with Enc randomized, and Dec deterministic, s.t. $\forall m \operatorname{Dec}(\operatorname{Enc}(m))=m$,

$$
\mathrm{m} \xrightarrow{\text { Enc }} \mathrm{c} \xrightarrow{\mathrm{f}} \mathrm{c}^{*} \xrightarrow{\text { Dec }} \mathrm{m}^{*} \quad \text { (Real) }
$$

The scheme is a non-malleable reduction from \mathcal{F} to \mathcal{G}, denoted as $\mathcal{F} \Rightarrow \mathcal{G}$ if
$\forall f \in \mathcal{F}$,

Non-malleable Reduction: Definition [ADKO15]

Let (Enc, Dec) be a coding scheme with Enc randomized, and Dec deterministic, s.t. $\forall m \operatorname{Dec}(\operatorname{Enc}(m))=m$,

$$
\mathrm{m} \xrightarrow{\text { Enc }} \mathrm{c} \xrightarrow{\mathrm{f}} \mathrm{c}^{*} \xrightarrow{\text { Dec }} \mathrm{m}^{*} \quad \text { (Real) }
$$

The scheme is a non-malleable reduction from \mathcal{F} to \mathcal{G}, denoted as $\mathcal{F} \Rightarrow \mathcal{G}$ if
$\forall f \in \mathcal{F}, \exists G$ which is a probabilistic combination of functions in \mathcal{G}.

Non-malleable Reduction: Definition [ADKO15]

Let (Enc, Dec) be a coding scheme with Enc randomized, and Dec deterministic, s.t. $\forall m \operatorname{Dec}(\operatorname{Enc}(m))=m$,

$$
\mathrm{m} \xrightarrow{\text { Enc }} \mathrm{c} \xrightarrow{\mathrm{f}} \mathrm{c}^{*} \xrightarrow{\text { Dec }} \mathrm{m}^{*} \quad \text { (Real) }
$$

The scheme is a non-malleable reduction from \mathcal{F} to \mathcal{G}, denoted as $\mathcal{F} \Rightarrow \mathcal{G}$ if
$\forall f \in \mathcal{F}, \exists G$ which is a probabilistic combination of functions in \mathcal{G}.

$$
\forall m \in \mathcal{M}, \quad m^{*} \approx G(m)
$$

Non-malleable Reduction: Definition [ADKO15]

Let (Enc, Dec) be a coding scheme with Enc randomized, and Dec deterministic, s.t. $\forall m \operatorname{Dec}(\operatorname{Enc}(m))=m$,

$$
\mathrm{m} \xrightarrow{\text { Enc }} \mathrm{c} \xrightarrow{\mathrm{f}} \mathrm{c}^{*} \xrightarrow{\text { Dec }} \mathrm{m}^{*}
$$

The scheme is a non-malleable reduction from \mathcal{F} to \mathcal{G}, denoted as $\mathcal{F} \Rightarrow \mathcal{G}$ if
$\forall f \in \mathcal{F}, \exists G$ which is a probabilistic combination of functions in \mathcal{G}.

$$
\forall m \in \mathcal{M}, \quad m^{*} \approx G(m)
$$

An NM-code for \mathcal{F} can be viewed as $\mathcal{F} \Rightarrow \mathrm{NM}$, where NM is the function family comprising of

- constant functions
- identity function

Non-malleable Reduction: Composability

Theorem
For all $\mathcal{F}, \mathcal{G}, \mathcal{H}$, we have that

$$
\mathcal{F} \Rightarrow \mathcal{G}, \text { and } \mathcal{G} \Rightarrow \mathcal{H}, \text { implies } \mathcal{F} \Rightarrow \mathcal{H} .
$$

Non-malleable Reduction: Composability

Theorem
For all $\mathcal{F}, \mathcal{G}, \mathcal{H}$, we have that

$$
\mathcal{F} \Rightarrow \mathcal{G}, \text { and } \mathcal{G} \Rightarrow \mathcal{H}, \text { implies } \mathcal{F} \Rightarrow \mathcal{H} .
$$

Make families simpler, until non-malleable.

Our results

ADL14 gives a scheme for encoding k-bit messages to $\Theta\left(k^{7}\right)$-bit codewords.

ADKO15 gives a scheme for encoding k-bit messages to $\Theta(k)$-bit codewords.

Two simplifying assumptions for the talk

- Will only describe the decoding procedure.

Two simplifying assumptions for the talk

- Will only describe the decoding procedure.
- $\operatorname{Enc}(m)$ is a random c such that $\operatorname{Dec}(c)=m$.

Two simplifying assumptions for the talk

- Will only describe the decoding procedure.
- $\operatorname{Enc}(m)$ is a random c such that $\operatorname{Dec}(c)=m$.
- Subtlety: Enc might be inefficient.

Two simplifying assumptions for the talk

- Will only describe the decoding procedure.
- $\operatorname{Enc}(m)$ is a random c such that $\operatorname{Dec}(c)=m$.
- Subtlety: Enc might be inefficient.
- This can be a problem at times, but for our constructions, we can get around it.

Two simplifying assumptions for the talk

- Will only describe the decoding procedure.
- $\operatorname{Enc}(m)$ is a random c such that $\operatorname{Dec}(c)=m$.
- Subtlety: Enc might be inefficient.
- This can be a problem at times, but for our constructions, we can get around it.
- Argue non-malleability only for a uniformly random message M.

$\mathcal{F}_{\text {split }} \Rightarrow \mathcal{F}_{\text {affine }}$

$U=U_{\mathbb{F}_{p}}, p=\operatorname{poly}(k)$ is a prime
$\operatorname{Enc}_{1}(U)=L, R \in \mathbb{F}_{p}^{n}$ s.t. $\langle L, R\rangle=U, \quad n=\operatorname{poly}(\log k)$.

We show:

$$
\forall f, g, \quad(\langle L, R\rangle,\langle f(L), g(R)\rangle) \approx\left(U, A_{f, g} U+B_{f, g}\right) .
$$

Proof Step 1: Partitioning Lemma

Fix f, g. Let $\phi(L, R):=(\langle L, R\rangle,\langle f(L), g(R)\rangle)$

$$
\mathcal{D}:=\{D: D \text { is a conv. comb. of }(U, a U+b), a, b \in \mathbb{F}\}
$$

It is enough to partition $\mathbb{F}_{p}^{n} \times \mathbb{F}_{p}^{n}$ into "good" and "bad" rectangles such that

- If S is a good set, then $\left.\phi(L, R)\right|_{(L, R) \in S}$ is close to some distribution in \mathcal{D}.
- The union of all bad sets has size much smaller than $p^{2 n}$.

Our partitioning

We partition $\mathbb{F}_{p}^{n} \times \mathbb{F}_{p}^{n}$ into four type of rectangles.

- Type 1: $g(R)=a$ for some $a \in \mathbb{F}_{p}^{n}$. Then $\phi=(\langle L, R\rangle,\langle f(L), g(R)\rangle)$ is close to ($U_{\mathbb{F}_{p}},\langle f(L), a\rangle$) which belongs to \mathcal{D}.

Our partitioning

We partition $\mathbb{F}_{p}^{n} \times \mathbb{F}_{p}^{n}$ into four type of rectangles.

- Type 1: $g(R)=a$ for some $a \in \mathbb{F}_{p}^{n}$. Then $\phi=(\langle L, R\rangle,\langle f(L), g(R)\rangle)$ is close to ($\left.U_{\mathbb{F}_{p}},\langle f(L), a\rangle\right)$ which belongs to \mathcal{D}.
- Type 2: $\phi=(\langle L, R\rangle,\langle f(L), g(R)\rangle)$ is close to $U_{\mathbb{F}_{p}^{2}}$, which belongs to \mathcal{D}.

Our partitioning

We partition $\mathbb{F}_{p}^{n} \times \mathbb{F}_{p}^{n}$ into four type of rectangles.

- Type 1: $g(R)=a$ for some $a \in \mathbb{F}_{p}^{n}$. Then $\phi=(\langle L, R\rangle,\langle f(L), g(R)\rangle)$ is close to ($\left.U_{\mathbb{F}_{p}},\langle f(L), a\rangle\right)$ which belongs to \mathcal{D}.
- Type 2: $\phi=(\langle L, R\rangle,\langle f(L), g(R)\rangle)$ is close to $U_{\mathbb{F}_{p}^{2}}$, which belongs to \mathcal{D}.
- Type 3: $f(L)=A L$ for some $A \in \mathbb{F}_{p}^{n \times n}$, and $A^{T} g(R)=c R+d$, for $c \in \mathbb{F}_{p}$, and $d \in \mathbb{F}_{p}^{n}$, which implies

$$
\phi=(\langle L, R\rangle, \quad c\langle L, R\rangle+\langle L, d\rangle)
$$

which is in \mathcal{D} if the partition S is large enough.

Our partitioning

We partition $\mathbb{F}_{p}^{n} \times \mathbb{F}_{p}^{n}$ into four type of rectangles.

- Type 1: $g(R)=a$ for some $a \in \mathbb{F}_{p}^{n}$. Then $\phi=(\langle L, R\rangle,\langle f(L), g(R)\rangle)$ is close to ($\left.U_{\mathbb{F}_{p}},\langle f(L), a\rangle\right)$ which belongs to \mathcal{D}.
- Type 2: $\phi=(\langle L, R\rangle,\langle f(L), g(R)\rangle)$ is close to $U_{\mathbb{F}_{p}^{2}}$, which belongs to \mathcal{D}.
- Type 3: $f(L)=A L$ for some $A \in \mathbb{F}_{p}^{n \times n}$, and $A^{T} g(R)=c R+d$, for $c \in \mathbb{F}_{p}$, and $d \in \mathbb{F}_{p}^{n}$, which implies

$$
\phi=(\langle L, R\rangle, \quad c\langle L, R\rangle+\langle L, d\rangle)
$$

which is in \mathcal{D} if the partition S is large enough.

- Type 4: Bad sets.

Our partitioning

We partition $\mathbb{F}_{p}^{n} \times \mathbb{F}_{p}^{n}$ into four type of rectangles.

- Type 1: $g(R)=a$ for some $a \in \mathbb{F}_{p}^{n}$. Then $\phi=(\langle L, R\rangle,\langle f(L), g(R)\rangle)$ is close to $\left(U_{\mathbb{F}_{p}},\langle f(L), a\rangle\right)$ which belongs to \mathcal{D}.
- Type 2: $\phi=(\langle L, R\rangle,\langle f(L), g(R)\rangle)$ is close to $U_{\mathbb{F}_{p}^{2}}$, which belongs to \mathcal{D}.
- Type 3: $f(L)=A L$ for some $A \in \mathbb{F}_{p}^{n \times n}$, and $A^{T} g(R)=c R+d$, for $c \in \mathbb{F}_{p}$, and $d \in \mathbb{F}_{p}^{n}$, which implies

$$
\phi=(\langle L, R\rangle, \quad c\langle L, R\rangle+\langle L, d\rangle)
$$

which is in \mathcal{D} if the partition S is large enough.

- Type 4: Bad sets.

We show that the set $\mathbb{F}_{p}^{n} \times \mathbb{F}_{p}^{n}$ can be partitioned into sets of the above four types such that the total size of "bad" sets is much smaller than $p^{2 n}$.

Main tools used for the proof

- Linearity test [BSG94, Sam07, San12] : For $f: \mathbb{F}_{p}^{n} \mapsto \mathbb{F}_{p}^{n}$

$$
\operatorname{Pr}\left(f(L)-f\left(L^{\prime}\right)=f\left(L-L^{\prime}\right)\right) \geq \varepsilon \Rightarrow \exists A \quad \operatorname{Pr}(f(L)=A L) \geq p^{-\log ^{6}(1 / \varepsilon)} .
$$

- We need a generalized version, for which we show that essentially the same proof works.
- Hadamard Extractor: $\langle\cdot, \cdot\rangle$ is a strong 2-source extractor.
- (Generalized) Vazirani's XOR Lemma: $\left(X_{1}, X_{2}\right)$ is close to uniform in $\mathbb{F}_{p} \times \mathbb{F}_{p}$ if and only if $a X_{1}+b X_{2}$ is close to uniform in \mathbb{F}_{p} for all $a, b \in \mathbb{F}_{p}$, not both zero.

Step two: $\mathcal{F}_{\text {affine }} \Rightarrow \mathrm{NM}$

$$
\mathrm{m} \xrightarrow{\mathrm{Enc}_{2}} \mathrm{c} \xrightarrow{\mathrm{~h}_{\mathrm{A}, \mathrm{~B}}} \mathrm{Ac}+\mathrm{B} \xrightarrow{\mathrm{Dec}_{2}} \mathrm{~m}^{*}
$$

Step two: $\mathcal{F}_{\text {affine }} \Rightarrow \mathrm{NM}$

$$
\mathrm{m} \xrightarrow{\mathrm{Enc}_{2}} \mathrm{c} \xrightarrow{\mathrm{~h}_{\mathrm{A}, \mathrm{~B}}} \mathrm{Ac}+\mathrm{B} \xrightarrow{\mathrm{Dec}_{2}} \mathrm{~m} *
$$

Define an affine-evasive set \mathcal{C} of \mathbb{F}_{p} as a set s.t. for C chosen uniformly at random from \mathcal{C},

$$
\forall a, b \in \mathbb{F}_{p} \times \mathbb{F}_{p} \text { s.t. } a \neq 0 \text { and }(a, b) \neq(1,0)
$$

Step two: $\mathcal{F}_{\text {aftine }} \Rightarrow \mathrm{NM}$

$$
\mathrm{m} \xrightarrow{\mathrm{Enc}_{2}} \mathrm{c} \xrightarrow{\mathrm{~h}_{\mathrm{A}, \mathrm{~B}}} \mathrm{Ac}+\mathrm{B} \xrightarrow{\mathrm{Dec}_{2}} \mathrm{~m}^{*}
$$

Define an affine-evasive set \mathcal{C} of \mathbb{F}_{p} as a set s.t. for C chosen uniformly at random from \mathcal{C},

$$
\begin{array}{r}
\forall a, b \in \mathbb{F}_{p} \times \mathbb{F}_{p} \text { s.t. } a \neq 0 \text { and }(a, b) \neq(1,0) \\
\operatorname{Pr}(a \cdot C+b \in \mathcal{C}) \approx 0
\end{array}
$$

Partition \mathcal{C} into equal parts $\mathcal{C}_{1}, \ldots, \mathcal{C}_{|\mathcal{M}|}$ and define

$$
\mathrm{Dec}_{2}(c)=m, \text { if } c \in \mathcal{C}_{m}, \text { and } \perp, \text { otherwise }
$$

Step two: $\mathcal{F}_{\text {aftine }} \Rightarrow \mathrm{NM}$

$$
\mathrm{m} \xrightarrow{\mathrm{Enc}_{2}} \mathrm{c} \xrightarrow{\mathrm{~h}_{\mathrm{A}, \mathrm{~B}}} \mathrm{Ac}+\mathrm{B} \xrightarrow{\mathrm{Dec}_{2}} \mathrm{~m} *
$$

Define an affine-evasive set \mathcal{C} of \mathbb{F}_{p} as a set s.t. for C chosen uniformly at random from \mathcal{C},

$$
\begin{array}{r}
\forall a, b \in \mathbb{F}_{p} \times \mathbb{F}_{p} \text { s.t. } a \neq 0 \text { and }(a, b) \neq(1,0) \\
\operatorname{Pr}(a \cdot C+b \in \mathcal{C}) \approx 0
\end{array}
$$

Partition \mathcal{C} into equal parts $\mathcal{C}_{1}, \ldots, \mathcal{C}_{|\mathcal{M}|}$ and define

$$
\operatorname{Dec}_{2}(c)=m, \text { if } c \in \mathcal{C}_{m}, \text { and } \perp, \text { otherwise }
$$

Thus,

$$
\forall m \in \mathcal{M}, \quad m^{*} \approx T(m)
$$

Step two: $\mathcal{F}_{\text {aftine }} \Rightarrow \mathrm{NM}$

$$
\mathrm{m} \xrightarrow{\mathrm{Enc}_{2}} \mathrm{c} \xrightarrow{\mathrm{~h}_{\mathrm{A}, \mathrm{~B}}} \mathrm{Ac}+\mathrm{B} \xrightarrow{\mathrm{Dec}_{2}} \mathrm{~m}^{*}
$$

Define an affine-evasive set \mathcal{C} of \mathbb{F}_{p} as a set s.t. for C chosen uniformly at random from \mathcal{C},

$$
\forall a, b \in \mathbb{F}_{p} \times \mathbb{F}_{p} \text { s.t. } a \neq 0 \text { and }(a, b) \neq(1,0)
$$

$$
\operatorname{Pr}(a \cdot C+b \in \mathcal{C}) \approx 0,
$$

Partition \mathcal{C} into equal parts $\mathcal{C}_{1}, \ldots, \mathcal{C}_{|\mathcal{M}|}$ and define

$$
\operatorname{Dec}_{2}(c)=m, \text { if } c \in \mathcal{C}_{m} \text {, and } \perp \text {, otherwise . }
$$

Thus,

$$
\forall m \in \mathcal{M}, \quad m^{*} \approx T(m) .
$$

An affine-evasive set construction modulo p [A14]:

$$
S:=\left\{\left.\frac{1}{q}(\bmod p) \right\rvert\, q \text { is prime }, \quad q<\frac{p^{1 / 4}}{2}\right\} .
$$

Our second result [ADKO15]

NM-reduction from 2-split to t-split for large constant t

k-bit messages $\Longrightarrow \Theta(k)$-bit codewords.

Some natural tampering families

- \mathcal{S}_{n}^{t} denotes the tampering family in the t-split-state model with each part having length n.

Some natural tampering families

- \mathcal{S}_{n}^{t} denotes the tampering family in the t-split-state model with each part having length n.
- $\mathcal{L}_{n}^{\leftarrow^{t}}$ denotes the class of lookahead manipulation functions I that can be rewritten as $I=\left(I_{1}, \ldots, I_{t}\right)$, for $I_{i}:\{0,1\}^{\text {in }} \rightarrow\{0,1\}^{n}$, where

$$
I(x)=I_{1}\left(x_{1}\right)\left\|I_{2}\left(x_{1}, x_{2}\right)\right\| \ldots\left\|I_{i}\left(x_{1}, \ldots, x_{i}\right)\right\| \ldots \| I_{t}\left(x_{1}, \ldots, x_{t}\right)
$$

$\mathcal{S}_{3 t n}^{2}(\Rightarrow) \mathcal{L}_{n}^{\leftarrow t}$

Quentin: Q, S_{1}
Wendy W

Figure: Alternating Extraction
$\mathcal{S}_{3 t n}^{2}(\Rightarrow) \mathcal{L}_{n}^{\leftarrow t}$

Quentin: Q, S_{1}
Wendy W

$$
\begin{array}{ll}
S_{1} & \begin{array}{c}
S_{1} \\
R_{1} \\
S_{2}
\end{array} \\
S_{2}=\operatorname{Ext}\left(Q ; R_{1}\right) & R_{1}=\operatorname{Ext}\left(W ; S_{1}\right)
\end{array}
$$

- $\operatorname{Dec}\left(\left(Q, S_{1}\right), W\right)=S_{1}, \ldots, S_{t}$.
- Alternating Extraction Theorem [DP07] shows:

$$
S_{i+1}, \ldots, S_{t} \approx U \text {, given } S_{1}, \ldots, S_{i}, S_{1}^{\prime}, \ldots, S_{i}^{\prime}
$$

- Intuitively, this implies

$$
\forall i, S_{i}^{\prime} \text { is independent of } S_{i+1}, \ldots, S_{t}
$$

$\mathcal{S}_{3 t n}^{2}(\Rightarrow) \mathcal{L}_{n}^{\leftarrow t}$

Quentin: Q, S_{1}
Wendy W

Figure: Alternating Extraction

$\mathcal{L}_{2 t \ell}^{\leftarrow t} \times \mathcal{L}_{2 t \ell}^{\leftarrow t} \Rightarrow \mathcal{S}_{\ell}^{t}$

Define the reduction by the following:

$$
\operatorname{Dec}(L, R):=\left(\left\langle L_{t}, R_{1}\right\rangle,\left\langle L_{t-1}, R_{2}\right\rangle, \ldots\left\langle L_{1}, R_{t}\right\rangle\right),
$$

where $\langle\cdot, \cdot\rangle$ is the ℓ-bit inner product (interpreting L_{i}, R_{i} as elements of $\mathbb{F}_{2^{n}}^{2 t}$.

$\mathcal{L}_{2 t \ell}^{\leftarrow t} \times \mathcal{L}_{2 t \ell}^{\leftarrow t} \Rightarrow \mathcal{S}_{\ell}^{t}$

Define the reduction by the following:

$$
\operatorname{Dec}(L, R):=\left(\left\langle L_{t}, R_{1}\right\rangle,\left\langle L_{t-1}, R_{2}\right\rangle, \ldots\left\langle L_{1}, R_{t}\right\rangle\right),
$$

where $\langle\cdot, \cdot\rangle$ is the ℓ-bit inner product (interpreting L_{i}, R_{i} as elements of $\mathbb{F}_{2^{n}}^{2 t}$.

Intuitively, the result follows from the observation (using the Hadamard two-source extractor property) that $b_{i}=\left\langle L_{t-i+1}, R_{i}\right\rangle$ is close to uniform given $b_{j}^{\prime}=\left\langle L_{t-j+1}^{\prime}, R_{j}^{\prime}\right\rangle$ for $j \neq i$.

$\mathcal{L}_{2 t \ell}^{\leftarrow t} \times \mathcal{L}_{2 t \ell}^{\leftarrow t} \Rightarrow \mathcal{S}_{\ell}^{t}$

Define the reduction by the following:

$$
\operatorname{Dec}(L, R):=\left(\left\langle L_{t}, R_{1}\right\rangle,\left\langle L_{t-1}, R_{2}\right\rangle, \ldots\left\langle L_{1}, R_{t}\right\rangle\right),
$$

where $\langle\cdot, \cdot\rangle$ is the ℓ-bit inner product (interpreting L_{i}, R_{i} as elements of $\mathbb{F}_{2^{n}}^{2 t}$.

Intuitively, the result follows from the observation (using the Hadamard two-source extractor property) that $b_{i}=\left\langle L_{t-i+1}, R_{i}\right\rangle$ is close to uniform given $b_{j}^{\prime}=\left\langle L_{t-j+1}^{\prime}, R_{j}^{\prime}\right\rangle$ for $j \neq i$.

Formal proof: More subtle due to joint distributions. See paper.

Summarizing and Composing the two reductions

We showed:

- $\mathcal{S}_{3 \text { tn }}^{2}(\Rightarrow) \mathcal{L}_{n}^{\leftarrow t}$
- $\mathcal{L}_{2 t \ell}^{\leftarrow t} \times \mathcal{L}_{2 t \ell}^{\leftarrow t} \Rightarrow \mathcal{S}_{\ell}^{t}$

Summarizing and Composing the two reductions

We showed:

- $\mathcal{S}_{3 \text { tn }}^{2}(\Rightarrow) \mathcal{L}_{n}^{\leftarrow^{t}}$
- $\mathcal{L}_{2 t \ell}^{\leftarrow t} \times \mathcal{L}_{2 t \ell}^{\leftarrow t} \Rightarrow \mathcal{S}_{\ell}^{t}$

By composing, we get

$$
\mathcal{S}_{6 t^{2} \ell}^{4}(\Rightarrow) \mathcal{S}_{\ell}^{t}
$$

Summarizing and Composing the two reductions

 We showed:- $\mathcal{S}_{3 \text { tn }}^{2}(\Rightarrow) \mathcal{L}_{n}^{\leftarrow^{t}}$
- $\mathcal{L}_{2 t \ell}^{\leftarrow t} \times \mathcal{L}_{2 t \ell}^{\leftarrow t} \Rightarrow \mathcal{S}_{\ell}^{t}$

By composing, we get

$$
\mathcal{S}_{6 t^{2} \ell}^{4}(\Rightarrow) \mathcal{S}_{\ell}^{t} .
$$

This, however is not efficiently invertible. We can add a fifth part to make it efficiently invertible.

Summarizing and Composing the two reductions

 We showed:- $\mathcal{S}_{3 \text { tn }}^{2}(\Rightarrow) \mathcal{L}_{n}^{\leftarrow^{t}}$
- $\mathcal{L}_{2 t \ell}^{\leftarrow t} \times \mathcal{L}_{2 t \ell}^{\leftarrow t} \Rightarrow \mathcal{S}_{\ell}^{t}$

By composing, we get

$$
\mathcal{S}_{6 t^{2} \ell}^{4}(\Rightarrow) \mathcal{S}_{\ell}^{t} .
$$

This, however is not efficiently invertible. We can add a fifth part to make it efficiently invertible.

Using another more involved construction, we can modify the first reduction to get the following efficiently invertible reduction.

Summarizing and Composing the two reductions

 We showed:- $\mathcal{S}_{3 \text { tn }}^{2}(\Rightarrow) \mathcal{L}_{n}^{\leftarrow^{t}}$
- $\mathcal{L}_{2 t \ell}^{\leftarrow t} \times \mathcal{L}_{2 t \ell}^{\leftarrow t} \Rightarrow \mathcal{S}_{\ell}^{t}$

By composing, we get

$$
\mathcal{S}_{6 t^{2} \ell}^{4}(\Rightarrow) \mathcal{S}_{\ell}^{t} .
$$

This, however is not efficiently invertible. We can add a fifth part to make it efficiently invertible.

Using another more involved construction, we can modify the first reduction to get the following efficiently invertible reduction.

- $\mathcal{S}_{O\left(t^{3} n\right)}^{2} \Rightarrow \mathcal{L}_{n}^{\leftarrow^{t}} \times \mathcal{L}_{n}^{\leftarrow t} \cup \ldots \quad$ (only works for constant t).

This implies:

$$
\mathcal{S}_{\text {poly }(t) \cdot \ell}^{2} \Rightarrow \mathcal{S}_{\ell}^{t} .
$$

Concluding Non-malleability

Our work combined with an independent work [CZ14] gives constant rate 2 -split NM-Codes.

Concluding Non-malleability

Our work combined with an independent work [CZ14] gives constant rate 2 -split NM-Codes.
[CZ14] showed: $\mathcal{S}_{\Theta(\ell)}^{10} \Rightarrow \mathrm{NM}_{\ell}$.

Concluding Non-malleability

Our work combined with an independent work [CZ14] gives constant rate 2 -split NM-Codes.
[CZ14] showed: $\mathcal{S}_{\Theta(\ell)}^{10} \Rightarrow \mathrm{NM}_{\ell}$.
This combined with our reduction gives:

$$
\mathcal{S}_{\Theta(\ell)}^{2} \Rightarrow N M_{\ell} .
$$

Future work

The following are major open questions in this area.

- Optimizing the rate of the NM-code construction in split-state model, either by improving our proof techniques, or using some other construction.
- Proposing other useful tampering models.
- Other applications of NM-codes. There has been some recent work in this direction by [CMTV14] and [AGMPP14].

Thank You

