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Definition
For any finite set Z ,

◮ for R ⊆ Z × Z , the vector xR is the characteristic vector of R ,
that is,

xR
i ,j =

{

1 if (i , j) ∈ R

0 otherwise

◮ the linear ordering polytope PZ
LO ⊂ RZ×Z is

PZ
LO = conv{xL : L linear order on Z}



Definition
For a vertex-weighted graph (G , µ) and S ⊆ V (G ),

◮ µ(S) :=
∑

v∈S µ(v) (weight of S)

◮ w(S) := µ(S)− |E (G [S ])| (worth of S)

◮ α(G , µ) := maxS⊆V (G) w(S)

◮ S is tight if w(S) = α(G , µ)
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Suppose

◮ (G , µ) is any weighted graph

◮ Y is a set s.t. |Y | = |V (G )| and Y ∩ V (G ) = ∅

◮ f : V (G )→ Y is a bijection

◮ Z is a finite set s.t. V (G ) ∪ Y ⊆ Z
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◮ The graphical inequality of (G , µ), which is valid for PZ
LO , is

∑

v∈V (G)

µ(v) · xv ,f (v) −
∑

{v ,w}∈E(G)

(xv ,f (w) + xf (v),w ) ≤ α(G , µ)
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◮ (G , µ) is any weighted graph

◮ Y is a set s.t. |Y | = |V (G )| and Y ∩ V (G ) = ∅

◮ f : V (G )→ Y is a bijection

◮ Z is a finite set s.t. V (G ) ∪ Y ⊆ Z

Definition

◮ The graphical inequality of (G , µ), which is valid for PZ
LO , is

∑

v∈V (G)

µ(v) · xv ,f (v) −
∑

{v ,w}∈E(G)

(xv ,f (w) + xf (v),w ) ≤ α(G , µ)

◮ (G , µ) is facet-defining if its graphical inequality defines a
facet of PZ

LO

N.B. (G , µ) being facet-defining is a property of the graph solely,
i.e. it is independent of the particular choice of Y , f and Z



A characterization of facet-defining graphs

Definition

◮ For any tight set T of (G , µ), a corresponding affine equation
is defined:

∑

v∈T

yv +
∑

e∈E(T )

ye = α(G , µ)

◮ The system of (G , µ) is obtained by putting all these
equations together



A characterization of facet-defining graphs

Definition

◮ For any tight set T of (G , µ), a corresponding affine equation
is defined:

∑

v∈T

yv +
∑

e∈E(T )

ye = α(G , µ)

◮ The system of (G , µ) is obtained by putting all these
equations together

Theorem (Christophe, Doignon and Fiorini, 2004)

(G , µ) is facet-defining ⇔ the system of (G , µ) has a unique

solution

◮ Basically rephrases the fact that the dimension of the face of
PZ

LO defined by the graphical inequality must be high enough

◮ We lack a ‘good characterization’ of these graphs...



A few results

(assuming from now on that all graphs have at least 3 vertices)

Definition
G is stability critical if G has no isolated vertex and
α(G \ e) > α(G ) for all e ∈ E (G )

Theorem (Koppen, 1995)

(G , 1l) is facet-defining ⇔ G is connected and stability critical



A few results

(assuming from now on that all graphs have at least 3 vertices)

Definition
G is stability critical if G has no isolated vertex and
α(G \ e) > α(G ) for all e ∈ E (G )

Theorem (Koppen, 1995)

(G , 1l) is facet-defining ⇔ G is connected and stability critical

Theorem (Christophe, Doignon and Fiorini, 2004)

(G , µ) is facet-defining ⇔ its ’mirror image’ (G , deg−µ) is

facet-defining
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Definition

◮ The defect of G is |V (G )| − 2α(G )

a stability critical graph

|V (G )| = 12
α(G ) = 3
→ defect = 6



Definition

◮ The defect of G is |V (G )| − 2α(G )

◮ The defect of (G , µ) is µ(V (G ))− 2α(G , µ)

a stability critical graph

|V (G )| = 12
α(G ) = 3
→ defect = 6
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a facet-defining graph

µ(V (G )) = 7
α(G , µ) = 2
→ defect = 3



Theorem

◮ The defect δ of a connected stability critical graph G is always

positive (Erdős and Gallai, 1961)

◮ Moreover, δ ≥ deg(v)− 1 for all v ∈ V (G ) (Hajnal, 1965)



Theorem

◮ The defect δ of a connected stability critical graph G is always

positive (Erdős and Gallai, 1961)

◮ Moreover, δ ≥ deg(v)− 1 for all v ∈ V (G ) (Hajnal, 1965)

Theorem (Doignon, Fiorini, J.)

◮ The defect δ of any facet-defining graph (G , µ) is positive

◮ (G , µ) and (G , deg−µ) have the same defect

◮ For all v ∈ V (G ), we have

δ ≥ deg(v)− µ(v) ≥ 1

and, because of the mirror image, also

δ ≥ µ(v) ≥ 1



Odd subdivision

Here is an extension of a classical operation on stability-critical
graphs:
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Theorem (Christophe, Doignon and Fiorini, 2004)

The odd subdivision operation and its inverse keep both a graph

facet-defining. Moreover, the defect does not change



Lemma
An inclusionwise minimal cutset of a facet-defining graph cannot

span ”
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we can always contract both edges by
using the inverse of odd subdivision operation

Definition
A facet-defining graph is minimal if no two adjacent vertices have
degree 2



Classification of stability critical graphs

Theorem (Lovász, 1978)

For every positive integer δ, the set Sδ of minimal connected

stability critical graphs with defect δ is finite



Classification of stability critical graphs

Theorem (Lovász, 1978)

For every positive integer δ, the set Sδ of minimal connected

stability critical graphs with defect δ is finite

Research problem

Is there a finite number of minimal facet-defining graphs with
defect δ, for every δ ≥ 1?

◮ It turns out to be true for δ ≤ 3
→ an overview of the proofs is given in the next few slides

◮ The problem is wide open for δ ≥ 4



Notice first that the only minimal facet-defining graph with defect

δ = 1 is
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Notice first that the only minimal facet-defining graph with defect

δ = 1 is
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Let’s look at another operation:
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Theorem
The subdivision of a star operation keeps a graph facet-defining.

Moreover, the defect does not change



Definition
(G1, µ1) and (G2, µ2) are equivalent if one can be obtained from
the other by using the

◮ odd subdivision

◮ inverse of odd subdivision

◮ subdivision of a star

operations finitely many times.



Definition
(G1, µ1) and (G2, µ2) are equivalent if one can be obtained from
the other by using the

◮ odd subdivision

◮ inverse of odd subdivision

◮ subdivision of a star

operations finitely many times.

Notice

◮ two equivalent graphs have the same defect

◮ (G , µ) and (G , deg−µ) are equivalent:
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Facet-defining graphs with defect 2

Recall
{

δ ≥ µ(v) ≥ 1
δ ≥ deg(v)− µ(v) ≥ 1

for any vertex v of a facet-defining graph with defect δ

⇒ deg(v) ≤ 2δ



Facet-defining graphs with defect 2

Recall
{

δ ≥ µ(v) ≥ 1
δ ≥ deg(v)− µ(v) ≥ 1

for any vertex v of a facet-defining graph with defect δ

⇒ deg(v) ≤ 2δ

Theorem
deg(v) ≤ 2δ − 1 for any vertex v of a facet-defining graph with

defect δ ≥ 2



Facet-defining graphs with defect 2

Recall
{

δ ≥ µ(v) ≥ 1
δ ≥ deg(v)− µ(v) ≥ 1

for any vertex v of a facet-defining graph with defect δ

⇒ deg(v) ≤ 2δ

Theorem
deg(v) ≤ 2δ − 1 for any vertex v of a facet-defining graph with

defect δ ≥ 2

Thus, every vertex of a facet-defining graph with defect 2 is either
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⇒ Any facet-defining graph with defect 2 is equivalent to some
stability critical graph



Theorem (Andrásfai, 1967)

The only minimal connected stability critical graph with defect 2 is
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Theorem (Andrásfai, 1967)

The only minimal connected stability critical graph with defect 2 is
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→ we derive:

Theorem
There are exactly five minimal facet-defining graphs with defect 2:
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Facet-defining graphs with defect 3

By previous bounds, any vertex falls in one of these cases when
δ = 3:
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Facet-defining graphs with defect 3

By previous bounds, any vertex falls in one of these cases when
δ = 3:
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The subdivision of a star operation is no longer sufficient!
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The subdivision of a star operation is no longer sufficient!

Definition
a (p, q)-vertex is a vertex with weight p and degree q
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By previous bounds, any vertex falls in one of these cases when
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The subdivision of a star operation is no longer sufficient!

Definition
a (p, q)-vertex is a vertex with weight p and degree q

Fix (G , µ) to be any facet-defining graph with defect 3



Facet-defining graphs with defect 3

By previous bounds, any vertex falls in one of these cases when
δ = 3:
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Definition
a (p, q)-vertex is a vertex with weight p and degree q

Fix (G , µ) to be any facet-defining graph with defect 3

◮ We would like to show that the number of vertices v of (G , µ)
with deg(v) ≥ 3 is bounded by some absolute constant



Facet-defining graphs with defect 3

By previous bounds, any vertex falls in one of these cases when
δ = 3:

Powered by yFiles

1

Powered by yFiles

1

Powered by yFiles

1

Powered by yFiles

2

Powered by yFiles

2

Powered by yFiles

2

Powered by yFiles

3

Powered by yFiles

3

* * *
The subdivision of a star operation is no longer sufficient!

Definition
a (p, q)-vertex is a vertex with weight p and degree q

Fix (G , µ) to be any facet-defining graph with defect 3

◮ We would like to show that the number of vertices v of (G , µ)
with deg(v) ≥ 3 is bounded by some absolute constant

◮ By the subdivision of a star operation, w.l.o.g. ∄ (2, 3)-,
(3, 4)-, or (3, 5)-vertices in (G , µ)



Facet-defining graphs with defect 3

By previous bounds, any vertex falls in one of these cases when
δ = 3:
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* * *
The subdivision of a star operation is no longer sufficient!

Definition
a (p, q)-vertex is a vertex with weight p and degree q

Fix (G , µ) to be any facet-defining graph with defect 3

◮ We would like to show that the number of vertices v of (G , µ)
with deg(v) ≥ 3 is bounded by some absolute constant

◮ By the subdivision of a star operation, w.l.o.g. ∄ (2, 3)-,
(3, 4)-, or (3, 5)-vertices in (G , µ)

◮ Main issue: how to get rid of the (2, 4)-vertices and
(2, 5)-vertices?



Suppose v is a (2, 4)- or (2, 5)-vertex and look at those tight sets
including exactly two neighbors of v but avoiding v :
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Suppose v is a (2, 4)- or (2, 5)-vertex and look at those tight sets
including exactly two neighbors of v but avoiding v :
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→ defines a graph on the neighborhood N(v) of v , denoted Hv :
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Expanding a vertex

Assume ∃a, b, c , d ∈ V (Hv ) s. t. {a, b} ∈ E (Hv ) and
{c , d} /∈ E (Hv )
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Lemma

◮ Expanding v keeps (G , µ) facet-defining and does not change

the defect

◮ Any (2, 5)-vertex of (G , µ) is expandable



Expanding a vertex

Assume ∃a, b, c , d ∈ V (Hv ) s. t. {a, b} ∈ E (Hv ) and
{c , d} /∈ E (Hv )
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Lemma

◮ Expanding v keeps (G , µ) facet-defining and does not change

the defect

◮ Any (2, 5)-vertex of (G , µ) is expandable

→ w.l.o.g. (G , µ) has no expandable vertices, as expanding a
vertex increases the number of vertices with degree at least 3



Splitting a vertex

Suppose that v is a (2, 4)-vertex and that {a, b}, {c , d} /∈ E (Hv )
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Lemma

◮ Splitting v keeps (G , µ) facet-defining and does not change

the defect

◮ Every nonexpandable (2, 4)-vertex is splittable



Assume now that v is a nonexpandable (2, 4)-vertex. As v is
splittable, Hv is isomorphic to one of these 3 graphs:
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Assume now that v is a nonexpandable (2, 4)-vertex. As v is
splittable, Hv is isomorphic to one of these 3 graphs:
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Lemma

◮ v must be thin or thick, i.e. Hv cannot be isomorphic to the

leftmost graph

◮ (G , µ) has at most 5 thick vertices



Assume now that v is a nonexpandable (2, 4)-vertex. As v is
splittable, Hv is isomorphic to one of these 3 graphs:
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v is ”thin” v is ”thick”

Lemma

◮ v must be thin or thick, i.e. Hv cannot be isomorphic to the

leftmost graph

◮ (G , µ) has at most 5 thick vertices

→ it remains to show that (G , µ) has not too many thin vertices...



Key lemma

(G , µ) has at most 3
2N thin vertices, where N is the number of

vertices with weight 1 and degree at least 3
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3, with exactly N vertices of degree at least 3
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absolute constant c

◮ So, the number of vertices with degree at least 3 in (G , µ) is
at most N + 3

2N + 5 = 5
2N + 5 ≤ 5

2c + 5



Key lemma

(G , µ) has at most 3
2N thin vertices, where N is the number of

vertices with weight 1 and degree at least 3

◮ Iteratively split every vertex of (G , µ) which is thin or thick
until there are no more left

◮ The resulting graph is a connected stability graph with defect
3, with exactly N vertices of degree at least 3

◮ From Lovász’s theorem, we know that N ≤ c holds for some
absolute constant c

◮ So, the number of vertices with degree at least 3 in (G , µ) is
at most N + 3

2N + 5 = 5
2N + 5 ≤ 5

2c + 5

Thus we obtain:

Theorem
There is a finite number of minimal facet-defining graphs with

defect 3



As a (brief) conclusion

Graphical inequalities for the linear ordering polytope give rise to a
new family of weighted graphs with interesting structural properties
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Determining if the set of minimal facet-defining graphs with defect
δ is finite remains an open problem for δ ≥ 4



As a (brief) conclusion

Graphical inequalities for the linear ordering polytope give rise to a
new family of weighted graphs with interesting structural properties

Determining if the set of minimal facet-defining graphs with defect
δ is finite remains an open problem for δ ≥ 4

Thank you!


