On Weighted Graphs Yielding Facets of the Linear Ordering Polytope

Gwenaël Joret

Université Libre de Bruxelles, Belgium

DIMACS Workshop on Polyhedral Combinatorics of Random Utility, 2006

Definition

For any finite set Z,

- for $R \subseteq Z \times Z$, the vector x^{R} is the characteristic vector of R, that is,

$$
x_{i, j}^{R}= \begin{cases}1 & \text { if }(i, j) \in R \\ 0 & \text { otherwise }\end{cases}
$$

- the linear ordering polytope $P_{L O}^{Z} \subset \mathbb{R}^{Z \times Z}$ is

$$
P_{L O}^{Z}=\operatorname{conv}\left\{x^{L}: L \text { linear order on } Z\right\}
$$

Definition

For a vertex-weighted graph (G, μ) and $S \subseteq V(G)$,

- $\mu(S):=\sum_{v \in S} \mu(v)$
- $\mathrm{w}(S):=\mu(S)-|E(G[S])|$
(weight of S)
(worth of S)
- $\alpha(G, \mu):=\max _{S \subseteq V(G)} \mathrm{w}(S)$
- S is tight if $\mathrm{w}(S)=\alpha(G, \mu)$

- weight $=4$
- worth $=2$
- tight

Suppose

- (G, μ) is any weighted graph
- Y is a set s.t. $|Y|=|V(G)|$ and $Y \cap V(G)=\emptyset$
- $f: V(G) \rightarrow Y$ is a bijection
- Z is a finite set s.t. $V(G) \cup Y \subseteq Z$

Suppose

- (G, μ) is any weighted graph
- Y is a set s.t. $|Y|=|V(G)|$ and $Y \cap V(G)=\emptyset$
- $f: V(G) \rightarrow Y$ is a bijection
- Z is a finite set s.t. $V(G) \cup Y \subseteq Z$

Definition

- The graphical inequality of (G, μ), which is valid for $P_{L O}^{Z}$, is

$$
\sum_{v \in V(G)} \mu(v) \cdot x_{v, f(v)}-\sum_{\{v, w\} \in E(G)}\left(x_{v, f(w)}+x_{f(v), w}\right) \leq \alpha(G, \mu)
$$

- (G, μ) is facet-defining if its graphical inequality defines a facet of $P_{L O}^{Z}$

Suppose

- (G, μ) is any weighted graph
- Y is a set s.t. $|Y|=|V(G)|$ and $Y \cap V(G)=\emptyset$
- $f: V(G) \rightarrow Y$ is a bijection
- Z is a finite set s.t. $V(G) \cup Y \subseteq Z$

Definition

- The graphical inequality of (G, μ), which is valid for $P_{L O}^{Z}$, is

$$
\sum_{v \in V(G)} \mu(v) \cdot x_{v, f(v)}-\sum_{\{v, w\} \in E(G)}\left(x_{v, f(w)}+x_{f(v), w}\right) \leq \alpha(G, \mu)
$$

- (G, μ) is facet-defining if its graphical inequality defines a facet of $P_{L O}^{Z}$
N.B. (G, μ) being facet-defining is a property of the graph solely, i.e. it is independent of the particular choice of Y, f and Z

A characterization of facet-defining graphs

Definition

- For any tight set T of (G, μ), a corresponding affine equation is defined:

$$
\sum_{v \in T} y_{v}+\sum_{e \in E(T)} y_{e}=\alpha(G, \mu)
$$

- The system of (G, μ) is obtained by putting all these equations together

A characterization of facet-defining graphs

Definition

- For any tight set T of (G, μ), a corresponding affine equation is defined:

$$
\sum_{v \in T} y_{v}+\sum_{e \in E(T)} y_{e}=\alpha(G, \mu)
$$

- The system of (G, μ) is obtained by putting all these equations together

Theorem (Christophe, Doignon and Fiorini, 2004)
(G, μ) is facet-defining \Leftrightarrow the system of (G, μ) has a unique solution

- Basically rephrases the fact that the dimension of the face of $P_{L O}^{Z}$ defined by the graphical inequality must be high enough
- We lack a 'good characterization' of these graphs...

A few results

(assuming from now on that all graphs have at least 3 vertices)

Definition

G is stability critical if G has no isolated vertex and $\alpha(G \backslash e)>\alpha(G)$ for all $e \in E(G)$

Theorem (Koppen, 1995)
$(G, \mathbb{1})$ is facet-defining $\Leftrightarrow G$ is connected and stability critical

A few results

(assuming from now on that all graphs have at least 3 vertices)

Definition

G is stability critical if G has no isolated vertex and $\alpha(G \backslash e)>\alpha(G)$ for all $e \in E(G)$

Theorem (Koppen, 1995)
$(G, \mathbb{1})$ is facet-defining $\Leftrightarrow G$ is connected and stability critical
Theorem (Christophe, Doignon and Fiorini, 2004)
(G, μ) is facet-defining \Leftrightarrow its 'mirror image' $(G, \operatorname{deg}-\mu)$ is facet-defining

Definition

- The defect of G is $|V(G)|-2 \alpha(G)$

a stability critical graph

$$
\begin{aligned}
& |V(G)|=12 \\
& \alpha(G)=3 \\
& \rightarrow \text { defect }=6
\end{aligned}
$$

Definition

- The defect of G is $|V(G)|-2 \alpha(G)$
- The defect of (G, μ) is $\mu(V(G))-2 \alpha(G, \mu)$

a stability critical graph

$$
\begin{aligned}
& |V(G)|=12 \\
& \alpha(G)=3 \\
& \rightarrow \text { defect }=6
\end{aligned}
$$

a facet-defining graph

$$
\begin{aligned}
& \mu(V(G))=7 \\
& \alpha(G, \mu)=2 \\
& \rightarrow \text { defect }=3
\end{aligned}
$$

Theorem

- The defect δ of a connected stability critical graph G is always positive (Erdős and Gallai, 1961)
- Moreover, $\delta \geq \operatorname{deg}(v)-1$ for all $v \in V(G) \quad$ (Hajnal, 1965)

Theorem

- The defect δ of a connected stability critical graph G is always positive (Erdős and Gallai, 1961)
- Moreover, $\delta \geq \operatorname{deg}(v)-1$ for all $v \in V(G) \quad$ (Hajnal, 1965)

Theorem (Doignon, Fiorini, J.)

- The defect δ of any facet-defining graph (G, μ) is positive
- (G, μ) and $(G, \operatorname{deg}-\mu)$ have the same defect
- For all $v \in V(G)$, we have

$$
\delta \geq \operatorname{deg}(v)-\mu(v) \geq 1
$$

and, because of the mirror image, also

$$
\delta \geq \mu(v) \geq 1
$$

Odd subdivision

Here is an extension of a classical operation on stability-critical graphs:

odd subdivision

inverse of odd subdivision

Theorem (Christophe, Doignon and Fiorini, 2004)
The odd subdivision operation and its inverse keep both a graph facet-defining. Moreover, the defect does not change

Lemma

An inclusionwise minimal cutset of a facet-defining graph cannot span "○" or "O-○"

Thus when we have $\stackrel{1}{1-1}^{(1)}$ we can always contract both edges by using the inverse of odd subdivision operation

Lemma

An inclusionwise minimal cutset of a facet-defining graph cannot span "○" or "○-○"

Thus when we have $\stackrel{1}{1-1}^{(1)}$ we can always contract both edges by using the inverse of odd subdivision operation

Definition

A facet-defining graph is minimal if no two adjacent vertices have degree 2

Classification of stability critical graphs

Theorem (Lovász, 1978)
For every positive integer δ, the set \mathcal{S}_{δ} of minimal connected stability critical graphs with defect δ is finite

Classification of stability critical graphs

Theorem (Lovász, 1978)
For every positive integer δ, the set \mathcal{S}_{δ} of minimal connected stability critical graphs with defect δ is finite

Research problem

Is there a finite number of minimal facet-defining graphs with defect δ, for every $\delta \geq 1$?

- It turns out to be true for $\delta \leq 3$
\rightarrow an overview of the proofs is given in the next few slides
- The problem is wide open for $\delta \geq 4$

Notice first that the only minimal facet-defining graph with defect
$\delta=1$ is (1), because $\delta \geq \mu(v) \geq 1$

Notice first that the only minimal facet-defining graph with defect $\delta=1$ is (1), because $\delta \geq \mu(v) \geq 1$

Let's look at another operation:

subdivision of a star

Theorem
The subdivision of a star operation keeps a graph facet-defining.
Moreover, the defect does not change

Definition

$\left(G_{1}, \mu_{1}\right)$ and $\left(G_{2}, \mu_{2}\right)$ are equivalent if one can be obtained from the other by using the

- odd subdivision
- inverse of odd subdivision
- subdivision of a star
operations finitely many times.

Definition

(G_{1}, μ_{1}) and (G_{2}, μ_{2}) are equivalent if one can be obtained from the other by using the

- odd subdivision
- inverse of odd subdivision
- subdivision of a star
operations finitely many times.
Notice
- two equivalent graphs have the same defect
- (G, μ) and $(G, \operatorname{deg}-\mu)$ are equivalent:

Facet-defining graphs with defect 2

Recall

$$
\left\{\begin{array}{l}
\delta \geq \mu(v) \geq 1 \\
\delta \geq \operatorname{deg}(v)-\mu(v) \geq 1
\end{array}\right.
$$

for any vertex v of a facet-defining graph with defect δ
$\Rightarrow \operatorname{deg}(v) \leq 2 \delta$

Facet-defining graphs with defect 2

Recall

$$
\left\{\begin{array}{l}
\delta \geq \mu(v) \geq 1 \\
\delta \geq \operatorname{deg}(v)-\mu(v) \geq 1
\end{array}\right.
$$

for any vertex v of a facet-defining graph with defect δ
$\Rightarrow \operatorname{deg}(v) \leq 2 \delta$
Theorem
$\operatorname{deg}(v) \leq 2 \delta-1$ for any vertex v of a facet-defining graph with defect $\delta \geq 2$

Facet-defining graphs with defect 2

Recall

$$
\left\{\begin{array}{l}
\delta \geq \mu(v) \geq 1 \\
\delta \geq \operatorname{deg}(v)-\mu(v) \geq 1
\end{array}\right.
$$

for any vertex v of a facet-defining graph with defect δ
$\Rightarrow \operatorname{deg}(v) \leq 2 \delta$
Theorem
$\operatorname{deg}(v) \leq 2 \delta-1$ for any vertex v of a facet-defining graph with defect $\delta \geq 2$

Thus, every vertex of a facet-defining graph with defect 2 is either $\overbrace{\text { or }}^{1}$

\Rightarrow Any facet-defining graph with defect 2 is equivalent to some stability critical graph

Theorem (Andrásfai, 1967)
The only minimal connected stability critical graph with defect 2 is a

Theorem (Andrásfai, 1967)
The only minimal connected stability critical graph with defect 2 is a
\rightarrow we derive:
Theorem
There are exactly five minimal facet-defining graphs with defect 2 :

Facet-defining graphs with defect 3

By previous bounds, any vertex falls in one of these cases when $\delta=3$:

Facet-defining graphs with defect 3

By previous bounds, any vertex falls in one of these cases when $\delta=3$:

*

*

*

The subdivision of a star operation is no longer sufficient!

Facet-defining graphs with defect 3

By previous bounds, any vertex falls in one of these cases when $\delta=3$:

*

*

*

The subdivision of a star operation is no longer sufficient! Definition a (p, q)-vertex is a vertex with weight p and degree q

Facet-defining graphs with defect 3

By previous bounds, any vertex falls in one of these cases when $\delta=3$:

*

*

*

The subdivision of a star operation is no longer sufficient! Definition a (p, q)-vertex is a vertex with weight p and degree q

Fix (G, μ) to be any facet-defining graph with defect 3

Facet-defining graphs with defect 3

By previous bounds, any vertex falls in one of these cases when $\delta=3$:

*

*

*

The subdivision of a star operation is no longer sufficient!
Definition
a (p, q)-vertex is a vertex with weight p and degree q

Fix (G, μ) to be any facet-defining graph with defect 3

- We would like to show that the number of vertices v of (G, μ) with $\operatorname{deg}(v) \geq 3$ is bounded by some absolute constant

Facet-defining graphs with defect 3

By previous bounds, any vertex falls in one of these cases when $\delta=3$:

*

*

*

The subdivision of a star operation is no longer sufficient!
Definition
a (p, q)-vertex is a vertex with weight p and degree q

Fix (G, μ) to be any facet-defining graph with defect 3

- We would like to show that the number of vertices v of (G, μ) with $\operatorname{deg}(v) \geq 3$ is bounded by some absolute constant
- By the subdivision of a star operation, w.l.o.g. $\nexists(2,3)$-, $(3,4)$-, or $(3,5)$-vertices in (G, μ)

Facet-defining graphs with defect 3

By previous bounds, any vertex falls in one of these cases when $\delta=3$:

*

*

*

The subdivision of a star operation is no longer sufficient!
Definition
a (p, q)-vertex is a vertex with weight p and degree q

Fix (G, μ) to be any facet-defining graph with defect 3

- We would like to show that the number of vertices v of (G, μ) with $\operatorname{deg}(v) \geq 3$ is bounded by some absolute constant
- By the subdivision of a star operation, w.l.o.g. $\nexists(2,3)$-, $(3,4)$-, or $(3,5)$-vertices in (G, μ)
- Main issue: how to get rid of the $(2,4)$-vertices and $(2,5)$-vertices?

Suppose v is a $(2,4)$ - or $(2,5)$-vertex and look at those tight sets including exactly two neighbors of v but avoiding v :

Suppose v is a $(2,4)$ - or $(2,5)$-vertex and look at those tight sets including exactly two neighbors of v but avoiding v :

\rightarrow defines a graph on the neighborhood $N(v)$ of v, denoted H_{v} :

Expanding a vertex

Assume $\exists a, b, c, d \in V\left(H_{v}\right)$ s. t. $\{a, b\} \in E\left(H_{v}\right)$ and $\{c, d\} \notin E\left(H_{v}\right)$

expanding v

Lemma

- Expanding v keeps (G, μ) facet-defining and does not change the defect
- Any $(2,5)$-vertex of (G, μ) is expandable

Expanding a vertex

Assume $\exists a, b, c, d \in V\left(H_{v}\right)$ s. t. $\{a, b\} \in E\left(H_{v}\right)$ and $\{c, d\} \notin E\left(H_{v}\right)$

expanding v

Lemma

- Expanding v keeps (G, μ) facet-defining and does not change the defect
- Any $(2,5)$-vertex of (G, μ) is expandable
\rightarrow w.l.o.g. (G, μ) has no expandable vertices, as expanding a vertex increases the number of vertices with degree at least 3

Splitting a vertex

Suppose that v is a (2,4)-vertex and that $\{a, b\},\{c, d\} \notin E\left(H_{v}\right)$

splitting v

Lemma

- Splitting v keeps (G, μ) facet-defining and does not change the defect
- Every nonexpandable (2,4)-vertex is splittable

Assume now that v is a nonexpandable (2,4)-vertex. As v is splittable, H_{v} is isomorphic to one of these 3 graphs:

Assume now that v is a nonexpandable (2,4)-vertex. As v is splittable, H_{v} is isomorphic to one of these 3 graphs:

v is "thin"
v is "thick"

Lemma

- v must be thin or thick, i.e. H_{v} cannot be isomorphic to the leftmost graph
- (G, μ) has at most 5 thick vertices

Assume now that v is a nonexpandable (2,4)-vertex. As v is splittable, H_{v} is isomorphic to one of these 3 graphs:

v is "thin"
v is "thick"

Lemma

- v must be thin or thick, i.e. H_{v} cannot be isomorphic to the leftmost graph
- (G, μ) has at most 5 thick vertices
\rightarrow it remains to show that (G, μ) has not too many thin vertices...

Key lemma
(G, μ) has at most $\frac{3}{2} N$ thin vertices, where N is the number of vertices with weight 1 and degree at least 3

Key lemma
(G, μ) has at most $\frac{3}{2} N$ thin vertices, where N is the number of vertices with weight 1 and degree at least 3

- Iteratively split every vertex of (G, μ) which is thin or thick until there are no more left

Key lemma
(G, μ) has at most $\frac{3}{2} N$ thin vertices, where N is the number of vertices with weight 1 and degree at least 3

- Iteratively split every vertex of (G, μ) which is thin or thick until there are no more left
- The resulting graph is a connected stability graph with defect 3 , with exactly N vertices of degree at least 3

Key lemma
(G, μ) has at most $\frac{3}{2} N$ thin vertices, where N is the number of vertices with weight 1 and degree at least 3

- Iteratively split every vertex of (G, μ) which is thin or thick until there are no more left
- The resulting graph is a connected stability graph with defect 3 , with exactly N vertices of degree at least 3
- From Lovász's theorem, we know that $N \leq c$ holds for some absolute constant c

Key lemma
(G, μ) has at most $\frac{3}{2} N$ thin vertices, where N is the number of vertices with weight 1 and degree at least 3

- Iteratively split every vertex of (G, μ) which is thin or thick until there are no more left
- The resulting graph is a connected stability graph with defect 3 , with exactly N vertices of degree at least 3
- From Lovász's theorem, we know that $N \leq c$ holds for some absolute constant c
- So, the number of vertices with degree at least 3 in (G, μ) is at most $N+\frac{3}{2} N+5=\frac{5}{2} N+5 \leq \frac{5}{2} c+5$

Key lemma
(G, μ) has at most $\frac{3}{2} N$ thin vertices, where N is the number of vertices with weight 1 and degree at least 3

- Iteratively split every vertex of (G, μ) which is thin or thick until there are no more left
- The resulting graph is a connected stability graph with defect 3 , with exactly N vertices of degree at least 3
- From Lovász's theorem, we know that $N \leq c$ holds for some absolute constant c
- So, the number of vertices with degree at least 3 in (G, μ) is at most $N+\frac{3}{2} N+5=\frac{5}{2} N+5 \leq \frac{5}{2} c+5$
Thus we obtain:
Theorem
There is a finite number of minimal facet-defining graphs with defect 3

As a (brief) conclusion

Graphical inequalities for the linear ordering polytope give rise to a new family of weighted graphs with interesting structural properties

As a (brief) conclusion

Graphical inequalities for the linear ordering polytope give rise to a new family of weighted graphs with interesting structural properties

Determining if the set of minimal facet-defining graphs with defect δ is finite remains an open problem for $\delta \geq 4$

As a (brief) conclusion

Graphical inequalities for the linear ordering polytope give rise to a new family of weighted graphs with interesting structural properties

Determining if the set of minimal facet-defining graphs with defect δ is finite remains an open problem for $\delta \geq 4$

Thank you!

