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Binary Choice Probabilities
Take

Z some finite set of cardinality n,

Π the collection of the n! rankings or linear orderings of Z .

To each probability distribution P on Π,

we associate the

binary choice probabilities pij , for i , j ∈ Z and i 6= j ,

defined by

pij = P { i is ranked before j }

=
∑

{ P(L) : L ∈ Π and i L j } .
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Binary Choice Probabilities on {a, b, c}

Example
For

Z = {a, b, c},

Π = { abc, acb, bac, bca, cab, cba },

we have by definition

pab = P(abc) + P(acb) + P(cab),

pba = P(bac) + P(bca) + P(cba),

pac = P(abc) + P(acb) + P(bac),

pca = P(bca) + P(cab) + P(cba),

pbc = P(abc) + P(bac) + P(bca),

pcb = P(acb) + P(cab) + P(cba).
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A Question

Can the following data be produced in this way?

pab = 0.12, pba = 0.82,
pac = 0.56, pca = 0.44,
pbc = 0.75, pcb = 0.25.

More precisely: is there some probability distribution P on Π
that would give the following?

0.12 = P(abc) + P(acb) + P(cab),

0.82 = P(bac) + P(bca) + P(cba),

0.56 = P(abc) + P(acb) + P(bac),

0.44 = P(bca) + P(cab) + P(cba),

0.75 = P(abc) + P(bac) + P(bca),

0.25 = P(acb) + P(cab) + P(cba).
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Main Problem: Characterizing Binary Choice Prob.
Given real numbers pij for all i , j ∈ Z with i 6= j ,

can we find some probability distribution P on Π such that the
pij ’s are the binary choice probabilities defined by P?

More precisely:

find a necessary and sufficient condition on the pij ’s

for the existence of P.

The usual comment:

characterizing binary choice probabilities is . . .

. . . a hopeless problem!

An algorithmically tractable answer would lead to P = NP.
5
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Some Obvious Necessary Conditions

Binary choice probabilities always satisfy

pij ≥ 0,

pij + pji = 1,

pij + pjk + pki ≤ 2.

These necessary conditions are also sufficient

exactly when n ≤ 5:

Motzkin (≤ 1960); . . . (19..); Dridi (1980); . . . (19..)
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A Geometric Point of View
Vectors of binary choice probabilities p belong to RZnZ

(a space with one real coordinate for each pair (i , j) of distinct
objects).

Example
For Z = {a, b, c}, we have 6-dimensional vectors(

pab, pba, pbc , pcb, pac , pca
)
.

As we know pab + pba = 1, pac + pca = 1, pbc + pcb = 1,
we may work with only(

pab, pbc , pca
)
.

The collection of all (projected) vectors form a polyhedron in R3:
7
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The Projected Polyhedron for Z = {a, b, c}

pbc

bac abc

bca

acb

cabcba

pca

pab
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The Linear Ordering Polytope

Let n = |Z |.

The binary choice probabilities form a convex polytope in RZnZ

of dimension
n · (n − 1)

2
,

with one vertex xL per ranking L of Z :

xL
ij =

{
1 if i L j ,
0 if j L i .

This polytope is the binary choice polytope

or linear ordering polytope PZ
LO.
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Rephrasing the Main Problem

The linear ordering polytope PZ
LO has the vertices xL, for L ∈ Π;

find the facets of the linear ordering polytope PZ
LO.

And the usual comment: the problem is hopeless!

A manageable solution would give P = NP.
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Origins of the Problem

In mathematical psychology/economics:

Guilbaud (1953), Block and Marschak (1960).

In discrete mathematics:

Megiddo (1977).

In operations research:

Grötschel, Jünger and Reinelt (1985).

In voting theory:

Saari (1999).
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Examples of Facet-defining Inequalities for Pn
LO

Remember our obvious necessary conditions.

Theorem
The following affine (linear) inequalities on RZnZ define facets:

pij ≥ 0 (trivial inequalities),
pij + pjk + pki ≤ 2 (triangular inequalities).

A first scheme of nonobvious facets is due independently to

Cohen and Falmagne (1978, published in 1990),

Grötschel, Jünger and Reinelt (1985).
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First Example of Fence Inequality

The following inequality is facet-defining:

xas +xbt +xcu − (xat + xbs)− (xau + xcs)− (xbu + xct) ≤ 1.

s t u

a b c
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The Fence Inequality

In general, let X , Y ⊂ Z with

X ∩ Y = ∅,

|X | = |Y |,

f : X → Y a bijective mapping

(we keep the notation throughout).

Y

f

X

14



The Fence Inequality

Definition
The fence inequality is∑

i∈X

xi f (i) −
∑

i,j∈X , i 6=j

(
xi f (j) + xj f (i)

)
≤ 1.

Theorem (Cohen and Falmagne, 1978; Grötschel, Jünger
and Reinelt, 1985)
For |X | ≥ 3, the fence inequality defines a facet of the linear
ordering polytope Pn

LO.
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A Structural Generalization of the Fence Inequality
Several steps:

McLennan (1990), Fishburn (1990), Koppen (1991), etc.

leading to a marvelous result by Koppen (1995).

Let G = (V , E) be a (simple) graph.

The stability number α(G) of G is the largest number of vertices
no two of which are adjacent.

Assume f : X → Y as before, and moreover V = X .

Definition
The graphical inequality of G reads∑

i∈V

xi,f (i) −
∑

{i,j}∈E

(xi,f (j) + xj,f (i)) ≤ α(G).
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An Example of Graphical Inequality

Example
For the graph a b

d c

with the bijection

f : a 7→ s, b 7→ t , c 7→ u, d 7→ v ,

we get the inequality

xas + xbt + xcu + xdv

− (xat + xbs)− (xbu + xct)− (xcv + xdu)− (xds + xav )

≤ 2.

s t u v

a b c d
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Main Result in Koppen (1995)

Theorem (Koppen, 1995)
The graphical inequality of G is valid for the linear ordering
polytope.

It defines a facet if and only if G is
different from K2,
connected,
and stability critical.

Definition
A graph is stability critical when its stability number increases
whenever any of its edges is deleted.

18
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An Example of Stability-Critical Graph

Examples

Delete any edge:

Thus: the 5-cycle is stability critical but the 6-cycle is not.
19
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A Weighted Generalization of the Fence Inequality

Independently: Leung and Lee (1994), Suck (1992).

Theorem
For |X | ≥ 3, the reinforced fence inequality∑

i∈X

t xi,f (i) −
∑

i,j∈X , i 6=j

(xi,f (j) + xj,f (i)) ≤ t(t + 1)

2

defines a facet of Pn
LO if and only if the constant value t satisfies

1 ≤ t ≤ |X | − 2.

20



Our Contribution (D., F. and J.)

Schematically:
fence inequality

graphical inequality of reinforced fence inequality
a stability critical graph (of a complete graph)

A common generalization?
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Preparing a General Graphical Inequality
Let (G, µ) be a weighted graph, with G = (V , E) and µ : V → Z.

Definition
For S ⊆ V , the worth (or net weight) w(S) equals the total
weight µ(S) minus the number of edges in S.

A subset of S is tight if it maximizes the worth.

Notation

α(G, µ) = max
S⊆V

w(S).

Remark
If µ = 1 (constant weight 1), then α(G, 1) = α(G).

Thus α(G, µ) is a true generalization of α(G).
22
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Examples of Tight Sets

Example
For the pentagon with µ = 1, here are tight sets:

Remember that tight sets S maximize

w(S) = µ(S)− ||S||.

23



Graphical Inequalities
Let (G, µ) be a weighted graph, with G = (V , E) and µ : V → Z.

Definition
Let f : X → Y be bijective with X , Y ⊂ Z , X ∩ Y = ∅,
and assume V = X .

The graphical inequality of (G, µ) reads

∑
i∈V

µ(i) xi,f (i) −
∑

{i,j}∈E

(xi,f (j) + xj,f (i)) ≤ α(G, µ).

Proposition
The graphical inequality is always valid for the linear ordering
polytope PZ

LO.
24
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An Example of Graphical Inequality

Example
Consider X = {a, b, c, d}, Y = {s, t , u, v}, and the bijection

f : a 7→ s, b 7→ t , c 7→ u, d 7→ v .

Take the graph

2 1

5 2

a b

d c

Its graphical inequality is

2 xas + xbt + 2 xcu + 5 xdv

− (xat + xbs)− (xau + xcs)− (xav + xds)

− (xbu + xct)− (xcv + xdu) ≤ 6. 25
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Facet-defining Graphs

Definition
A weighted graph is facet defining or a FDG if its graphical
inequality defines a facet of Pn

LO.

Examples
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A Subsidiary Problem

Problem

To understand FDGs, e.g. to classify them.

Remark
FDGs include connected, stability critical graphs with more than
2 vertices.

Hard (although only partial) results were obtained in classifying
the latter graphs, see e.g. Lovász (1993).

Remark
Another weighted, generalization of stability critical graphs
is investigated by Lipták and Lovász (2000, 2001).


27



A Subsidiary Problem

Problem

To understand FDGs, e.g. to classify them.

Remark
FDGs include connected, stability critical graphs with more than
2 vertices.

Hard (although only partial) results were obtained in classifying
the latter graphs, see e.g. Lovász (1993).

Remark
Another weighted, generalization of stability critical graphs
is investigated by Lipták and Lovász (2000, 2001).


27



A Subsidiary Problem

Problem

To understand FDGs, e.g. to classify them.

Remark
FDGs include connected, stability critical graphs with more than
2 vertices.

Hard (although only partial) results were obtained in classifying
the latter graphs, see e.g. Lovász (1993).

Remark
Another weighted, generalization of stability critical graphs
is investigated by Lipták and Lovász (2000, 2001).


27



A Subsidiary Problem

Problem

To understand FDGs, e.g. to classify them.

Remark
FDGs include connected, stability critical graphs with more than
2 vertices.

Hard (although only partial) results were obtained in classifying
the latter graphs, see e.g. Lovász (1993).

Remark
Another weighted, generalization of stability critical graphs
is investigated by Lipták and Lovász (2000, 2001).


27



A Subsidiary Problem

Problem

To understand FDGs, e.g. to classify them.

Remark
FDGs include connected, stability critical graphs with more than
2 vertices.

Hard (although only partial) results were obtained in classifying
the latter graphs, see e.g. Lovász (1993).

Remark
Another weighted, generalization of stability critical graphs
is investigated by Lipták and Lovász (2000, 2001).


27



An Unsatisfactory Answer

Theorem
Let (G, µ) be a weighted graph with more than two vertices.

Then (G, µ) is a FDG

if and only if

for each nonzero valuation λ : V (G) ∪ E(G) → Z there is a
tight set T of (G, µ) with∑

v∈T

λ(t) +
∑

e∈E(T )

λ(e) 6= 0.

Remark
We lack a simple characterization of FDGs.
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Sketch of the proof

Take f : X → Y as in the definition of the graphical inequality.

Take the restrictions to X × Y of all linear orderings L of Z .

The resulting relations from X to Y coincide with the “biorders”
from X to Y (Doignon, Ducamp and Falmagne, 1984).

The biorder polytope PX×Y
Bio is defined in RX×Y (Christophe,

Doignon and Fiorini, 2004).

The restriction L 7→ L|X×Y induces a “polytope projection”

Pn
LO → PX×Y

Bio .

Etc.
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First Results on Facet Defining Graphs

Theorem
For any FDG (G, µ), the graph G is 2-connected.

Theorem
If (G, µ) is a FDG, so is (G, deg− µ).

[Here (deg− µ)(v) = deg(v)− µ(v).]

Thus most stability critical graphs produce two FDGs:

one with µ = 1, another one with µ = deg− 1.

Let’s go back to stability critical graphs (FDGs when µ = 1).

30
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The Defect of Stability Critical Graphs
For any graph G = (V , E) (no weight here), define its defect

δ(G) = |V | − 2 α(G).

Consider here a connected, stability critical graph G.

Theorem (Erdös and Gallai, 1961)
δ(G) ≥ 0.

Theorem (Hajnal, 1965)
Any vertex v of G satisfies deg(v) ≤ δ(G) + 1.

Corollary (Hajnal, 1965)
δ(G) = 0 ⇐⇒ G = K2;
δ(G) = 1 ⇐⇒ G is an odd cycle.

Odd-cycles coincide with odd subdivisions of K3.
31
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Odd Subdivisions of a Graph

Definition
An odd subdivision of a graph G is obtained by replacing a
number of edges of G with odd paths (of various lengthes).

Example
(an 11-cycle)

Theorem (Andrásfai, 1967)
The connected stability critical graphs with defect 2
are the odd-subdivision of K4.
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The Basis Theorem for Stability Critical Graphs

Theorem (Lovász, 1978)
For any natural number δ > 0, there is a finite collection Sδ of
graphs such that

G is a connected stability critical graph with δ(G) = δ
⇐⇒

G is an odd-subdivision of some graph in Sδ.

Examples
S1: S2:
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The Basis of Stability Critical Graphs with defect 3

Among the graphs in S3, we show only those with minimum
degree 3:

 

 

 

 
 

 

 

  

  

  

 

  

 

 

 

 

 

 

 

  

There are 7 other graphs in Sδ (according to Gwen).
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The Defect of Facet-Defining Graphs (FDGs)
How to define the defect of a weighted graph (G, µ) ?

In our case, with G = (V , E), we use

δ(G, µ) = µ(V ) − 2 α(G, µ).

Notice δ(G, 1) = δ(G) and δ(G, µ) = δ(G, deg− µ).

Let (G, µ) be any FDG.

Theorem
For each vertex v of G

1 ≤ deg(v)− µ(v) ≤ δ(G, µ).

The proof is much more involved than in the case µ = 1.
35
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More Results on FDGs

Corollary
µ(v) ≤ δ(G, µ).

Corollary
If δ(G, µ) = 1, then µ = 1 and G is an odd cycle.

Theorem (Joret, next talk)
For any vertex v of an FDG (G, µ):

deg(v) ≤ 2 δ(G, µ)− 1.
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Back to the Main Problem

A characterization of the binary choice probabilities?

There is little hope that a computationally simple solution exists

(otherwise, P = NP).

Fiorini (2006a) has designed a way of generating “wild”

collections of facet defining inequalities.
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Other facet defining inequalities include

"Möbius ladders inequalities"

and their wonderful extensions by Fiorini (2006b).
Sam in Act III

Here, we have linked some facet defining inequalities with a
class of weighted graphs (forthcoming paper in JMP).

The latter graphs generalize stability critical graphs. Additional
results are due to Joret (2006+). Gwen in Act II

Thanks for having listened to Act I !
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