Graphical Inequalities for the Linear Ordering Polytope

Jean-Paul Doignon

Université Libre de Bruxelles

Joint work with
Samuel Fiorini and Gwenaël Joret
Université Libre de Bruxelles

Graphical Inequalities for the Linear Ordering Polytope

Jean-Paul Doignon
Université Libre de Bruxelles

Joint work with
Samuel Fiorini and Gwenaël Joret
Université Libre de Bruxelles

Binary Choice Probabilities

Take
Z some finite set of cardinality n,
Π the collection of the n ! rankings or linear orderings of Z.
To each probability distribution P on Π,
we associate the

$$
\text { binary choice probabilities } \quad p_{i j}, \quad \text { for } i, j \in Z \text { and } i \neq j
$$

defined by

$$
p_{i j}=P\{i \text { is ranked before } j\}
$$

$$
=\quad \sum\{P(L): L \in \Pi \text { and } i L j\}
$$

Binary Choice Probabilities

Take
Z some finite set of cardinality n,
Π the collection of the $n!$ rankings or linear orderings of Z.

To each probability distribution P on Π,

we associate the

$$
\text { binary choice probabilities } p_{i j} \text {, for } i, j \in Z \text { and } i \neq j \text {, }
$$

defined by

$$
p_{i j}=P\{i \text { is ranked before } j\}
$$

Binary Choice Probabilities

Take
Z some finite set of cardinality n,
Π the collection of the n ! rankings or linear orderings of Z.
To each probability distribution P on Π,
we associate the
binary choice probabilities $\quad p_{i j}, \quad$ for $i, j \in Z$ and $i \neq j$, defined by

$$
\begin{aligned}
p_{i j} & =P\{i \text { is ranked before } j\} \\
& =\sum\{P(L): L \in \Pi \text { and } i L j\}
\end{aligned}
$$

Binary Choice Probabilities on $\{a, b, c\}$

Example
For
$Z=\{a, b, c\}$,
$\Pi=\{a b c, a c b, b a c, b c a, c a b, c b a\}$,

we have by definition

$$
\begin{aligned}
& p_{a b}=P(a b c)+P(a c b)+P(c a b) \\
& p_{b a}=P(b a c)+P(b c a)+P(c b a) \\
& p_{a c}=P(a b c)+P(a c b)+P(b a c) \\
& p_{c a}=P(b c a)+P(c a b)+P(c b a) \\
& p_{b c}=P(a b c)+P(b a c)+P(b c a) \\
& p_{c b}=P(a c b)+P(c a b)+P(c b a)
\end{aligned}
$$

Binary Choice Probabilities on $\{a, b, c\}$

Example

For

$$
\begin{aligned}
Z & =\{a, b, c\} \\
\Pi & =\{a b c, a c b, b a c, b c a, c a b, c b a\}
\end{aligned}
$$

we have by definition

$$
\begin{aligned}
p_{a b} & =P(a b c)+P(a c b)+P(c a b) \\
p_{b a} & =P(b a c)+P(b c a)+P(c b a) \\
p_{a c} & =P(a b c)+P(a c b)+P(b a c) \\
p_{c a} & =P(b c a)+P(c a b)+P(c b a) \\
p_{b c} & =P(a b c)+P(b a c)+P(b c a) \\
p_{c b} & =P(a c b)+P(c a b)+P(c b a)
\end{aligned}
$$

A Question

Can the following data be produced in this way?

$$
\begin{array}{ll}
p_{a b}=0.12, & p_{b a}=0.82, \\
p_{a c}=0.56, & p_{c a}=0.44, \\
p_{b c}=0.75, & p_{c b}=0.25 .
\end{array}
$$

More precisely: is there some probability distribution P on Π that would give the following?
$0.12=P(a b c)+P(a c b)+P(c a b)$,
$0.82=P(b a c)+P(b c a)+P(c b a)$,
$0.56=P(a b c)+P(a c b)+P(b a c)$,
$0.44=P(b c a)+P(c a b)+P(c b a)$,
$0.75=P(a b c)+P(b a c)+P(b c a)$,
$0.25=P(a c b)+P(c a b)+P(c b a)$.

A Question

Can the following data be produced in this way?

$$
\begin{array}{ll}
p_{a b}=0.12, & p_{b a}=0.82 \\
p_{a c}=0.56, & p_{c a}=0.44 \\
p_{b c}=0.75, & p_{c b}=0.25
\end{array}
$$

More precisely: is there some probability distribution P on Π that would give the following?

$$
\begin{aligned}
& 0.12=P(a b c)+P(a c b)+P(c a b) \\
& 0.82=P(b a c)+P(b c a)+P(c b a) \\
& 0.56=P(a b c)+P(a c b)+P(b a c) \\
& 0.44=P(b c a)+P(c a b)+P(c b a) \\
& 0.75=P(a b c)+P(b a c)+P(b c a) \\
& 0.25=P(a c b)+P(c a b)+P(c b a)
\end{aligned}
$$

Main Problem: Characterizing Binary Choice Prob.

Given real numbers $p_{i j}$ for all $i, j \in Z$ with $i \neq j$,
can we find some probability distribution P on Π such that the $p_{i j}$'s are the binary choice probabilities defined by P ?

More precisely:
find a necessary and sufficient condition on the $p_{i j}$'s for the existence of P.

The usual comment: characterizing binary choice probabilities is a hopeless problem!

Main Problem: Characterizing Binary Choice Prob.

Given real numbers $p_{i j}$ for all $i, j \in Z$ with $i \neq j$,
can we find some probability distribution P on Π such that the $p_{i j}$'s are the binary choice probabilities defined by P ?

More precisely:
find a necessary and sufficient condition on the $p_{i j}$'s for the existence of P.

The usual comment:
characterizing binary choice probabilities is
a hopeless problem!

Main Problem: Characterizing Binary Choice Prob.

Given real numbers $p_{i j}$ for all $i, j \in Z$ with $i \neq j$,
can we find some probability distribution P on Π such that the $p_{i j}$'s are the binary choice probabilities defined by P ?

More precisely:
find a necessary and sufficient condition on the $p_{i j}$'s for the existence of P.

The usual comment:
characterizing binary choice probabilities is ...
... a hopeless problem!
An algorithmically tractable answer would lead to $P=N P$.

Some Obvious Necessary Conditions

Binary choice probabilities always satisfy

$$
\begin{aligned}
p_{i j} & \geq 0, \\
p_{i j}+p_{j i} & =1, \\
p_{i j}+p_{j k}+p_{k i} & \leq 2 .
\end{aligned}
$$

These necessary conditions are also sufficient exactly when $n<5$:

Some Obvious Necessary Conditions

Binary choice probabilities always satisfy

$$
\begin{aligned}
p_{i j} & \geq 0, \\
p_{i j}+p_{j i} & =1, \\
p_{i j}+p_{j k}+p_{k i} & \leq 2 .
\end{aligned}
$$

These necessary conditions are also sufficient
\square
Motzkin (≤ 1960); . . (19..); Dridi (1980);

Some Obvious Necessary Conditions

Binary choice probabilities always satisfy

$$
\begin{aligned}
p_{i j} & \geq 0, \\
p_{i j}+p_{j i} & =1, \\
p_{i j}+p_{j k}+p_{k i} & \leq 2 .
\end{aligned}
$$

These necessary conditions are also sufficient exactly when $n \leq 5$:

Motzkin (≤ 1960); ... (19..); Dridi (1980); ... (19..)

A Geometric Point of View

Vectors of binary choice probabilities p belong to $\mathbb{R}^{Z \ltimes Z}$
(a space with one real coordinate for each pair (i, j) of distinct objects).

Example
For $Z=\{a, b, c\}$, we have 6-dimensional vectors
$\left(p_{a b}, p_{b a}, p_{b c}, p_{c b}, p_{a c}, p_{c a}\right)$

As we know $p_{a b}+p_{b a}=1, \quad p_{a c}+p_{c a}=1, \quad p_{b c}+p_{c b}=1$, we may work with only

$$
\left(\begin{array}{lll}
p_{a b}, & p_{b c}, & p_{c a}
\end{array}\right) .
$$

The collection of all (projected) vectors form a polyhedron in \mathbb{R}^{3} :

A Geometric Point of View

Vectors of binary choice probabilities p belong to $\mathbb{R}^{Z \ltimes Z}$
(a space with one real coordinate for each pair (i, j) of distinct objects).

Example

For $Z=\{a, b, c\}$, we have 6-dimensional vectors

$$
\left(p_{a b}, p_{b a}, p_{b c}, p_{c b}, p_{a c}, p_{c a}\right)
$$

As we know
we may work with only

$$
\left(\begin{array}{lll}
p_{a b}, & p_{b c}, & p_{c a}
\end{array}\right) .
$$

A Geometric Point of View

Vectors of binary choice probabilities p belong to $\mathbb{R}^{Z \ltimes Z}$
(a space with one real coordinate for each pair (i, j) of distinct objects).

Example

For $Z=\{a, b, c\}$, we have 6-dimensional vectors

$$
\left(p_{a b}, p_{b a}, p_{b c}, p_{c b}, p_{a c}, p_{c a}\right)
$$

As we know $\quad p_{a b}+p_{b a}=1, \quad p_{a c}+p_{c a}=1, \quad p_{b c}+p_{c b}=1$, we may work with only

$$
\left(\begin{array}{lll}
p_{a b}, & p_{b c}, & p_{c a}
\end{array}\right)
$$

A Geometric Point of View

Vectors of binary choice probabilities p belong to $\mathbb{R}^{Z \ltimes Z}$
(a space with one real coordinate for each pair (i, j) of distinct objects).

Example

For $Z=\{a, b, c\}$, we have 6-dimensional vectors

$$
\left(p_{a b}, p_{b a}, p_{b c}, p_{c b}, p_{a c}, p_{c a}\right)
$$

As we know $\quad p_{a b}+p_{b a}=1, \quad p_{a c}+p_{c a}=1, \quad p_{b c}+p_{c b}=1$, we may work with only

$$
\left(\begin{array}{lll}
p_{a b}, & p_{b c}, & p_{c a}
\end{array}\right)
$$

The collection of all (projected) vectors form a polyhedron in \mathbb{R}^{3} :

The Projected Polyhedron for $Z=\{a, b, c\}$

The Linear Ordering Polytope

Let $n=|Z|$.

The binary choice probabilities form a convex polytope in $\mathbb{R}^{Z \ltimes Z}$
of dimension $\frac{n \cdot(n-1)}{2}$,
with one vertex x^{L} per ranking L of Z :

This polytope is the binary choice polytope

The Linear Ordering Polytope

Let $n=|Z|$.

The binary choice probabilities form a convex polytope in $\mathbb{R}^{Z \ltimes Z}$

$$
\text { of dimension } \frac{n \cdot(n-1)}{2}
$$

with one vertex x^{L} per ranking L of Z :

This polytope is the binary choice polytope

The Linear Ordering Polytope

Let $n=|Z|$.
The binary choice probabilities form a convex polytope in $\mathbb{R}^{Z \propto Z}$
of dimension $\frac{n \cdot(n-1)}{2}$,
with one vertex x^{L} per ranking L of Z :

$$
x_{i j}^{L}= \begin{cases}1 & \text { if } i L j, \\ 0 & \text { if } j L i .\end{cases}
$$

This polytope is the binary choice polytope

The Linear Ordering Polytope

Let $n=|Z|$.
The binary choice probabilities form a convex polytope in $\mathbb{R}^{Z \propto Z}$

$$
\text { of dimension } \frac{n \cdot(n-1)}{2} \text {, }
$$

with one vertex x^{L} per ranking L of Z :

$$
x_{i j}^{L}= \begin{cases}1 & \text { if } i L j, \\ 0 & \text { if } j L i .\end{cases}
$$

This polytope is the binary choice polytope

The Linear Ordering Polytope

Let $n=|Z|$.

The binary choice probabilities form a convex polytope in $\mathbb{R}^{Z \ltimes Z}$

$$
\text { of dimension } \frac{n \cdot(n-1)}{2}
$$

with one vertex x^{L} per ranking L of Z :

$$
x_{i j}^{L}= \begin{cases}1 & \text { if } i L j \\ 0 & \text { if } j L i\end{cases}
$$

This polytope is the binary choice polytope or linear ordering polytope $P_{\text {LO }}^{Z}$.

Rephrasing the Main Problem

The linear ordering polytope $P_{\text {LO }}^{Z}$ has the vertices x^{L}, for $L \in \Pi$;

$$
\text { find the facets of the linear ordering polytope } P_{\mathrm{LO}}^{Z} \text {. }
$$

And the usual comment: the problem is hopeless!

A manageable solution would give $P=N P$.

Rephrasing the Main Problem

The linear ordering polytope P_{LO}^{Z} has the vertices x^{L}, for $L \in \Pi$; find the facets of the linear ordering polytope P_{LO}^{Z}.

And the usual comment: the problem is hopeless!

A manageable solution would give $P=N P$.

Rephrasing the Main Problem

The linear ordering polytope P_{LO}^{Z} has the vertices x^{L}, for $L \in \Pi$;
find the facets of the linear ordering polytope P_{LO}^{Z}.

And the usual comment: the problem is hopeless!

A manageable solution would give $P=N P$.

Origins of the Problem

In mathematical psychology/economics:
Guilbaud (1953), Block and Marschak (1960).
In discrete mathematics:
Megiddo (1977).

In operations research:
Grötschel, Jünger and Reinelt (1985).
In voting theory:
Saari (1999).

Examples of Facet-defining Inequalities for $P_{\text {Lo }}^{n}$

Remember our obvious necessary conditions.

Theorem
The following affine (linear) inequalities on $\mathbb{R}^{Z \times z}$ define facets:

$$
\begin{aligned}
p_{i j} & \geq 0 & & \text { (trivial inequalities), } \\
p_{i j}+p_{j k}+p_{k i} & \leq 2 & & \text { (triangular inequalities). }
\end{aligned}
$$

A first scheme of nonobvious facets is due independently to
Cohen and Falmagne (1978, published in 1990),
Grötschel, Jünger and Reinelt (1985).

Examples of Facet-defining Inequalities for $P_{\text {LO }}^{n}$

Remember our obvious necessary conditions.
Theorem
The following affine (linear) inequalities on $\mathbb{R}^{Z \ltimes Z}$ define facets:

$$
\begin{array}{rlr}
p_{i j} & \geq 0 & \\
p_{i j}+p_{j k}+p_{k i} \leq 2 & & \text { (trivial inequalities), } \\
\text { (triangular inequalities). }
\end{array}
$$

A first scheme of nonobvious facets is due independently to
Cohen and Falmagne (1978, published in 1990),
Grötschel, Jünger and Reinelt (1985).

Examples of Facet-defining Inequalities for $P_{\text {LO }}^{n}$

Remember our obvious necessary conditions.
Theorem
The following affine (linear) inequalities on $\mathbb{R}^{Z \ltimes Z}$ define facets:

$$
\begin{array}{rlr}
p_{i j} & \geq 0 & \\
\text { (trivial inequalities), } \\
p_{i j}+p_{j k}+p_{k i} \leq 2 & & \text { (triangular inequalities). }
\end{array}
$$

A first scheme of nonobvious facets is due independently to
Cohen and Falmagne (1978, published in 1990),
Grötschel, Jünger and Reinelt (1985).

First Example of Fence Inequality

The following inequality is facet-defining:

$$
x_{a s}+x_{b t}+x_{c u}-\left(x_{a t}+x_{b s}\right)-\left(x_{a u}+x_{c s}\right)-\left(x_{b u}+x_{c t}\right) \leq 1
$$

The Fence Inequality

In general, let $X, Y \subset Z$ with

$$
\begin{aligned}
& X \cap Y=\varnothing, \\
& |X|=|Y|,
\end{aligned}
$$

$f: X \rightarrow Y$ a bijective mapping
(we keep the notation throughout).

The Fence Inequality

Definition
The fence inequality is

$$
\sum_{i \in X} x_{i f(i)}-\sum_{i, j \in X, i \neq j}\left(x_{i f(j)}+x_{j f(i)}\right) \leq 1
$$

Theorem (Cohen and Falmagne, 1978; Grötschel, Jünger and Reinelt, 1985)
For $|X| \geq 3$, the fence inequality defines a facet of the linear ordering polytope $P_{\text {LO }}^{n}$.

The Fence Inequality

Definition
The fence inequality is

$$
\sum_{i \in X} x_{i f(i)}-\sum_{i, j \in X, i \neq j}\left(x_{i f(j)}+x_{j f(i)}\right) \leq 1 .
$$

Theorem (Cohen and Falmagne, 1978; Grötschel, Jünger and Reinelt, 1985)
For $|X| \geq 3$, the fence inequality defines a facet of the linear ordering polytope $P_{\text {LO }}^{n}$.

A Structural Generalization of the Fence Inequality

Several steps:
McLennan (1990), Fishburn (1990), Koppen (1991), etc.
leading to a marvelous result by Koppen (1995).
Let $G=(V, E)$ be a (simple) graph.
The stability number $\alpha(G)$ of \boldsymbol{G} is the largest number of vertices
no two of which are adjacent.
Assume $f: X \rightarrow Y$ as before, and moreover $V=X$.

Definition
The graphical inequality of G reads

A Structural Generalization of the Fence Inequality

Several steps:
McLennan (1990), Fishburn (1990), Koppen (1991), etc.
leading to a marvelous result by Koppen (1995).
Let $G=(V, E)$ be a (simple) graph.
The stability number $\alpha(G)$ of G is the largest number of vertices no two of which are adjacent.

Assume $f: X \rightarrow Y$ as before, and moreover $V=X$.

Definition
The graphica inequality of G reads

A Structural Generalization of the Fence Inequality

Several steps:
McLennan (1990), Fishburn (1990), Koppen (1991), etc.
leading to a marvelous result by Koppen (1995).
Let $G=(V, E)$ be a (simple) graph.
The stability number $\alpha(G)$ of G is the largest number of vertices no two of which are adjacent.

Assume $f: X \rightarrow Y$ as before, and moreover $V=X$.

Definition
The graphical inequality of G reads

A Structural Generalization of the Fence Inequality

Several steps:
McLennan (1990), Fishburn (1990), Koppen (1991), etc.
leading to a marvelous result by Koppen (1995).
Let $\quad G=(V, E)$ be a (simple) graph.
The stability number $\alpha(G)$ of G is the largest number of vertices no two of which are adjacent.

Assume $f: X \rightarrow Y$ as before, and moreover $V=X$.

Definition
The graphical inequality of G reads

$$
\sum_{i \in V} x_{i, f(i)}-\sum_{\{i, j\} \in E}\left(x_{i, f(j)}+x_{j, f(i)}\right) \leq \alpha(G)
$$

A Structural Generalization of the Fence Inequality

Several steps:
McLennan (1990), Fishburn (1990), Koppen (1991), etc.
leading to a marvelous result by Koppen (1995).
Let $G=(V, E)$ be a (simple) graph.
The stability number $\alpha(G)$ of G is the largest number of vertices no two of which are adjacent.

Assume $f: X \rightarrow Y$ as before, and moreover $V=X$.

Definition
The graphical inequality of G reads

$$
\sum_{i \in V} x_{i, f(i)}-\sum_{\{i, j\} \in E}\left(x_{i, f(j)}+x_{j, f(i)}\right) \leq \alpha(G)
$$

An Example of Graphical Inequality

Example
For the graph

with the bijection
we get the inequality
$x_{a s}+x_{b t}+x_{c u}+x_{d v}$
$-\left(x_{a t}+x_{b s}\right)-\left(x_{b u}+x_{c t}\right)-\left(x_{c v}+x_{d u}\right)-\left(x_{d s}+x_{a v}\right)$

An Example of Graphical Inequality

Example
For the graph

with the bijection

$$
f: \quad a \mapsto s, \quad b \mapsto t, \quad c \mapsto u, \quad d \mapsto v
$$

we get the inequality

$x_{a s}+x_{b t}+x_{c u}+x_{d v}$

An Example of Graphical Inequality

Example
For the graph

with the bijection

$$
f: \quad a \mapsto s, \quad b \mapsto t, \quad c \mapsto u, \quad d \mapsto v
$$

we get the inequality

$$
\begin{aligned}
x_{a s} & +x_{b t}+x_{c u}+x_{d v} \\
& -\left(x_{a t}+x_{b s}\right)-\left(x_{b u}+x_{c t}\right)-\left(x_{c v}+x_{d u}\right)-\left(x_{d s}+x_{a v}\right)
\end{aligned}
$$

Main Result in Koppen (1995)

Theorem (Koppen, 1995)
The graphical inequality of G is valid for the linear ordering polytope.

It defines a facet if and only if G is
different from K_{2},
connected,
and stability critical.

[^0]
Main Result in Koppen (1995)

Theorem (Koppen, 1995)
The graphical inequality of G is valid for the linear ordering polytope.
It defines a facet if and only if G is
different from K_{2}, connected, and stability critical.

Definition
A graph is stability critical when its stability number increases whenever any of its edges is deleted.

Main Result in Koppen (1995)

Theorem (Koppen, 1995)

The graphical inequality of G is valid for the linear ordering polytope.
It defines a facet if and only if G is
different from K_{2}, connected, and stability critical.

Definition

A graph is stability critical when its stability number increases whenever any of its edges is deleted.

An Example of Stability-Critical Graph

Examples

Delete any edge:

An Example of Stability-Critical Graph

Examples

Delete any edge:

Thus: the 5 -cycle is stability critical but the 6 -cycle is not.

A Weighted Generalization of the Fence Inequality

Independently: Leung and Lee (1994), Suck (1992).

Theorem
For $|X| \geq 3$, the reinforced fence inequality

$$
\sum_{i \in X} t x_{i, f(i)}-\sum_{i, j \in X, i \neq j}\left(x_{i, f(j)}+x_{j, f(i)}\right) \leq \frac{t(t+1)}{2}
$$

defines a facet of $P_{\text {LO }}^{n}$ if and only if the constant value t satisfies

$$
1 \leq t \leq|X|-2
$$

Our Contribution (D., F. and J.)

Schematically:
fence inequality
graphical inequality of
reinforced fence inequality
a stability critical graph
(of a complete graph)

A common generalization?

Our Contribution (D., F. and J.)

Schematically:
fence inequality
graphical inequality of
reinforced fence inequality
a stability critical graph
(of a complete graph)

A common generalization?

Our Contribution (D., F. and J.)

Schematically:
fence inequality
graphical inequality of a stability critical graph
reinforced fence inequality (of a complete graph)

Our Contribution (D., F. and J.)

Schematically:
fence inequality
graphical inequality of a stability critical graph
reinforced fence inequality (of a complete graph)

A common generalization?

Preparing a General Graphical Inequality

Let (G, μ) be a weighted graph, with $G=(V, E)$ and $\mu: V \rightarrow \mathbb{Z}$.

Definition

For $S \subseteq V$, the worth (or net weight) $w(S)$ equals the total weight $\mu(S)$ minus the number of edges in S.

A subset of S is tight if it maximizes the worth.

Notation

$$
\alpha(G, \mu)=\max _{S \subseteq V} w(S) .
$$

[^1]
Preparing a General Graphical Inequality

Let (G, μ) be a weighted graph, with $G=(V, E)$ and $\mu: V \rightarrow \mathbb{Z}$.

Definition
For $S \subseteq V$, the worth (or net weight) $w(S)$ equals the total weight $\mu(S)$ minus the number of edges in S.

A subset of S is tight if it maximizes the worth.

Notation

Remark
If $\mu=\mathbf{1}$ (constant weight 1), then $\quad \alpha(G, 1)=\alpha(G)$.

Thus $\alpha(G, \mu)$ is a true generalization of $\alpha(G)$?

Preparing a General Graphical Inequality

Let (G, μ) be a weighted graph, with $G=(V, E)$ and $\mu: V \rightarrow \mathbb{Z}$.

Definition
For $S \subseteq V$, the worth (or net weight) $w(S)$ equals the total weight $\mu(S)$ minus the number of edges in S.

A subset of S is tight if it maximizes the worth.

Notation

Remark
If $\mu=\mathbf{1}$ (constant weight 1), then $a(G, 1)=\alpha(G)$.

Preparing a General Graphical Inequality

Let (G, μ) be a weighted graph, with $G=(V, E)$ and $\mu: V \rightarrow \mathbb{Z}$.

Definition
For $S \subseteq V$, the worth (or net weight) $w(S)$ equals the total weight $\mu(S)$ minus the number of edges in S.

A subset of S is tight if it maximizes the worth.

Notation

$$
\alpha(G, \mu)=\max _{S \subseteq V} w(S)
$$

Preparing a General Graphical Inequality

Let (G, μ) be a weighted graph, with $G=(V, E)$ and $\mu: V \rightarrow \mathbb{Z}$.

Definition
For $S \subseteq V$, the worth (or net weight) $w(S)$ equals the total weight $\mu(S)$ minus the number of edges in S.

A subset of S is tight if it maximizes the worth.

Notation

$$
\alpha(G, \mu)=\max _{S \subseteq V} w(S)
$$

Remark
If $\mu=\mathbf{1}$ (constant weight 1), then $\quad \alpha(G, 1)=\alpha(G)$.

Preparing a General Graphical Inequality

Let (G, μ) be a weighted graph, with $G=(V, E)$ and $\mu: V \rightarrow \mathbb{Z}$.

Definition
For $S \subseteq V$, the worth (or net weight) $w(S)$ equals the total weight $\mu(S)$ minus the number of edges in S.

A subset of S is tight if it maximizes the worth.

Notation

$$
\alpha(G, \mu)=\max _{S \subseteq V} w(S)
$$

Remark
If $\mu=\mathbf{1}$ (constant weight 1), then $\quad \alpha(G, 1)=\alpha(G)$.

Thus $\alpha(G, \mu)$ is a true generalization of $\alpha(G)$.

Examples of Tight Sets

Example

For the pentagon with $\mu=\mathbf{1}$, here are tight sets:

Remember that tight sets S maximize

$$
w(S)=\mu(S)-\|S\|
$$

Graphical Inequalities

Let (G, μ) be a weighted graph, with $G=(V, E)$ and $\mu: V \rightarrow \mathbb{Z}$.

Definition

Let $f: X \rightarrow Y$ be bijective with $X, Y \subset Z, X \cap Y=\varnothing$,
and assume $V=X$.
The graphical inequality of (G, μ) reads

[^2]
Graphical Inequalities

Let (G, μ) be a weighted graph, with $G=(V, E)$ and $\mu: V \rightarrow \mathbb{Z}$.

Definition
Let $f: X \rightarrow Y$ be bijective with $X, Y \subset Z, X \cap Y=\varnothing$, and assume $V=X$.

The graphical inequality of (G, μ) reads

Proposition
The graphical inequality is always valid for the linear ordering polytope $P_{\text {Lo }}^{Z}$.

Graphical Inequalities

Let (G, μ) be a weighted graph, with $G=(V, E)$ and $\mu: V \rightarrow \mathbb{Z}$.

Definition
Let $f: X \rightarrow Y$ be bijective with $X, Y \subset Z, X \cap Y=\varnothing$, and assume $V=X$.

The graphical inequality of (G, μ) reads

$$
\sum_{i \in V} \mu(i) x_{i, f(i)}-\sum_{\{i, j\} \in E}\left(x_{i, f(j)}+x_{j, f(i)}\right) \leq \alpha(G, \mu)
$$

Proposition
The graphical inequality is always valid for the linear ordering
polytope P_{LO}^{Z}.

Graphical Inequalities

Let (G, μ) be a weighted graph, with $G=(V, E)$ and $\mu: V \rightarrow \mathbb{Z}$.

Definition

Let $f: X \rightarrow Y$ be bijective with $X, Y \subset Z, X \cap Y=\varnothing$, and assume $V=X$.

The graphical inequality of (G, μ) reads

$$
\sum_{i \in V} \mu(i) x_{i, f(i)}-\sum_{\{i, j\} \in E}\left(x_{i, f(j)}+x_{j, f(i)}\right) \leq \alpha(G, \mu)
$$

Proposition

The graphical inequality is always valid for the linear ordering polytope P_{LO}^{Z}.

An Example of Graphical Inequality

Example
Consider $X=\{a, b, c, d\}, Y=\{s, t, u, v\}$, and the bijection

$$
f: \quad a \mapsto s, \quad b \mapsto t, \quad c \mapsto u, \quad d \mapsto v .
$$

Take the graph

Its graphical inequality is

An Example of Graphical Inequality

Example
Consider $X=\{a, b, c, d\}, Y=\{s, t, u, v\}$, and the bijection

$$
f: \quad a \mapsto s, \quad b \mapsto t, \quad c \mapsto u, \quad d \mapsto v .
$$

Take the graph

Its graphical inequality is

An Example of Graphical Inequality

Example

Consider $X=\{a, b, c, d\}, Y=\{s, t, u, v\}$, and the bijection

$$
f: \quad a \mapsto s, \quad b \mapsto t, \quad c \mapsto u, \quad d \mapsto v .
$$

Take the graph

Its graphical inequality is

$$
\begin{aligned}
& 2 x_{a s}+x_{b t}+2 x_{c u}+5 x_{d v} \\
& \quad-\left(x_{a t}+x_{b s}\right)-\left(x_{a u}+x_{c s}\right)-\left(x_{a v}+x_{d s}\right) \\
& \quad-\left(x_{b u}+x_{c t}\right)-\left(x_{c v}+x_{d u}\right)
\end{aligned}
$$

Facet-defining Graphs

Definition

A weighted graph is facet defining or a FDG if its graphical inequality defines a facet of P_{LO}^{n}.

Facet-defining Graphs

Definition

A weighted graph is facet defining or a FDG if its graphical inequality defines a facet of P_{LO}^{n}.

Examples

A Subsidiary Problem

Problem
To understand FDGs, e.g. to classify them.

Remark
FDGs incluc e connected, stability critical graphs with more than
2 vertices.

Hard (although only partial) results were obtained in classifying the latter graphs, see e.g. Lovász (1993).

A Subsidiary Problem

Problem

> To understand FDGs, e.g. to classify them.

Remark
FDGs include connected, stability critical graphs with more than 2 vertices.

Hard (although only partial) results were obtained in classifying the latter graphs, see e.g. Lovász (1993).

A Subsidiary Problem

Problem

> To understand FDGs, e.g. to classify them.

Remark
FDGs include connected, stability critical graphs with more than 2 vertices.

Hard (although only partial) results were obtained in classifying the latter graphs, see e.g. Lovász (1993).

A Subsidiary Problem

Problem

> To understand FDGs, e.g. to classify them.

Remark
FDGs include connected, stability critical graphs with more than 2 vertices.

Hard (although only partial) results were obtained in classifying the latter graphs, see e.g. Lovász (1993).
(Remark
Another weighted, generalization of stability critical graphs
(is investigated by Lipták and Lovász (2000, 2001).

A Subsidiary Problem

Problem

> To understand FDGs, e.g. to classify them.

Remark
FDGs include connected, stability critical graphs with more than 2 vertices.

Hard (although only partial) results were obtained in classifying the latter graphs, see e.g. Lovász (1993).
(Remark
Another weighted, generalization of stability critical graphs (is investigated by Lipták and Lovász (2000, 2001).

An Unsatisfactory Answer

Theorem
Let (G, μ) be a weighted graph with more than two vertices.
Then (G, μ) is a FDG
if and only if
for each nonzero valuation $\lambda: V(G) \cup E(G) \rightarrow \mathbb{Z}$ there is a tight set T of (G, μ) with

Remark
We lack a simple characterization of FDGs.

An Unsatisfactory Answer

Theorem

Let (G, μ) be a weighted graph with more than two vertices.
Then (G, μ) is a FDG
if and only if
for each nonzero valuation $\lambda: V(G) \cup E(G) \rightarrow \mathbb{Z}$ there is a tight set T of (G, μ) with

$$
\sum_{v \in T} \lambda(t)+\sum_{e \in E(T)} \lambda(e) \neq 0
$$

Remark
We lack a simple characterization of FDGs.

An Unsatisfactory Answer

Theorem

Let (G, μ) be a weighted graph with more than two vertices.
Then (G, μ) is a FDG
if and only if
for each nonzero valuation $\lambda: V(G) \cup E(G) \rightarrow \mathbb{Z}$ there is a tight set T of (G, μ) with

$$
\sum_{v \in T} \lambda(t)+\sum_{e \in E(T)} \lambda(e) \neq 0
$$

Remark
We lack a simple characterization of FDGs.

Sketch of the proof

Take $f: X \rightarrow Y$ as in the definition of the graphical inequality.
Take the restrictions to $X \times Y$ of all linear orderings L of Z.
The resulting relations from X to Y coincide with the "biorders"
from X to Y (Doignon, Ducamp and Falmagne, 1984).
The biorder polytope $P_{\text {Bio }}^{X \times Y}$ is defined in $\mathbb{R}^{X \times Y}$ (Christophe, Doignon and Fiorini, 2004).

The restriction $L \mapsto L_{X \times y}$ induces a "polytope projection"

Etc.

Sketch of the proof

Take $f: X \rightarrow Y$ as in the definition of the graphical inequality.
Take the restrictions to $X \times Y$ of all linear orderings L of Z.
The resulting relations from X to Y coincide with the "biorders" from X to Y (Doignon, Ducamp and Falmagne, 1984).

The biorder polytope $P_{\text {Bio }}^{X \times Y}$ is defined in $\mathbb{R}^{Y \times Y}$ (Christophe, Doignon and Fiorini, 2004).

The restriction $L \mapsto L_{X \times Y}$ induces a "polytope projection"

Sketch of the proof

Take $f: X \rightarrow Y$ as in the definition of the graphical inequality.
Take the restrictions to $X \times Y$ of all linear orderings L of Z.
The resulting relations from X to Y coincide with the "biorders" from X to Y (Doignon, Ducamp and Falmagne, 1984).

The biorder polytope $P_{\text {Bio }}^{X \times Y}$ is defined in $\mathbb{R}^{X \times Y}$ (Christophe,
Doignon and Fiorini, 2004).
The restriction $L \mapsto L_{X \times y}$ induces a "polytope projection"

Etc.

Sketch of the proof

Take $f: X \rightarrow Y$ as in the definition of the graphical inequality.
Take the restrictions to $X \times Y$ of all linear orderings L of Z.
The resulting relations from X to Y coincide with the "biorders" from X to Y (Doignon, Ducamp and Falmagne, 1984).

The biorder polytope $P_{\text {Bio }}^{X \times Y}$ is defined in $\mathbb{R}^{X \times Y}$ (Christophe, Doignon and Fiorini, 2004).

The restriction $L \mapsto L_{X \times Y}$ induces a "polytope projection"

Etc.

Sketch of the proof

Take $f: X \rightarrow Y$ as in the definition of the graphical inequality.
Take the restrictions to $X \times Y$ of all linear orderings L of Z.
The resulting relations from X to Y coincide with the "biorders" from X to Y (Doignon, Ducamp and Falmagne, 1984).

The biorder polytope $P_{\text {Bio }}^{X \times Y}$ is defined in $\mathbb{R}^{X \times Y}$ (Christophe, Doignon and Fiorini, 2004).

The restriction $L \mapsto L_{X \times Y}$ induces a "polytope projection"

$$
P_{\mathrm{LO}}^{n} \rightarrow P_{\text {Bio }}^{X \times Y} .
$$

Sketch of the proof

Take $f: X \rightarrow Y$ as in the definition of the graphical inequality.
Take the restrictions to $X \times Y$ of all linear orderings L of Z.
The resulting relations from X to Y coincide with the "biorders" from X to Y (Doignon, Ducamp and Falmagne, 1984).

The biorder polytope $P_{\text {Bio }}^{X \times Y}$ is defined in $\mathbb{R}^{X \times Y}$ (Christophe, Doignon and Fiorini, 2004).

The restriction $L \mapsto L_{X \times Y}$ induces a "polytope projection"

$$
P_{\mathrm{LO}}^{n} \rightarrow P_{\mathrm{Bio}}^{X \times Y}
$$

Etc.

First Results on Facet Defining Graphs

Theorem
For any $\operatorname{FDG}(G, \mu)$, the graph G is 2 -connected.

Theorem
If (G, μ) is a $F D G$, so is $(G$, deg $-\mu)$.
[Here $($ deg $-\mu)(v)=\operatorname{deg}(v)-\mu(v)]$

Thus most stability critical graphs produce two FDGs:
one with $\mu=1$, another one with $\mu=\operatorname{deg}-1$.

First Results on Facet Defining Graphs

Theorem
For any $\operatorname{FDG}(G, \mu)$, the graph G is 2-connected.

Theorem
If (G, μ) is a $F D G$, so is $(G, \operatorname{deg}-\mu)$.
[Here $(\operatorname{deg}-\mu)(v)=\operatorname{deg}(v)-\mu(v)$.

Thus most stability critical graphs produce two FDGs: one with $\mu=\mathbf{1}, \quad$ another one with $\mu=\operatorname{deg} \mathbf{- 1}$.

First Results on Facet Defining Graphs

Theorem
For any $\operatorname{FDG}(G, \mu)$, the graph G is 2-connected.

Theorem
If (G, μ) is a $F D G$, so is $(G, \operatorname{deg}-\mu)$.
[Here $(\operatorname{deg}-\mu)(v)=\operatorname{deg}(v)-\mu(v)$.]

Thus most stability critical graphs produce two FDGs: one with $\mu=\mathbf{1}, \quad$ another one with $\mu=\operatorname{deg} \mathbf{- 1}$.

First Results on Facet Defining Graphs

Theorem
For any $\operatorname{FDG}(G, \mu)$, the graph G is 2-connected.

Theorem
If (G, μ) is a $F D G$, so is $(G, \operatorname{deg}-\mu)$.
[Here $(\operatorname{deg}-\mu)(v)=\operatorname{deg}(v)-\mu(v)$.

Thus most stability critical graphs produce two FDGs: one with $\mu=\mathbf{1}, \quad$ another one with $\mu=\operatorname{deg} \mathbf{- 1}$.

Let's go back to stability critical graphs (FDGs when $\mu=\mathbf{1}$).

The Defect of Stability Critical Graphs

For any graph $G=(V, E)$ (no weight here), define its defect

$$
\delta(G)=|V|-2 \alpha(G) .
$$

Consider here a connected, stability critical graph G.
Theorem (Erdös and Gallai, 1961)

Theorem (Hajnal, 1965)
Any vertex v of G satisfies $\quad \operatorname{leg}(v) \leq \delta(G)+1$.

The Defect of Stability Critical Graphs

For any graph $G=(V, E)$ (no weight here), define its defect

$$
\delta(G)=|V|-2 \alpha(G) .
$$

Consider here a connected, stability critical graph G.
Theorem (Erdös and Gallai, 1961) $\delta(G) \geq 0$.

Theorem (Hajnal, 1965)
Any vertex v of G satisfies $\operatorname{deg}(v) \leq \delta(G)+1$.
\square

The Defect of Stability Critical Graphs

For any graph $G=(V, E)$ (no weight here), define its defect

$$
\delta(G)=|V|-2 \alpha(G) .
$$

Consider here a connected, stability critical graph G.
Theorem (Erdös and Gallai, 1961)

$$
\delta(G) \geq 0 .
$$

Theorem (Hajnal, 1965)
Any vertex v of G satisfies $\operatorname{deg}(v) \leq \delta(G)+1$.
Corollary ('I'ajnal, 1965)

\qquad

G is an odd cycle.

The Defect of Stability Critical Graphs

For any graph $G=(V, E)$ (no weight here), define its defect

$$
\delta(G)=|V|-2 \alpha(G) .
$$

Consider here a connected, stability critical graph G.
Theorem (Erdös and Gallai, 1961)

$$
\delta(G) \geq 0 .
$$

Theorem (Hajnal, 1965)
Any vertex v of G satisfies $\operatorname{deg}(v) \leq \delta(G)+1$.
Corollary (Hajnal, 1965)

The Defect of Stability Critical Graphs

For any graph $G=(V, E)$ (no weight here), define its defect

$$
\delta(G)=|V|-2 \alpha(G) .
$$

Consider here a connected, stability critical graph G.
Theorem (Erdös and Gallai, 1961)

$$
\delta(G) \geq 0 .
$$

Theorem (Hajnal, 1965)
Any vertex v of G satisfies $\operatorname{deg}(v) \leq \delta(G)+1$.
Corollary (Hajnal, 1965)

$$
\begin{aligned}
& \delta(G)=0 \quad \Longleftrightarrow \quad G=K_{2} ; \\
& \delta(G)=1 \quad \Longleftrightarrow G \text { is an odd cycle. }
\end{aligned}
$$

The Defect of Stability Critical Graphs

For any graph $G=(V, E)$ (no weight here), define its defect

$$
\delta(G)=|V|-2 \alpha(G) .
$$

Consider here a connected, stability critical graph G.
Theorem (Erdös and Gallai, 1961)

$$
\delta(G) \geq 0 .
$$

Theorem (Hajnal, 1965)
Any vertex v of G satisfies $\operatorname{deg}(v) \leq \delta(G)+1$.
Corollary (Hajnal, 1965)

$$
\begin{aligned}
& \delta(G)=0 \quad \Longleftrightarrow \quad G=K_{2} ; \\
& \delta(G)=1 \quad \Longleftrightarrow G \text { is an odd cycle. }
\end{aligned}
$$

Odd-cycles coincide with odd subdivisions of K_{3}.

Odd Subdivisions of a Graph

Definition
An odd subdivision of a graph G is obtained by replacing a number of edges of G with odd paths (of various lengthes).

Example

Theorem (Andrásfai, 1967)
The connected stahility critical graphs with defect 2 are the odd-subdivision of K_{4}.

Odd Subdivisions of a Graph

Definition
An odd subdivision of a graph G is obtained by replacing a number of edges of G with odd paths (of various lengthes).

Example

Theorem (Andrásfai, 1967)
The connected stahility critical graphs with defect 2 are the odd-subdivision of K_{4}.

Odd Subdivisions of a Graph

Definition

An odd subdivision of a graph G is obtained by replacing a number of edges of G with odd paths (of various lengthes).

Example

Theorem (Andrásfai, 1967)
The connected stability critical graphs with defect 2 are the odd-subdivision of K_{4}.

The Basis Theorem for Stability Critical Graphs

Theorem (Lovász, 1978)
For any natural number $\delta>0$, there is a finite collection \mathcal{S}_{δ} of graphs such that
G is a connected stability critical graph with $\delta(G)=\delta$
G is an odd-subdivision of some graph in \mathcal{S}_{δ}.

Examples
\mathcal{S}_{1} :

$\mathcal{S}_{2}:$

The Basis of Stability Critical Graphs with defect 3

Among the graphs in \mathcal{S}_{3}, we show only those with minimum degree 3:

There are 7 other graphs in $\mathcal{S}_{\delta} \quad$ (according to Gwen).

The Basis of Stability Critical Graphs with defect 3

Among the graphs in \mathcal{S}_{3}, we show only those with minimum degree 3 :

There are 7 other graphs in $\mathcal{S}_{\delta} \quad$ (according to Gwen).

The Defect of Facet-Defining Graphs (FDGs)

 How to define the defect of a weighted graph (G, μ) ?In our case, with $G=(V, E)$, we use

$$
\begin{aligned} \delta(G, \mu) & =\mu(V)-2 \alpha(G, \mu) . \\ \text { Notice } \quad \delta(G, 1)=\delta(G) & \text { and } \quad \delta(G, \mu)=\delta(G, \operatorname{deg}-\mu) .\end{aligned}
$$

Let (G, μ) be any FDG.

Theorem
For each vertex v of G

$$
1 \leq \operatorname{deg}(v)-\mu(v) \leq \delta(G, \mu)
$$

The Defect of Facet-Defining Graphs (FDGs)

 How to define the defect of a weighted graph (G, μ) ? In our case, with $G=(V, E)$, we use$$
\delta(G, \mu)=\mu(V)-2 \alpha(G, \mu)
$$

Let (G, μ) be any FDG.

Theorem
For each vertex v of G

$$
1 \leq \operatorname{deg}(v)-\mu(v) \leq \delta(G, \mu)
$$

The Defect of Facet-Defining Graphs (FDGs)

How to define the defect of a weighted graph (G, μ) ?
In our case, with $G=(V, E)$, we use

$$
\delta(G, \mu)=\mu(V)-2 \alpha(G, \mu) .
$$

Notice $\quad \delta(G, \mathbf{1})=\delta(G) \quad$ and $\quad \delta(G, \mu)=\delta(G, \operatorname{deg}-\mu)$.

Let (G, μ) be any FDG.

Theorem
For each vertex v of G

The Defect of Facet-Defining Graphs (FDGs)

How to define the defect of a weighted graph (G, μ) ?
In our case, with $G=(V, E)$, we use

$$
\delta(G, \mu)=\mu(V)-2 \alpha(G, \mu) .
$$

Notice $\quad \delta(G, \mathbf{1})=\delta(G) \quad$ and $\quad \delta(G, \mu)=\delta(G, \operatorname{deg}-\mu)$.

Let (G, μ) be any FDG.

Theorem
For each vertex v of G

The Defect of Facet-Defining Graphs (FDGs)

How to define the defect of a weighted graph (G, μ) ?
In our case, with $G=(V, E)$, we use

$$
\delta(G, \mu)=\mu(V)-2 \alpha(G, \mu) .
$$

Notice $\quad \delta(G, \mathbf{1})=\delta(G) \quad$ and $\quad \delta(G, \mu)=\delta(G, \operatorname{deg}-\mu)$.

Let (G, μ) be any FDG.

Theorem
For each vertex v of G

$$
1 \leq \operatorname{deg}(v)-\mu(v) \leq \delta(G, \mu) .
$$

The Defect of Facet-Defining Graphs (FDGs)

 How to define the defect of a weighted graph (G, μ) ? In our case, with $G=(V, E)$, we use$$
\delta(G, \mu)=\mu(V)-2 \alpha(G, \mu) .
$$

Notice $\quad \delta(G, \mathbf{1})=\delta(G) \quad$ and $\quad \delta(G, \mu)=\delta(G, \operatorname{deg}-\mu)$.

Let (G, μ) be any FDG.

Theorem
For each vertex v of G

$$
1 \leq \operatorname{deg}(v)-\mu(v) \leq \delta(G, \mu) .
$$

The proof is much more involved than in the case $\mu=\mathbf{1}$.

More Results on FDGs

Corollary
$\mu(v) \leq \delta(G, \mu)$.

Corollary
If $\delta(G, \mu)=1$, then $\mu=1$ and G is an odd cycle.

Theorem (Joret, next talk)
For any vertex v of an $\operatorname{FDG}(G, \mu)$:

$$
\operatorname{deg}(v) \leq 2 \delta(G, \mu)-1 .
$$

More Results on FDGs

Corollary
$\mu(v) \leq \delta(G, \mu)$.

Corollary
If $\delta(G, \mu)=1$, then $\mu=\mathbf{1}$ and G is an odd cycle.

Theorem (Joret, next talk)
For any vertex v of an FDG (G, μ):

$$
\operatorname{deg}(v) \leq 2 \delta(G, \mu)-1
$$

More Results on FDGs

Corollary
$\mu(v) \leq \delta(G, \mu)$.

Corollary
If $\delta(G, \mu)=1$, then $\mu=\mathbf{1}$ and G is an odd cycle.

Theorem (Joret, next talk)
For any vertex v of an $\operatorname{FDG}(G, \mu)$:

$$
\operatorname{deg}(v) \leq 2 \delta(G, \mu)-1
$$

Back to the Main Problem

A characterization of the binary choice probabilities?

There is little hope that a computationally simple solution exists (otherwise, $\mathrm{P}=\mathrm{NP}$).

Fiorini (2006a) has designed a way of generating "wild"
collections of facet defining inequalities.

Back to the Main Problem

A characterization of the binary choice probabilities?

There is little hope that a computationally simple solution exists (otherwise, $\mathrm{P}=\mathrm{NP}$).

Fiorini (2006a) has designed a way of generating "wild"
collections of facet defining inequalities.

Back to the Main Problem

A characterization of the binary choice probabilities?

There is little hope that a computationally simple solution exists (otherwise, $\mathrm{P}=\mathrm{NP}$).

Fiorini (2006a) has designed a way of generating "wild" collections of facet defining inequalities.

Other facet defining inequalities include

"Möbius ladders inequalities" and their wonderful extensions by Fiorini (2006b).

> Here, we have linked some facet defining inequalities with a class of weighted graphs (forthcoming paper in JMP).

The latter graphs generalize stability critical graphs. Additional results are due to Joret (2006+).

Other facet defining inequalities include
"Möbius ladders inequalities"
and their wonderful extensions by Fiorini (2006b).
Sam in Act III

> Here, we have linked some facet defining inequalities with a class of weighted graphs (forthcoming paper in JMP).

The latter graphs generalize stability critical graphs. Additional results are due to Joret (2006+).

Other facet defining inequalities include
"Möbius ladders inequalities"
and their wonderful extensions by Fiorini (2006b).
Sam in Act III

Here, we have linked some facet defining inequalities with a class of weighted graphs (forthcoming paper in JMP).

The latter graphs generalize stability critical graphs. Additional results are due to Joret (2006+).

Other facet defining inequalities include
"Möbius ladders inequalities"
and their wonderful extensions by Fiorini (2006b).
Sam in Act III

Here, we have linked some facet defining inequalities with a class of weighted graphs (forthcoming paper in JMP).

The latter graphs generalize stability critical graphs. Additional results are due to Joret (2006+).

Other facet defining inequalities include
"Möbius ladders inequalities"
and their wonderful extensions by Fiorini (2006b).
Sam in Act III

Here, we have linked some facet defining inequalities with a class of weighted graphs (forthcoming paper in JMP).

The latter graphs generalize stability critical graphs. Additional results are due to Joret (2006+).

Gwen in Act II

Other facet defining inequalities include
"Möbius ladders inequalities"
and their wonderful extensions by Fiorini (2006b).
Sam in Act III

Here, we have linked some facet defining inequalities with a class of weighted graphs (forthcoming paper in JMP).

The latter graphs generalize stability critical graphs. Additional results are due to Joret (2006+).

Gwen in Act II

Thanks for having listened to Act I !

[^0]: Definition
 A graph is stability critical when its stability number increases whenever any of its edges is deleted.

[^1]: Remark
 If $\mu=\mathbf{1}$ (constant weight 1), then $a(G, 1)=a(G)$.

[^2]: Proposition
 The araphical inequality is always valid for the linear ordering polytope P_{LO}^{Z}.

