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Binary Choice Probabilities
Take

Z some finite set of cardinality n,

Π the collection of the n! rankings or linear orderings of Z .

To each probability distribution P on Π,

we associate the

binary choice probabilities pij , for i , j ∈ Z and i 6= j ,

defined by

pij = P { i is ranked before j }

=
∑

{ P(L) : L ∈ Π and i L j } .
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Binary Choice Probabilities on {a, b, c}

Example
For

Z = {a, b, c},

Π = { abc, acb, bac, bca, cab, cba },

we have by definition

pab = P(abc) + P(acb) + P(cab),

pba = P(bac) + P(bca) + P(cba),

pac = P(abc) + P(acb) + P(bac),

pca = P(bca) + P(cab) + P(cba),

pbc = P(abc) + P(bac) + P(bca),

pcb = P(acb) + P(cab) + P(cba).
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A Question

Can the following data be produced in this way?

pab = 0.12, pba = 0.82,
pac = 0.56, pca = 0.44,
pbc = 0.75, pcb = 0.25.

More precisely: is there some probability distribution P on Π
that would give the following?

0.12 = P(abc) + P(acb) + P(cab),

0.82 = P(bac) + P(bca) + P(cba),

0.56 = P(abc) + P(acb) + P(bac),

0.44 = P(bca) + P(cab) + P(cba),

0.75 = P(abc) + P(bac) + P(bca),

0.25 = P(acb) + P(cab) + P(cba).
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Main Problem: Characterizing Binary Choice Prob.
Given real numbers pij for all i , j ∈ Z with i 6= j ,

can we find some probability distribution P on Π such that the
pij ’s are the binary choice probabilities defined by P?

More precisely:

find a necessary and sufficient condition on the pij ’s

for the existence of P.

The usual comment:

characterizing binary choice probabilities is . . .

. . . a hopeless problem!

An algorithmically tractable answer would lead to P = NP.
5
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Some Obvious Necessary Conditions

Binary choice probabilities always satisfy

pij ≥ 0,

pij + pji = 1,

pij + pjk + pki ≤ 2.

These necessary conditions are also sufficient

exactly when n ≤ 5:

Motzkin (≤ 1960); . . . (19..); Dridi (1980); . . . (19..)
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A Geometric Point of View
Vectors of binary choice probabilities p belong to RZnZ

(a space with one real coordinate for each pair (i , j) of distinct
objects).

Example
For Z = {a, b, c}, we have 6-dimensional vectors(

pab, pba, pbc , pcb, pac , pca
)
.

As we know pab + pba = 1, pac + pca = 1, pbc + pcb = 1,
we may work with only(

pab, pbc , pca
)
.

The collection of all (projected) vectors form a polyhedron in R3:
7
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The Projected Polyhedron for Z = {a, b, c}

pbc

bac abc

bca

acb

cabcba

pca

pab
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The Linear Ordering Polytope

Let n = |Z |.

The binary choice probabilities form a convex polytope in RZnZ

of dimension
n · (n − 1)

2
,

with one vertex xL per ranking L of Z :

xL
ij =

{
1 if i L j ,
0 if j L i .

This polytope is the binary choice polytope

or linear ordering polytope PZ
LO.
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Rephrasing the Main Problem

The linear ordering polytope PZ
LO has the vertices xL, for L ∈ Π;

find the facets of the linear ordering polytope PZ
LO.

And the usual comment: the problem is hopeless!

A manageable solution would give P = NP.

10



Rephrasing the Main Problem

The linear ordering polytope PZ
LO has the vertices xL, for L ∈ Π;

find the facets of the linear ordering polytope PZ
LO.

And the usual comment: the problem is hopeless!

A manageable solution would give P = NP.

10



Rephrasing the Main Problem

The linear ordering polytope PZ
LO has the vertices xL, for L ∈ Π;

find the facets of the linear ordering polytope PZ
LO.

And the usual comment: the problem is hopeless!

A manageable solution would give P = NP.

10



Origins of the Problem

In mathematical psychology/economics:

Guilbaud (1953), Block and Marschak (1960).

In discrete mathematics:

Megiddo (1977).

In operations research:

Grötschel, Jünger and Reinelt (1985).

In voting theory:

Saari (1999).
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Examples of Facet-defining Inequalities for Pn
LO

Remember our obvious necessary conditions.

Theorem
The following affine (linear) inequalities on RZnZ define facets:

pij ≥ 0 (trivial inequalities),
pij + pjk + pki ≤ 2 (triangular inequalities).

A first scheme of nonobvious facets is due independently to

Cohen and Falmagne (1978, published in 1990),

Grötschel, Jünger and Reinelt (1985).
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First Example of Fence Inequality

The following inequality is facet-defining:

xas +xbt +xcu − (xat + xbs)− (xau + xcs)− (xbu + xct) ≤ 1.

s t u

a b c
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The Fence Inequality

In general, let X , Y ⊂ Z with

X ∩ Y = ∅,

|X | = |Y |,

f : X → Y a bijective mapping

(we keep the notation throughout).

Y

f

X

14



The Fence Inequality

Definition
The fence inequality is∑

i∈X

xi f (i) −
∑

i,j∈X , i 6=j

(
xi f (j) + xj f (i)

)
≤ 1.

Theorem (Cohen and Falmagne, 1978; Grötschel, Jünger
and Reinelt, 1985)
For |X | ≥ 3, the fence inequality defines a facet of the linear
ordering polytope Pn

LO.
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A Structural Generalization of the Fence Inequality
Several steps:

McLennan (1990), Fishburn (1990), Koppen (1991), etc.

leading to a marvelous result by Koppen (1995).

Let G = (V , E) be a (simple) graph.

The stability number α(G) of G is the largest number of vertices
no two of which are adjacent.

Assume f : X → Y as before, and moreover V = X .

Definition
The graphical inequality of G reads∑

i∈V

xi,f (i) −
∑

{i,j}∈E

(xi,f (j) + xj,f (i)) ≤ α(G).
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An Example of Graphical Inequality

Example
For the graph a b

d c

with the bijection

f : a 7→ s, b 7→ t , c 7→ u, d 7→ v ,

we get the inequality

xas + xbt + xcu + xdv

− (xat + xbs)− (xbu + xct)− (xcv + xdu)− (xds + xav )

≤ 2.

s t u v

a b c d
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Main Result in Koppen (1995)

Theorem (Koppen, 1995)
The graphical inequality of G is valid for the linear ordering
polytope.

It defines a facet if and only if G is
different from K2,
connected,
and stability critical.

Definition
A graph is stability critical when its stability number increases
whenever any of its edges is deleted.

18
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An Example of Stability-Critical Graph

Examples

Delete any edge:

Thus: the 5-cycle is stability critical but the 6-cycle is not.
19
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A Weighted Generalization of the Fence Inequality

Independently: Leung and Lee (1994), Suck (1992).

Theorem
For |X | ≥ 3, the reinforced fence inequality∑

i∈X

t xi,f (i) −
∑

i,j∈X , i 6=j

(xi,f (j) + xj,f (i)) ≤ t(t + 1)

2

defines a facet of Pn
LO if and only if the constant value t satisfies

1 ≤ t ≤ |X | − 2.

20



Our Contribution (D., F. and J.)

Schematically:
fence inequality

graphical inequality of reinforced fence inequality
a stability critical graph (of a complete graph)

A common generalization?
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Preparing a General Graphical Inequality
Let (G, µ) be a weighted graph, with G = (V , E) and µ : V → Z.

Definition
For S ⊆ V , the worth (or net weight) w(S) equals the total
weight µ(S) minus the number of edges in S.

A subset of S is tight if it maximizes the worth.

Notation

α(G, µ) = max
S⊆V

w(S).

Remark
If µ = 1 (constant weight 1), then α(G, 1) = α(G).

Thus α(G, µ) is a true generalization of α(G).
22



Preparing a General Graphical Inequality
Let (G, µ) be a weighted graph, with G = (V , E) and µ : V → Z.

Definition
For S ⊆ V , the worth (or net weight) w(S) equals the total
weight µ(S) minus the number of edges in S.

A subset of S is tight if it maximizes the worth.

Notation

α(G, µ) = max
S⊆V

w(S).

Remark
If µ = 1 (constant weight 1), then α(G, 1) = α(G).

Thus α(G, µ) is a true generalization of α(G).
22



Preparing a General Graphical Inequality
Let (G, µ) be a weighted graph, with G = (V , E) and µ : V → Z.

Definition
For S ⊆ V , the worth (or net weight) w(S) equals the total
weight µ(S) minus the number of edges in S.

A subset of S is tight if it maximizes the worth.

Notation

α(G, µ) = max
S⊆V

w(S).

Remark
If µ = 1 (constant weight 1), then α(G, 1) = α(G).

Thus α(G, µ) is a true generalization of α(G).
22



Preparing a General Graphical Inequality
Let (G, µ) be a weighted graph, with G = (V , E) and µ : V → Z.

Definition
For S ⊆ V , the worth (or net weight) w(S) equals the total
weight µ(S) minus the number of edges in S.

A subset of S is tight if it maximizes the worth.

Notation

α(G, µ) = max
S⊆V

w(S).

Remark
If µ = 1 (constant weight 1), then α(G, 1) = α(G).

Thus α(G, µ) is a true generalization of α(G).
22



Preparing a General Graphical Inequality
Let (G, µ) be a weighted graph, with G = (V , E) and µ : V → Z.

Definition
For S ⊆ V , the worth (or net weight) w(S) equals the total
weight µ(S) minus the number of edges in S.

A subset of S is tight if it maximizes the worth.

Notation

α(G, µ) = max
S⊆V

w(S).

Remark
If µ = 1 (constant weight 1), then α(G, 1) = α(G).

Thus α(G, µ) is a true generalization of α(G).
22



Preparing a General Graphical Inequality
Let (G, µ) be a weighted graph, with G = (V , E) and µ : V → Z.

Definition
For S ⊆ V , the worth (or net weight) w(S) equals the total
weight µ(S) minus the number of edges in S.

A subset of S is tight if it maximizes the worth.

Notation

α(G, µ) = max
S⊆V

w(S).

Remark
If µ = 1 (constant weight 1), then α(G, 1) = α(G).

Thus α(G, µ) is a true generalization of α(G).
22



Examples of Tight Sets

Example
For the pentagon with µ = 1, here are tight sets:

Remember that tight sets S maximize

w(S) = µ(S)− ||S||.

23



Graphical Inequalities
Let (G, µ) be a weighted graph, with G = (V , E) and µ : V → Z.

Definition
Let f : X → Y be bijective with X , Y ⊂ Z , X ∩ Y = ∅,
and assume V = X .

The graphical inequality of (G, µ) reads

∑
i∈V

µ(i) xi,f (i) −
∑

{i,j}∈E

(xi,f (j) + xj,f (i)) ≤ α(G, µ).

Proposition
The graphical inequality is always valid for the linear ordering
polytope PZ

LO.
24
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An Example of Graphical Inequality

Example
Consider X = {a, b, c, d}, Y = {s, t , u, v}, and the bijection

f : a 7→ s, b 7→ t , c 7→ u, d 7→ v .

Take the graph

2 1

5 2

a b

d c

Its graphical inequality is

2 xas + xbt + 2 xcu + 5 xdv

− (xat + xbs)− (xau + xcs)− (xav + xds)

− (xbu + xct)− (xcv + xdu) ≤ 6. 25
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Facet-defining Graphs

Definition
A weighted graph is facet defining or a FDG if its graphical
inequality defines a facet of Pn

LO.

Examples
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A Subsidiary Problem

Problem

To understand FDGs, e.g. to classify them.

Remark
FDGs include connected, stability critical graphs with more than
2 vertices.

Hard (although only partial) results were obtained in classifying
the latter graphs, see e.g. Lovász (1993).

Remark
Another weighted, generalization of stability critical graphs
is investigated by Lipták and Lovász (2000, 2001).


27
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An Unsatisfactory Answer

Theorem
Let (G, µ) be a weighted graph with more than two vertices.

Then (G, µ) is a FDG

if and only if

for each nonzero valuation λ : V (G) ∪ E(G) → Z there is a
tight set T of (G, µ) with∑

v∈T

λ(t) +
∑

e∈E(T )

λ(e) 6= 0.

Remark
We lack a simple characterization of FDGs.
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Sketch of the proof

Take f : X → Y as in the definition of the graphical inequality.

Take the restrictions to X × Y of all linear orderings L of Z .

The resulting relations from X to Y coincide with the “biorders”
from X to Y (Doignon, Ducamp and Falmagne, 1984).

The biorder polytope PX×Y
Bio is defined in RX×Y (Christophe,

Doignon and Fiorini, 2004).

The restriction L 7→ L|X×Y induces a “polytope projection”

Pn
LO → PX×Y

Bio .

Etc.
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First Results on Facet Defining Graphs

Theorem
For any FDG (G, µ), the graph G is 2-connected.

Theorem
If (G, µ) is a FDG, so is (G, deg− µ).

[Here (deg− µ)(v) = deg(v)− µ(v).]

Thus most stability critical graphs produce two FDGs:

one with µ = 1, another one with µ = deg− 1.

Let’s go back to stability critical graphs (FDGs when µ = 1).

30
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The Defect of Stability Critical Graphs
For any graph G = (V , E) (no weight here), define its defect

δ(G) = |V | − 2 α(G).

Consider here a connected, stability critical graph G.

Theorem (Erdös and Gallai, 1961)
δ(G) ≥ 0.

Theorem (Hajnal, 1965)
Any vertex v of G satisfies deg(v) ≤ δ(G) + 1.

Corollary (Hajnal, 1965)
δ(G) = 0 ⇐⇒ G = K2;
δ(G) = 1 ⇐⇒ G is an odd cycle.

Odd-cycles coincide with odd subdivisions of K3.
31
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Odd Subdivisions of a Graph

Definition
An odd subdivision of a graph G is obtained by replacing a
number of edges of G with odd paths (of various lengthes).

Example
(an 11-cycle)

Theorem (Andrásfai, 1967)
The connected stability critical graphs with defect 2
are the odd-subdivision of K4.
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The Basis Theorem for Stability Critical Graphs

Theorem (Lovász, 1978)
For any natural number δ > 0, there is a finite collection Sδ of
graphs such that

G is a connected stability critical graph with δ(G) = δ
⇐⇒

G is an odd-subdivision of some graph in Sδ.

Examples
S1: S2:
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The Basis of Stability Critical Graphs with defect 3

Among the graphs in S3, we show only those with minimum
degree 3:

 

 

 

 
 

 

 

  

  

  

 

  

 

 

 

 

 

 

 

  

There are 7 other graphs in Sδ (according to Gwen).
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The Defect of Facet-Defining Graphs (FDGs)
How to define the defect of a weighted graph (G, µ) ?

In our case, with G = (V , E), we use

δ(G, µ) = µ(V ) − 2 α(G, µ).

Notice δ(G, 1) = δ(G) and δ(G, µ) = δ(G, deg− µ).

Let (G, µ) be any FDG.

Theorem
For each vertex v of G

1 ≤ deg(v)− µ(v) ≤ δ(G, µ).

The proof is much more involved than in the case µ = 1.
35
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More Results on FDGs

Corollary
µ(v) ≤ δ(G, µ).

Corollary
If δ(G, µ) = 1, then µ = 1 and G is an odd cycle.

Theorem (Joret, next talk)
For any vertex v of an FDG (G, µ):

deg(v) ≤ 2 δ(G, µ)− 1.

36



More Results on FDGs

Corollary
µ(v) ≤ δ(G, µ).

Corollary
If δ(G, µ) = 1, then µ = 1 and G is an odd cycle.

Theorem (Joret, next talk)
For any vertex v of an FDG (G, µ):

deg(v) ≤ 2 δ(G, µ)− 1.

36



More Results on FDGs

Corollary
µ(v) ≤ δ(G, µ).

Corollary
If δ(G, µ) = 1, then µ = 1 and G is an odd cycle.

Theorem (Joret, next talk)
For any vertex v of an FDG (G, µ):

deg(v) ≤ 2 δ(G, µ)− 1.

36



Back to the Main Problem

A characterization of the binary choice probabilities?

There is little hope that a computationally simple solution exists

(otherwise, P = NP).

Fiorini (2006a) has designed a way of generating “wild”

collections of facet defining inequalities.
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Other facet defining inequalities include

"Möbius ladders inequalities"

and their wonderful extensions by Fiorini (2006b).
Sam in Act III

Here, we have linked some facet defining inequalities with a
class of weighted graphs (forthcoming paper in JMP).

The latter graphs generalize stability critical graphs. Additional
results are due to Joret (2006+). Gwen in Act II

Thanks for having listened to Act I !
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