Revisiting Square Root ORAM Efficient Random Access in Multi-Party Computation

Samee Zahur Jack Doerner David Evans Xiao Wang Jonathan Katz

Mariana Raykova

Adrià Gascón

oblivc.org/sqoram

Secure multi-party computation applications

Random Access


```
void oscrypt_smix(obliv uint8_t * B, s
. . .
for (i = 0; i < N; i += 2) {
  j = integerify(X, r) \& (N - 1);
  temp = V2[j];
  xorBits(X,temp,32*r);
  oscrypt_blockmix_salsa8(X, Y, r);
  j = integerify(Y, r) \& (N - 1);
  temp = V2[j];
  for (size_t jj = 0; jj < 32 * r; j
   Y[jj] ^= temp[jj];
```

Hiding access pattern

Linear scan

Oblivious RAM

Access every element Per-access cost: $\Theta(n)$ Continually shuffle elements around Per-access cost: $\Theta(\log^p n)$

Linear scan

Figure from: Wang, Chan, Shi. Circuit Oram. CCS'15

Approach: revisit old schemes

Classic "square root" scheme by Goldreich and Ostrovsky (1996).

Considered slow for MPC because of per-access hash evaluation.

Per-access amortized cost: $\Theta(\sqrt{n} \log n)$

Four-element ORAM

Larger Sizes

4-Block ORAM

Cost: 5B + B + 2B + 3B + ...

= 11*B* every 3 accesses

Comparison

Cost: 4B = 12B/3

Cost: 11*B*/3

Four-element ORAM

Larger Sizes

Position map

Keeping position map updated

Position map

Keeping position map updated

Position map

Rinse and repeat

- 1. Shuffle elements
- 2. Recreate position map
- 3. Service $T = \sqrt{n \log n}$ accesses

Creating position map

Creating position map

Inverse permutation

Inverse permutation

Rinse and repeat

- 1. Shuffle elements
- 2. Recreate position map at $\Theta(n \log n)$
- 3. Service $T = \sqrt{n \log n}$ accesses

Access time

Initialization cost

Benchmarks

Task	Parameters	Linear scan	Circuit ORAM	Square-root ORAM
Binary search	2 ¹⁰ searches 2 ¹⁵ elements	1020 s	5041 s	825 s
Breadth-first search	2 ¹⁰ vertices 2 ¹³ edges	4570 s	3750 s	680 s
Stable matching	2 ⁹ pairs	-	189000 s	119000 s
scrypt hashing	$N = 2^{14}$	≈ 7 days	2850 s	1920 s

Conclusion

We revisited a well-known scheme and used it to

- Lower initialization cost
- Improve breakeven point

Shows that asymptotic costs are not the final word, concrete costs require more consideration.

Download

oblivc.org/sqoram

Contact for help: Samee Zahur <<u>samee@virginia.edu</u>>