Stronger Public Key Encryption Schemes Withstanding RAM Scraper Like Attacks

Prof. C.Pandu Rangan

Professor, Indian Institute of Technology - Madras, Chennai, India-600036.

E N 4 E N

Adaptive Chosen Ciphertext Attack (CCA2)

- Setup Challenger C runs $(sk, pk) \leftarrow \text{KeyGen}(\kappa)$.
- Query Phase I Adversary \mathcal{A} is given access to $\mathcal{O}_{\text{Enc}_{pk}(.)}$ and $\mathcal{O}_{\text{Dec}_{sk}(.)}$.
- Challenge Phase A produces two messages m₀ and m₁ to C. C chooses b ∈_R {0,1} and returns the challenge ciphertext c* = Enc_{pk}(m_b).
- Query Phase II Same as Query Phase I, except that \mathcal{A} cannot query the decryption of c^* .
- **Guess** \mathcal{A} outputs b'.

We define the advantage of an adversary in the IND-CCA2 security game to be

$$Adv_{Adversary} = |2Pr[b' = b] - 1|$$

We say that an encryption scheme is IND-CCA2 secure if for any polynomial time adversary,

$$\mathsf{Adv}_{\mathsf{Adversary}} = \mathsf{negl}(\kappa)$$

- 4 週 ト - 4 ヨ ト - 4 ヨ ト - -

Motivation for the NEW Security Model

3

・ 戸 ト ・ ヨ ト ・ ヨ ト

- *RAM Scraper* is a piece of malware.
- It grabs data residing in a systems volatile memory.
- Added to the list of **Top Data Breach Attacks by Verizon Business**.
- In one instance the RAM scraper dumped the card data to a .dll in a Windows system subdirectory.
- It waited for retrieval by the scraper's owners. [From InfoSec News Attack of the RAM Scrapers, By Keith Ferrell]

Hybrid Computing Environment Using TPM

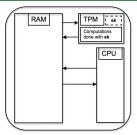


Figure: System with a TPM

- The private key of a user will be stored in TPM.
- The computations involving private keys will be carried out in TPM.
- The private key values will not be *moved to* the RAM.
- Some of the values generated by TPM may be sent to RAM
- All values in the RAM are available to the Adversary. (Values generated in untrusted environment as well as the values sent by TPM to RAM)
- This scenario can be modelled exactly with Glass Box decryption.

The NEW Security Model

3

・ 戸 ト ・ ヨ ト ・ ヨ ト

CCA2 Security Under Glass box Decryption

- **Setup** Challenger C runs $(sk, pk) \leftarrow \text{KeyGen}(\kappa)$.
- Query Phase I Adversary \mathcal{A} is given access to $\mathcal{O}_{\text{Enc}_{pk}(.)}$ and $\mathcal{O}_{\text{GlassBoxDec}_{sk}(.)}$.
- Challenge Phase A produces two messages m₀ and m₁ to C. C chooses b ∈_R {0,1} and returns the challenge ciphertext c* = Enc_{pk}(m_b).
- **Query Phase II** Same as Query Phase I, except that A cannot query the Glass Box Decryption of c^* .
- **Guess** \mathcal{A} outputs b'.

We define the advantage of an adversary in the IND-CCA2 security game to be

$$Adv_{\mathcal{A}} = |2Pr[b' = b] - 1|$$

We say that an encryption scheme is IND-CCA2 secure under glass box decryption, if for any polynomial time adversary,

$$\mathsf{Adv}_{\mathcal{A}} = \mathsf{negl}(\kappa)$$

イロト 不得下 イヨト イヨト

Intuition Behind Glass Box Decryption Scheme

Usual flow in Decryption:

- Use the private key to retrieve some values from the ciphertext.
- Verify the validity of the constructed plaintext.
- The decryption oracle returns either the constructed value or NULL.

Decryption supporting Glass Box:

- Verify the validity of ciphertext.
- If valid, retrieve the potential plaintext, else "ABORT".
- If the potential plaintext passes some validity test, return the same, else "ABORT".

Remark

If we do this way, it allows a convenient partitioning of computations between trusted and untrusted parts of the system

Keeping this in mind we design a new scheme.

Glass box Vulnerability in an Implementation of Cramer Shoup (CS) Cryptosystem

The Cramer-Shoup encryption scheme

- CS.Gen: The private key and public key of a user are $sk = (x_1, x_2, y_1, y_2, z_1, z_2)$ and public key $pk = (g_1, g_2, c, d, h)$, where $c = g_1^{x_1} g_2^{x_2}$, $d = g_1^{y_1} g_2^{y_2}$ and $h = g_1^{z_1} g_2^{z_2}$.
- CS.Enc: Compute $u_1 = g_1^r$, $u_2 = g_2^r$, $e = h^r m$, $\alpha = H(u_1, u_2, e)$ and $v = c^r d^{r\alpha}$. $C = \langle u_1, u_2, e, v \rangle$.
- CS.Dec: We do not perform any computation which involves the secret key outside the TPM in the implementation. Still we are able to mount glass box attack on the implementation. On receiving a ciphertext $C = \langle u_1, u_2, e, v \rangle$ decryption is done as follows:

イロト イポト イヨト イヨト 二日

Conventional System:

- Compute $\alpha = H(u_1, u_2, e)$.
- Compute $V = u_1^{x_1} u_2^{x_2} (u_1^{y_1} u_2^{y_2})^{\alpha}$.
- If (v = V) then,
 - Compute $Z = u_1^{z_1} u_2^{z_2}$.
 - Compute m = e/Z
 - Return *m*.

Else ABORT

Hybrid System:

- NC: Compute $\alpha = H(u_1, u_2, e)$.
- RAM \rightarrow TPM: $\langle \alpha, u_1, u_2 \rangle$
- SC: Compute $V = u_1^{x_1} u_2^{x_2} (u_1^{y_1} u_2^{y_2})^{\alpha}.$
- TPM \rightarrow RAM: V
- NC: If (v = V) then,
 - SC: Compute $Z = u_1^{z_1} u_2^{z_2}$.
 - ► TPM→RAM: Z
 - ▶ NC: Compute m = e/Z and return m.

イロト イポト イヨト イヨト

Else ABORT

- Consider the glass box execution of Decryption oracle on a ciphertext (u_1, u_2, e, v) ,
- (a) Since all these are inputs, they are visible/available to the adversary.
- (b) In the evaluation of the expression $\alpha = H(u_1, u_2, e)$ all values will be available to the adversary.
- (c) The expression $V = u_1^{x_1} u_2^{x_2} (u_1^{y_1} u_2^{y_2})^{\alpha}$ is evaluated using the TPM because this involves secret keys x_1, x_2, y_1, y_2 .
- (d) Thus, u_1 , u_2 and α are sent to the TPM and $V = u_1^{x_1} u_2^{x_2} (u_1^{y_1} u_2^{y_2})^{\alpha}$ is sent to the normal world. Thus the adversary gets V.
- (e) The check $(v \stackrel{?}{=} V)$ is done outside the TPM. If this fails the adversary gets no further values. If (v = V) is true, then $Z = u_1^{z_1} u_2^{z_2}$ is computed in TPM and Z is sent out. Now, the adversary obtains the values Z and m = e/Z as well.

(f) Therefore, the set \mathcal{I} of values returned by decryption oracle is given by $\mathcal{I} = \langle \alpha, V, -, - \rangle$ if the test fails and $\mathcal{I} = \langle \alpha, V, Z, m \rangle$ when the test succeeds.

The idea behind the attack is:

- Use the training in Phase II of CCA2 game to obtain the values $\langle u_1^{*x_1}, u_2^{*x_2}, u_1^{*y_1}, u_2^{*y_2} \rangle$.
- Use the above values to construct a valid ciphertext for $\hat{m}m_{\delta}$, where \hat{m} is chosen by the adversary.
- Pass this to decryption oracle, obtain $\hat{m}m_{\delta}$, from which obtain m_{δ} .

We will show how an adversary distinguishes the challenge ciphertext.

- During the challenge phase \mathcal{A} selects two messages $\{m_0, m_1\}$ and sends them to \mathcal{C} .
- Now, C constructs the challenge ciphertext C^* as $C^* = \langle u_1^*, u_2^*, e^*, v^* \rangle = \langle u_1, u_2, (u_1)^{z_1} (u_2)^{z_2} m_{\delta}, (u_1)^{x_1} (u_2)^{x_2}$ $((u_1)^{y_1} (u_2)^{y_2})^{\alpha} \rangle$, where δ is a random bit $\in \{0, 1\}$ and $\alpha = H(u_1^*, u_2^*, e^*)$.
- The challenger sends C^* to \mathcal{A} and asks him to find the m_{δ} hidden in C^* .

In the second phase of the training C must respond to all legal queries raised by A. This is what A asks to find m_{δ} .

- \mathcal{A} chooses $s_1 \in_R \mathbb{Z}_q^*$ and constructs a ciphertext $C' = \langle u'_1, u'_2, e', v' \rangle = \langle (u_1^*)^{s_1}, (u_2^*)^{s_1}, e^*, v^* \rangle$, where u_1^* and u_2^* are the first two components of C^* . In other words C' is nothing but C^* with the first two components, namely u_1^* and u_2^* exponentiated with s_1 .
- Now, A queries Glass-Box-Dec(C'). Note that it is legal to ask the decryption of C'.
- As C knows all the private keys, it would faithfully execute the CS.Dec on C'.
- C will reject the ciphertext C' because $v' \neq (u'_1)^{x_1}(u'_2)^{x_2}((u'_1)^{y_1}(u'_2)^{y_2})^{\alpha_1}$.

・ 伺 ト ・ ヨ ト ・ ヨ ト …

- Now, $\mathcal{I} = \langle \alpha_1, V_1, Z, m \rangle$ = $\langle H(u'_1, u'_2, e'), (u_1^*)^{s_1 \times 1} (u_2^*)^{s_1 \times 2} ((u_1^*)^{s_1 y_1} (u_2^*)^{s_1 y_2})^{\alpha_1}, -, - \rangle$
- Similarly, \mathcal{A} constructs another ciphertext C'' by choosing $s_2 \in_R \mathbb{Z}_q^*$, computing $u_1'' = (u_1^*)^{s_2}$, $u_2'' = (u_2^*)^{s_2}$, $e'' = e^*$ and $v'' = v^*$. The newly formed ciphertext is $C'' = \langle u_1'', u_2'', e'', v'' \rangle \mathcal{A}$ queries Glass-Box-Dec(C'').
- C will reject C'' because it is invalid.
- Here, $\mathcal{I} = \langle \alpha_2, V_2, Z, m \rangle$ = $\langle H(u_1'', u_2'', e''), (u_1^*)^{s_2 x_1} (u_2^*)^{s_2 x_2} ((u_1^*)^{s_2 y_1} (u_2^*)^{s_2 y_2})^{\alpha_2}, -, - \rangle$

・ 同 ト ・ ヨ ト ・ ヨ ト …

We will now show that with the values V_1 and V_2 , A performs the following and obtains m_{δ} :

- Computes $X_1 = V_1^{s_1^{-1}} = (u_1^*)^{x_1}(u_2^*)^{x_2}((u_1^*)^{y_1}(u_2^*)^{y_2})^{\alpha_1}$ and $X_2 = V_2^{s_2^{-1}} = (u_1^*)^{x_1}(u_2^*)^{x_2}((u_1^*)^{y_1}(u_2^*)^{y_2})^{\alpha_2}.$
- Computes $Y = \frac{X_1}{X_2} = ((u_1^*)^{y_1}(u_2^*)^{y_2})^{\alpha_1 \alpha_2}.$
- Computes $Z_2 = Y^{(\alpha_1 \alpha_2)^{-1}} = (u_1^*)^{y_1} (u_2^*)^{y_2}$.

• Computes
$$Z_1 = \frac{X_1}{Z_2^{\alpha_1}} = (u_1^*)^{x_1} (u_2^*)^{x_2}$$
.

• Generates a fresh ciphertext by computing $\hat{u}_1 = u_1^*$, $\hat{u}_2 = u_2^*$, $e = e^*\hat{m}$ and $\hat{v} = Z_1 Z_2^{\hat{\alpha}}$, where \hat{m} is an arbitrary message chosen by \mathcal{A} and $\hat{\alpha} = \mathcal{H}(\hat{u}_1, \hat{u}_2, e)$.

- Now, $\hat{C} = \langle \hat{u}_1, \hat{u}_2, e, \hat{v} \rangle$ is a valid encryption on message $m_{\delta}\hat{m}$ and different from C^* . Thus \mathcal{A} can legally query Glass-Box-Dec (\hat{C}) .
- C returns $(u_1^*)^{x_1}(u_2^*)^{x_2}((u_1^*)^{y_1}(u_2^*)^{y_2})^{\hat{\alpha}}$ and $m_{\delta}\hat{m}$ as the output.
- Since A knows the value \hat{m} , A can easily obtain the message m_{δ} from $(m_{\delta}\hat{m})$.
- Thus, \mathcal{A} identifies the bit δ almost always.

Lemma

The ciphertext $\hat{C} = \langle \hat{u}_1, \hat{u}_2, e, \hat{v} \rangle$ is a valid ciphertext and the glass box decryption returns $\mathcal{I} = \langle \hat{\alpha}, V, Z, m \rangle = \langle \hat{\alpha}, (u_1^*)^{x_1} (u_2^*)^{x_2} ((u_1^*)^{y_1} (u_2^*)^{y_2})^{\hat{\alpha}}, \hat{u}_1^{z_1} \hat{u}_2^{z_2}, m_\delta \hat{m} \rangle$ as the output.

Proof: The ciphertext $\hat{C} = \langle \hat{u}_1, \hat{u}_2, e, \hat{v} \rangle = \langle u_1^*, u_2^*, e^* \hat{m}, Z_1 Z_2^{\hat{\alpha}} \rangle$. C checks whether \hat{C} is valid by performing the check $\hat{v} \stackrel{?}{=} (\hat{u}_1)^{x_1} (\hat{u}_2)^{x_2}$ $((\hat{u}_1)^{y_1} (\hat{u}_2)^{y_2})^{\hat{\alpha}}$, where $\hat{\alpha} = H(\hat{u}_1, \hat{u}_2, e)$. Below we show that \hat{C} passes this verification:

$$RHS = (\hat{u}_1)^{x_1} (\hat{u}_2)^{x_2} ((\hat{u}_1)^{y_1} (\hat{u}_2)^{y_2})^{\hat{\alpha}} = (u_1^*)^{x_1} (u_2^*)^{x_2} ((u_1^*)^{y_1} (u_2^*)^{y_2})^{\hat{\alpha}} = Z_1 (Z_2)^{\hat{\alpha}} = \hat{v} = LHS$$

Since the above check returns true, C performs the decryption by computing $e/(\hat{u}_1)^{z_1}(\hat{u}_2)^{z_2}$. We show that this computation outputs $\hat{m}m_{\delta_{\infty,\infty}}$

$$RHS = (\hat{u}_1)^{x_1} (\hat{u}_2)^{x_2} ((\hat{u}_1)^{y_1} (\hat{u}_2)^{y_2})^{\hat{\alpha}} = (u_1^*)^{x_1} (u_2^*)^{x_2} ((u_1^*)^{y_1} (u_2^*)^{y_2})^{\hat{\alpha}} = Z_1 (Z_2)^{\hat{\alpha}} = \hat{v} = LHS$$

Since the above check returns true, C performs the decryption by computing $e/(\hat{u}_1)^{z_1}(\hat{u}_2)^{z_2}$. We show that this computation outputs $\hat{m}m_{\delta}$:

$$\frac{e}{(\hat{u}_1)^{z_1}(\hat{u}_2)^{z_2}} = \frac{e^*\hat{m}}{(\hat{u}_1)^{z_1}(\hat{u}_2)^{z_2}} = \frac{(u_1)^{z_1}(u_2)^{z_2}m_\delta\hat{m}}{(\hat{u}_1)^{z_1}(\hat{u}_2)^{z_2}} = \frac{(u_1^*)^{z_1}(u_2^*)^{z_2}m_\delta\hat{m}}{(u_1^*)^{z_1}(u_2^*)^{z_2}} = m_\delta\hat{m}$$

Since $u_1^* = \hat{u}_1 = u_1$ and $u_2^* = \hat{u}_2 = u_2$

Remark:

Notice that only one step is computed outside TPM but the value exposed due to that is sufficient for the adversary to break the system.

イロト イポト イヨト イヨト

A Scheme in the Standard Model EncryptI^{GB}

(4 回 ト 4 ヨ ト 4 ヨ ト

${\tt EncryptI^{GB}}$

• Gen^{GB}: Key Generation Algorithm

Let \mathbb{G}_1 and \mathbb{G}_2 be groups with prime order q. Let $\hat{e} : \mathbb{G}_1 \times \mathbb{G}_1 \to \mathbb{G}_2$ be an admissible bilinear pairing.

Hash functions:

•
$$H_1: \mathbb{G}_2 \to \{0,1\}^{I_m}$$

▶ $H_2: \mathbb{G}_1 \times \{0,1\}^{l_m} \to \mathbb{Z}_q^*$, where l_m is the size of the message

•
$$H_3: \mathbb{G}_1 \to \mathbb{Z}_q^*$$

User Keys:

- Choose $x, s \in_R \mathbb{Z}_q$ and $P, Q, Y, Z \in_R \mathbb{G}_1$.
- Compute $X = xP \in \mathbb{G}_1$.
- Compute $\alpha = \hat{e}(P, Q)^s \in \mathbb{G}_2$.

The private key $\mathbf{sk} = \langle x, s \rangle \in \mathbb{Z}_q^2$.

The public key $\mathbf{pk} = \langle P, Q, X, Y, Z, \alpha \rangle \in \mathbb{G}_1^5 \times \mathbb{G}_2$.

(4 回) (4 回) (4 回)

$EncryptI^{GB}$

Enc^{GB}: Encryption Algorithm

- Choose $r, t \in_R \mathbb{Z}_q$
- Compute $C_1 = rP$
- Compute $C_2 = m \oplus H_1(lpha^r)$
- Compute $\hat{h} = H_2(C_1, C_2)$
- Compute $h = H_3(r(\hat{h}P + tX))$
- Compute $C_3 = r(hY + Z)$.
- Set $C_4 = t$.
- The ciphertext is $C = \langle C_1, C_2, C_3, C_4 \rangle.$

 $\frac{\text{Dec}^{\text{GB}}: \text{ Decryption Algorithm}}{\text{Decryption of } C = \langle C_1, C_2, C_3, C_4 \rangle} \text{ in Conventional Environment:}$

- Compute $\hat{h} = H_2(C_1, C_2)$
- Compute $U = \hat{h}C_1$
- Compute $V = C_4 x C_1$
- Compute $h = H_3(U + V)$
- If $\hat{e}(C_3, P) \stackrel{?}{=} \hat{e}(hY + Z, C_1)$
 - Compute $W = \hat{e}(C_1, Q)^s$)

・ロト ・四ト ・ヨト ・ヨト

• Compute $m = C_2 \oplus H_1(W)$

Else

ABORT

EncryptI^{GB}

<u>Dec^{GB}</u> Decryption of $C = \langle C_1, C_2, C_3, C_4 \rangle$ in Hybrid Environment:

- NC: Compute $\hat{h} = H_2(C_1, C_2)$ and $U = \hat{h}C_1$
- RAM \rightarrow TPM: $\langle C_1, C_4 \rangle$
- **SC**: Compute $V = C_4 x C_1$
- TPM \rightarrow RAM: V
- NC: Calculate $h = H_3(U + V)$.
- NC: Check if $e(C_3, P) \stackrel{?}{=} e(hY + Z, C_1)$ If *true* then
 - ► NC: Compute e(C₁, Q)
 - RAM \rightarrow TPM: $e(C_1, Q)$
 - ► SC: Compute e(C₁, Q)^s
 - TPM \rightarrow RAM: $e(C_1, Q)^s$
 - **NC**: Compute $H_1(e(C_1, Q)^s)$
 - **NC**: Compute $m = C_2 \oplus H_1(e(C_1, Q)^s)$

else ABORT.

A glass box decryption oracle exposes all the values computed and used in the NC, $\mathcal{I} = \langle \hat{h}, U, V, h, e(C_1, Q) \rangle, e(C_1, Q) \rangle^s, H_1(e(C_1, Q)^s), m \rangle$ to the adversary.

C.Pandu Rangan (IIT Madras)

$\texttt{EncryptI}^{\texttt{GB}}$

Proof of Correctness: To show that the decryption works properly, we have to show that:

$$C_1 = rP \tag{1}$$

With respect to the same r,

$$C_3 = r(hY + Z) \tag{2}$$

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Hence it should be true that,

$$\hat{e}(C_3, P) \stackrel{?}{=} \hat{e}(hY + Z, C_1) \tag{3}$$

This proves the second assertion. Now,

C.Pandu Rangan (IIT Madras)

25 / 40

Proof of Correctness Contd...:

$$U + V = \hat{h}C_1 + C_4 x C_1 = \hat{h}rP + txrP = r(\hat{h}P + txP) = r(\hat{h}P + tX)$$

Thus,

$$U + V = r(\hat{h}P + tX) \tag{4}$$

- This shows that h = H₃(U + V) correctly recovers the h computed in the encryption algorithm.
- This proves the first claim.

For the third claim, we note that $\hat{e}(C_1, Q)^s = \hat{e}(rP, Q)^s = [\hat{e}(P, Q)^s]^r = \alpha^r$, Therefore,

$$\hat{e}(C_1, Q)^s = \alpha^r \tag{5}$$

This completes the proof that the decryption correctly recovers the message.

C.Pandu Rangan (IIT Madras)

Proof for the security of $\texttt{EncryptI}^{\texttt{GB}}$

Theorem

The encryption scheme EncryptI^{GB} is adaptive chosen ciphertext secure under glass box decryption if the DBDH Problem is hard to solve in polynomial time.

Definition

Decisional Bilinear Diffie Hellman Problem - DBDHP: Given $(R, aR, bR, cR) \in_R \mathbb{G}_1^4, \gamma \in_R \mathbb{G}_2$, the DBDHP in $\langle \mathbb{G}_1, \mathbb{G}_2 \rangle$ is to decide whether $\gamma \stackrel{?}{=} \hat{e}(R, R)^{abc}$.

The advantage of an adversary $\mathcal A$ in solving the DBDH problem is.

$$\mathsf{Adv}^{\mathsf{DBDH}}_{\mathcal{A}} = |\mathsf{Pr}[\mathcal{A}(\mathsf{R},\mathsf{aR},\mathsf{bR},\mathsf{cR},\hat{e}(\mathsf{R},\mathsf{R})^{\mathsf{abc}}) = 1] - \mathsf{Pr}[\mathcal{A}(\mathsf{R},\mathsf{aR},\mathsf{bR},\mathsf{cR},\gamma) = 1]|$$

The DBDH Assumption is that, for any probabilistic polynomial time algorithm \mathcal{A} , the advantage $Adv_{\mathcal{A}}^{DBDH}$ is negligibly small.

イロト 不得下 イヨト イヨト

Setup: \mathcal{C} sets up a system as follows:

Set

$$P = R \tag{6}$$

Set

$$Q = bR \tag{7}$$

Set

$$\alpha = \hat{e}(aR, bR) \tag{8}$$

Therefore, $\alpha = \hat{e}(aR, bR) = \hat{e}(R, bR)^a = \hat{e}(P, Q)^a$

Thus, the second component of the private key denoted as s, is in fact a (implicitly). C does not know the value of a. Now, choose $x \in_R \mathbb{Z}_q$ and set

$$X = xP \tag{9}$$

This fixes the first component of the private key. Thus the private keys are $\langle x, s = a \rangle$ and C knows x but does not know s.

C.Pandu Rangan (IIT Madras)

Setup - Contd...:

 \mathcal{C} chooses $\tilde{h}, y, \tilde{z} \in_{\mathcal{R}} \mathbb{Z}_q$ and computes

$$\beta = \tilde{h}(cP) \tag{10}$$

$$h^* = H_3(\beta) \tag{11}$$

$$Y = \frac{1}{h^*}(Q + yP) \tag{12}$$

$$Z = -Q + \tilde{z}P \tag{13}$$

The public keys are $\langle P, Q, X, Y, Z, \alpha \rangle$ and the private keys are $\langle x, s = a \rangle$

Phase I:

 $\frac{\mathcal{O}_{Glass-Box-Dec} \text{ } Oracle:}{\text{the following way:}} C \text{ decrypts the ciphertext } C = \langle C_1, C_2, C_3, C_4 \rangle \text{ in }$

• Computes

$$\hat{h} = H_2(C_1, C_2)$$
 (14)
 $U = \hat{h}C_1$ (15)

• Since, C knows the private key x, C can also compute

$$V = C_4 \times C_1 \tag{16}$$

• Since the values of U and V are correct, C computes correctly

$$h = H_3(U+V) \tag{17}$$

• Note that H_3 is a target collision resistant hash function and if $(h = h^*)$, abort. Since the Y and Z values are public C computes correctly the value.

$$hY + Z \tag{18}$$

Phase I - Contd...:

- So far, C could compute and return to A the values $\langle \hat{h}, U, V, h, hY + Z \rangle$.
- If $\hat{e}(C_3, P) \stackrel{?}{=} \hat{e}(hY + Z, C_1)$ passes, C must return the value $\hat{e}(C_1, Q)^s$ as well to A,
- \mathcal{C} does not know the value of s.
- \mathcal{C} has to simulate this value. Since P is a generator,

$$C_1 = rP$$
, for some $r \in \mathbb{Z}_q$ (19)

• Since $\hat{e}(C_3, P) = \hat{e}(hY + Z, C_1)$ it follows that

$$C_3 = r(hY + Z) \tag{20}$$

For the same r defined in equation (19).

• Now,

$$\hat{e}(C_1, Q)^s = \hat{e}(rP, Q)^s = \hat{e}(P, Q)^{rs}$$

= $\hat{e}(sP, Q)^r = \hat{e}(aP, rQ)$, Since $(s = a)$

Phase I - Contd...:

- C knows the value of aP = aR and value of Q.
- C does not know the value of r.
- Hence, C will compute the value of rQ indirectly. From equations (12), (13) and (20),

$$C_{3} = r(hY + Z)$$

= $r\left(\frac{h}{h^{*}}(Q + yP) - Q + \tilde{z}P\right)$
= $\left(\frac{h}{h^{*}} - 1\right)rQ + \left(\frac{h}{h^{*}}y + \tilde{z}\right)rP$ (Since $h \neq h^{*}$)

Rearranging, we obtain

$$rQ = \left(\frac{h}{h^*} - 1\right)^{-1} \left[C_3 - \left(\frac{h}{h^*}y + \tilde{z}\right)C_1\right]$$
(21)

Phase I - Contd...:

- Observe that all values in the RHS of equation (21) is available to C.
- Hence rQ can be computed using equation (21).
- Thus, ê(C₁, Q)^s = ê(aP, rQ) can be computed even without knowing s.
- \bullet Hence, the glass box decryption queries can be perfectly answered by $\mathcal{C}.$
- That is $\mathcal C$ can give perfect training to $\mathcal A$.

Challenge Ciphertext Generation: A gives C two messages m_0, m_1 of equal length. C^* is computed as follows:

Set

$$C_1^* = cR = cP \tag{22}$$

Where, cR is the input to the hard problem.

Compute

$$C_2^* = m_\delta \oplus H_1(\gamma) \tag{23}$$

Here, $\delta \in \{0,1\}$ is a random bit and γ is an input to the hard problem • Compute

$$C_3^* = y C_1^* + \tilde{z} C_1^* \tag{24}$$

Compute

$$C_4^* = (\tilde{h} - \hat{h})x^{-1}$$
 (25)

Where, $\hat{h} = H_2(C_1^*, C_2^*)$ and \tilde{h} was chosen by C at setup time. x is one of the private keys known to C.

• The challenge ciphertext $C^* = \langle C_1^*, C_2^*, C_3^*, C_4^* \rangle$ is send to \mathcal{A} .

Challenge Ciphertext Generation - Contd...:

Lemma

The challenge ciphertext $C^* = \langle C_1^*, C_2^*, C_3^*, C_4^* \rangle$ is a valid and properly formed ciphertext.

Proof: Since $C_1^* = cP$, we should show that

$$C_3^* = c(hY + Z) \tag{26}$$

Where, $h = H_3(c(\hat{h}P + tX))$ and $C_4^* = t = (\tilde{h} - \hat{h})x^{-1}$ Now,

$$c(\hat{h}P + tX) = c(\hat{h}P + C_4^*X)$$

= $c(\hat{h}P + (\tilde{h} - \hat{h})x^{-1}xP)$ (From equation (25)
= $c(\hat{h}P - \hat{h}P + \tilde{h}P)$
= $\tilde{h}(cP) = \beta$ (From equation (10))

Therefore,

$$h = H_3(c(\hat{h}P + tX)) = H_3(\beta) = h^*$$
 (27)

Proof for the security of $EncryptI^{GB}$

Challenge Ciphertext Generation - Contd...:

- From equations (24) and (27), we conclude that C^* is valid / consistent ciphertext, if $C_3^* = c(h^*Y + Z)$.
- C_3^* was computed as $yC_1^* + \tilde{z}C_1^*$ in equation (24).
- Thus we have to show that:

$$c(h^*Y + Z) = yC_1^* + \tilde{z}C_1^*$$
 (28)

In fact,

$$\begin{aligned} c(h^*Y + Z) &= c[Q + yP - Q + \tilde{z}P] \text{ (From equations (12) and (13))} \\ &= y(cP) + \tilde{z}(cP) \\ &= yC_1^* + \tilde{z}C_1^* \end{aligned}$$

• This proves that $C^* = \langle C_1^*, C_2^*, C_3^*, C_4^* \rangle$ is a valid / consistent ciphertext.

Phase II: Same as Phase I.

Solving the DBDH Problem:

- The hard problem instance is $\langle R, aR, bR, cR, \gamma \rangle$.
- C has set P = R, Q = bR and $\alpha = e(a\hat{R}, bR) = \hat{e}(P, Q)^s$.
- In C^* , $C_1^* = cR = rP$ and $C_2^* = m_{\delta \oplus H_2(\gamma)}$.
- If m_{δ} were correctly identified by \mathcal{A} , then implicitly, by the collision resistant property of H_2 ,

$$\begin{aligned} \gamma &= \alpha^r \\ &= \alpha^c \\ &= \hat{e}(P, Q)^{ac} \\ &= \hat{e}(R, bR)^{ac} \\ &= \hat{e}(R, R)^{abc} \end{aligned}$$

Conclusion

Summary:

- We have given a new, strong security model for public key encryption.
- Designed a scheme to withstand the RAM scraper attack and proved the security of the schemes in the Standard Model respectively.

Future Work:

- Establishing the relationship between CCA2 and the new security notion.
- Investigating the security of other primitives like signature and signcryption schemes in the presence of harmful RAM scrapers.
- Constructing a generic transformation that converts CPA/CCA1/CCA2 secure schemes into a Glass Box secure schemes.

References:

Publication details: Sree Vivek S, Sharmila Deva Selvi S, Akshayaram S and Pandu Rangan C: *Stronger public key encryption system withstanding RAM scraper like attacks*. To be published in Wiley, SCN Journal.

• RAM Scraper -

http://securityblog.verizonbusiness.com/2009/12/11/ram-scraper-coverage/

• POS - http://en.wikipedia.org/wiki/Point_of_sale

Thank you for your attention.

通 ト イヨ ト イヨト