
The Oblivous Machine
or: How to Put the C into MPC

Marcel Keller Peter Scholl

University of Bristol

9 June 2016



Secure Multiparty Computation

A

B

z

y

x

Wanted: f (x , y , z)

I Computation on secret inputs

I Replace trusted third party

I How to formulate f ?

I Start with circuit

I Central questions in MPC
I How many trusted parties?
I What deviation?



Secure Multiparty Computation

A

B

z

y

x

Wanted: f (x , y , z)

I Computation on secret inputs

I Replace trusted third party

I How to formulate f ?

I Start with circuit

I Central questions in MPC
I How many trusted parties?
I What deviation?



Multiparty Computation in This Talk

Security model

How many parties are how corrupted? In this work:

I Malicious adversary: Corrupted parties deviate from protocol.
I Dishonest majority of corrupted parties

I Impossible without computational assumptions (PK crypto)
I Shamir secret sharing does not help
I No guaranteed termination



Malicious Offline-Online MPC Protocols

Preprocessing Online

PKC Inputs

Output
corr. rand.

Advantages

I No secret inputs on the line when using crypto
⇒ No one gets hurt if protocol aborts!

I Online computation might have many rounds,
but preprocessing is constant-round.



Malicious Offline-Online MPC Protocols

Preprocessing Online

PKC Inputs

Output
corr. rand.

Suitable public-key crypto

I Somewhat homomorphic encryption (SPDZ)

I Oblivious transfer (TinyOT, MASCOT)



First Step — Oblivious Data Structures

I Generally
I Secret pointers
I Secret type of access if needed

I Oblivious array / dictionary
I Secret index / key
I Secret whether reading or writing

I Oblivious priority queue
I Secret priority and value
I Secret whether decreasing priority or inserting



Oblivious RAM

in MPC

Client
(CPU)

Server
(Encrypted RAM)

x1

x2

x0

x0

x0



Oblivious RAM

in MPC

Client
(CPU)

Server
(Encrypted RAM)

x$

x$

x$

x$

x$



Oblivious RAM in MPC

MPC circuit
RAM secret-shared
with Authentication

x$

x$

x$

x$

x$

Reveal



Dijkstra’s Algorithm in MPC

for each vertex do
outer loop body
for each neighbor do

inner loop body

I Dijkstra’s algorithms uses
two nested loops

I One for vertices,
one for neighbors thereof

I MPC would reveal the number
of neighbors for every vertex

I Replace by loop over all edges
I Flag set when starting

with a new vertex

I Oblivious data structures
with public size

I Polylog overhead
over classical algorithm



Dijkstra’s Algorithm in MPC

for each edge do
outer loop body
(maybe dummy)

inner loop body

I Dijkstra’s algorithms uses
two nested loops

I One for vertices,
one for neighbors thereof

I MPC would reveal the number
of neighbors for every vertex

I Replace by loop over all edges
I Flag set when starting

with a new vertex

I Oblivious data structures
with public size

I Polylog overhead
over classical algorithm



Going General

Dijkstra (special case)

Obscure inner vs outer loop by doing both all the time

General case
Obscure by doing everything all the time

I Including memory accesses

I Data registers provide no value

I Memory-only machine with one register for program counter



Memory-only Machine

I Need 3 accesses for arithmetic operations like addition

I 3 is enough for any operation

I For every possible operation there is a circuit before, after,
and in-between memory accesses

I Oblivous selection using instruction from program memory

I Last circuit outputs next program counter



Example

1 int main() {

2 unsigned int a[5];

3 for (unsigned int i = 0; i < 5; i++)

4 a[i] = i;

5 }



Example

1 for.cond:

2 %0 = load i64* %i , align 8

3 %cmp = icmp ult i64 %0 , 5

4 br i1 %cmp , label %for.body , label ←↩
%for.end

5
6 for.body:

7 %1 = load i64* %i , align 8

8 %2 = load i64* %i , align 8

9 %arrayidx = getelementptr inbounds ←↩
[5 x i64]* %a, i32 0, i64 %2

10 store i64 %1, i64* %arrayidx , align ←↩
8

11 br label %for.inc



Example

1 # for.cond:

2 ult_pos_const 9 5 8 # 2

3 br 4 8 9 # 3

4 # for.body:

5 add_const 10 3 1 # 4

6 store 0 8 10 # 5

7 # for.inc:

8 add_const 8 1 8 # 6

9 jmp 2 0 0 # 7

10 # for.end:

11 mov 0 2 0 # 8

12 jmp 10 0 0 # 9



Machine Speed

101 102 103 104 105 106 107 108
100

101

102

Data memory size (in field elements)

C
lo

ck
ra

te
(H

z)

I 2 desktop machines

I 1 Gbps local network

I Path ORAM
(CORAM too deep)



100-Party Oblivious Machine

Online

0.385 Hz
RAM: 1 million field elements (64 bit)

8.2¢ per clock cycle and party
c4.8xlarge

Offline

Per clock cycle Time Cost per party

c4.8xlarge 16 minutes 49¢
t2.small 7.7 hours 21¢



Overhead for Dijkstra’s Algorithm

101 102

100

101

102

103

104

105

Cycle graph size

O
n

lin
e

ti
m

e
(s

)
w

it
h

2
p

ar
ti

es Oblivous machine
Oblivous data structures



Comparison to Garbled Circuits for MIPS

Set intersection

Input size per party 64 inputs 256 inputs 1024 inputs

Wang et al. baseline 58.35 s 324.09 s 3068.19 s
Wang et al. optimized 2.77 s 12.96 s 108.45 s
This work (online) 6.43 s 44.12 s 1346.82 s



Bottom Line

Slow but as general as possible

I No static analysis

I Allows private function evaluation


