New Notions of Security: Universal Composability without Trusted Setup

Manoj Prabhakaran & Amit Sahai Princeton University

To appear in STOC'04

Defining Security

- Central Problem in Cryptography
 - Understanding what we want
 - and what we can get

Evolution of Security Notions

Environmental Security [C,PW]

- Comprehensive Security of a general task...
- 🗳 ... in a general environment
- Essential to be applicable in a networked/multi-tasking setting
- "Universally Composable": can achieve complex tasks in a modular way

However...

- Too strong?
- Sweeping impossibility results
- No commitment/ZK/Multi-Party Computation protocol is Environmentally Secure [C,CF,CKL,L]
- Things possible: encryption, honest-majority MPC, or using a trusted setup (CRS- common reference string) [CF,CLOS,...]
- No notion of provable security for any protocol in the "plain model" in the presence of an environment!

New Notions of Security: An Overview

Security as Achieving the IDEAL

- Envision the IDEAL security notion- using trusted parties and secure channels to them
- A protocol in the REAL world is secure if whatever can happen in the REAL world could have happened in the IDEAL world

Environmental Security

- Interactive Environment present
- Environment cannot distinguish between being in REAL execution and being in IDEAL execution

Environmental Security

Universal Composability Theorem [C]

If

Universal Composability Theorem [C]

Environmental Security Not Realizable

- Very general impossibility results [C,CF,L,CKL...]
- No commitment, ZK, multi-party computation
- Impossibility holds whenever environment can internally run the IDEAL adversary

Same condition for Universal Composition to hold!

New Notions of Security: An Overview

Coming Up...

ES Reloaded

Commitment IDEAL

Commitment IDEAL

Still ideal!

Relaxed Environmental Security

- In the IDEAL world, adversary has exponential computational power
- Still IDEAL: no extra information to compute with

Relaxed ES

- Suffices in most cases of interest- when notion of security is information theoretic
- IDEAL not satisfactory for some situations (e.g. playing an online game)
 - Fixed in Generalized Environmental Security
- Easily implies traditional strong notions of security (concurrent, non-malleable, CCA2 secure) for many tasks (commitment, encryption, WI proofs,...)
- Similar ideas previously for simpler situations

Relaxed Environmental Security

Not Composable!

Too Relaxed?

New Notions of Security: An Overview

Generalized Environmental Security

- Implies Relaxed Environmental Security
- IDEAL adversary and Environment have access to "The Angel"
- The Angel is exponential-time Oracle with a simple filter to decide whether to answer or not
- Filter depends on the set of corrupted parties
- Gives restricted access to exponential computational power: helps break corrupted parties' security, but not honest parties'

Generalized ES

Generalized ES \Rightarrow Relaxed ES

Generalized ES \Rightarrow Relaxed ES

Generalized ES \Rightarrow Relaxed ES \forall \forall Env Environment Environment **REAL World IDEAL** World

What is this Angel?

- Our Angel gives collisions in a hash function
- Alternative models possible with different Angels
- i.e., can instantiate the generalized ES framework with different Angels
- Using "null-Angel" gives the original ES model of [C]

Generalized ES results

- Sor any exponential-time Angel X, gES(X) ⇒ relaxed ES
- For any Angel X, gES(X) protocols are Universally Composable
- There is an Angel X* such that there are gES(X*) protocols for commitment, ZK, and for realizing any efficient trusted party

Currently, all results for Static Adversaries

"The Angel" in Action

RProtocol R) $c = \mathcal{H}_{R,r}(r',b)$ (R,r)**IDEAL** $(r'_{0}, r$ C COMMIT $c := \mathcal{H}_{R,r}(r'_0, 0)$ $= \mathcal{H}_{R,r}(r_1', 1)$

Assumptions

Recap

More work needed

- Investigate/simplify the assumptions
- Extend to Adaptive Adversaries
- Get simpler/more efficient protocols
- Even more realistic Environmental Security model

Thank You!