A Framework for Security Analysis with Team Automata

Marinella Petrocchi

Istituto di Informatica e Telematica National Research Council IIT-CNR Pisa, Italy

Tuesday 8 June 2004

DIMACS

with Maurice ter Beek and Gabriele Lenzini (ISTI-CNR, Italy) (U. Twente, Netherlands)

Outline

Team Automata (TA):

origins, foundations, and examples

TA applied to security analysis:

origins and inspiration an insecure communication scenario Generalized Non Deducibility on Compositions (GNDC) – from process algebras to TA compositional result for the insecure scenario

Case study: integrity of EMSS protocol

Conclusions and future work

Origins of TA

Ellis informally introduced TA at ACM GROUP'97

(*Team Automata for Groupware Systems*) as an extension of the *I/O automata (IOA)* of Lynch & Tuttle, namely:

- TA are not required to be *input-enabled*
- TA may synchronize on output actions
- no fixed method of composition for TA

Series of papers and Ph.D. thesis of ter Beek show that the usefulness of TA is not limited to modeling groupware, but:

extends to modeling collaboration in reactive, distributed systems in general!

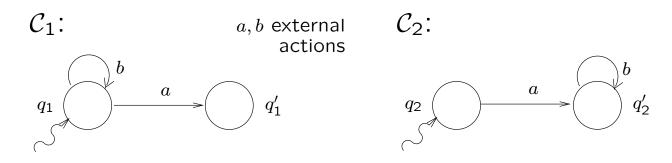
Foundations of TA

- model logical architecture of system design
- abstract from concrete data and actions
- describe behavior in terms of
 - state-action diagram (automaton)
 - role of actions (input, output, internal)
 - synchronizations (simultaneous execution of shared actions)
- crux: automata composition!

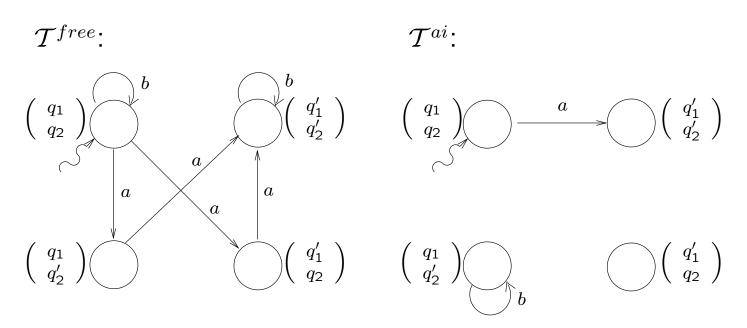
+ flexible (role of actions, choice of transitions)
+ scalable (modular construction, iteration)
+ extendible (time, probabilities, priorities)
+ verifiable (automata-theoretic results)

- no tool (yet)

Example TA over Component Automata



 $\Rightarrow TA \mathcal{T}^{free} \& \mathcal{T}^{ai} \text{ over the composable system} \\ \{\mathcal{C}_1, \mathcal{C}_2\} \text{ defined by <u>choosing</u> their transitions !}$



 $\mathcal{T}^{ai} = ||| \{ \mathcal{C}_1, \mathcal{C}_2 \} = \text{composition like that of IOA}$ \Rightarrow every TA is a component automaton ! ₅

TA Applied to Security Analysis

ter Beek *et al.* first applied TA to security at ECSCW'01

(Team Automata for Spatial Access Control)

by specifying and analyzing a variety of access control strategies

Inspired by Lynch' approach to use IOA for specifying and analyzing (cryptographic) communication protocols at CSFW'99

(I/O Automaton Models and Proofs for Shared-Key Communication Systems)

we started to apply TA in the same direction at WISP'03

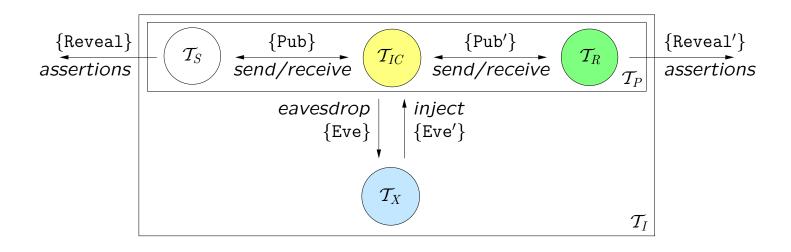
(*Team Automata for Security Analysis of Multicast/Broadcast Communication*)

which meanwhile has been extended and led to

(A Framework for Security Analysis with Team Automata)

An Insecure Communication Scenario

An informal description of TA by their interactions:



$$\begin{split} \mathcal{T}_{\mathcal{IC}} &- \text{ insecure channel} \\ \mathcal{T}_{S} &- \text{ initiator } - \Sigma_{com}^{S} \text{ to communicate with } \mathcal{T}_{\mathcal{IC}} \\ \mathcal{T}_{R} &- \text{ responder } - \Sigma_{com}^{R} \text{ to communicate with } \mathcal{T}_{\mathcal{IC}} \\ \mathcal{T}_{\mathcal{X}} &- \text{ intruder } - \Sigma_{com}^{I} \text{ to communicate with } \mathcal{T}_{\mathcal{IC}} \\ \Sigma_{com}^{S} &\cap \Sigma_{com}^{R} \cap \Sigma_{com}^{I} = \varnothing \qquad \Sigma_{com}^{P} = \Sigma_{com}^{S} \cup \Sigma_{com}^{R} \\ \mathcal{T}_{P} &= \text{hide}_{\Sigma_{com}^{P}} (||| \{\mathcal{T}_{S}, \mathcal{T}_{R}, \mathcal{T}_{IC}\}) \qquad \text{secure and} \\ \mathcal{T}_{I} &= \text{hide}_{\Sigma_{com}^{I}} (||| \{\mathcal{T}_{P}, \mathcal{T}_{X}\}) \qquad \text{insecure scenario} \end{split}$$

Generalized Non Deducibility on Compositions (GNDC)

 $P \in GNDC^{\alpha(P)}_{<} \text{ iff } (P \parallel Top^{\phi}_{C}) \setminus C \leq \alpha(P)$

P-term of a process algebra, modeling a system running in isolation

- \leq behavioral relation (trace inclusion)
- $\alpha(P)$ the expected (correct) behavior of P
- Top_C^{ϕ} term modeling the most general intruder
- ϕ the (bounded) initial knowledge of Top_C^{ϕ}
- C channels used by Top_C^{ϕ} to interact with P
- \parallel parallel composition operator
- $(-\parallel -) \setminus C$ restriction to communication over channels other than C

GNDC in Terms of TA

$$\begin{aligned} \mathcal{T}_{P} \in GNDC_{\subseteq}^{\alpha(\mathcal{T}_{P})} & \text{iff } \mathbf{O}_{\mathsf{hide}_{C}}^{C}(|||\{\mathcal{T}_{P}, \mathsf{Top}_{C}^{\phi}\}) \subseteq \alpha(\mathcal{T}_{P}) \\ \mathcal{T}_{P} - \mathsf{TA} \text{ modeling secure communication scenario} \\ \subseteq - \text{ behavioral inclusion (set of traces/language)} \\ \alpha(\mathcal{T}_{P}) - \text{ the expected (correct) behavior of } \mathcal{T}_{P} \\ \mathcal{T}op_{C}^{\phi} - \mathsf{TA} \text{ modeling the most general intruder} \\ \phi - \text{ the (bounded) initial knowledge of } \mathcal{T}op_{C}^{\phi} \\ C - \text{ actions used by } \mathcal{T}op_{C}^{\phi} \text{ to interact with } \mathcal{T}_{P} \\ |||\{\mathcal{T}_{P}, \mathsf{Top}_{C}^{\phi}\} - (\text{as before) composition like IOA} \\ \text{hide}_{C}(\mathcal{T}) - (\text{as before) hides external actions} \\ C (\text{as internal actions) of a TA } \mathcal{T} \\ (w.r.t. actions not in C) \end{aligned}$$

Compositionality

Compositional reasoning, useful for

- identifying sub-problems and separately treated them
- evaluating (security) properties
 over sub-components
- asserting the properties validity over the whole system (*e.g.*, using theorems about automata composition)
- other...

We decompose the insecure communication scenario, and...

Result: the observational behaviour of the overall system is the "shuffle" of the observational behaviours of the sub-components!

Compositional Result for Insecure Scenario

<u>Recall</u>: Σ_{com}^{P} = all public send/receive actions Let \mathcal{T}_{1} = hide_{Σ_{com}^{P}} (||| { $\mathcal{T}_{S}, \mathcal{T}_{IC}$ }) and \mathcal{T}_{2} = hide_{Σ_{com}^{P}} (||| { $\mathcal{T}_{R}, \mathcal{T}_{IC}$ }) <u>Theorem</u>: if $\mathcal{T}_{1} \in GNDC_{\subset}^{\mathbf{O}_{T_{1}}^{C}}$ and $\mathcal{T}_{2} \in GNDC_{\subset}^{\mathbf{O}_{T_{2}}^{C}}$,

$$||| \{\mathcal{T}_1, \mathcal{T}_2\} \in GNDC_{\subseteq}^{||} \{\boldsymbol{\Sigma}^{\mathcal{T}_1, \boldsymbol{\Sigma}^{\mathcal{T}_2}}\} \{\mathbf{O}_{\mathcal{T}_1}^C, \mathbf{O}_{\mathcal{T}_2}^C\}$$

then

 $\underbrace{||}_{\{\Sigma_1, \Sigma_2\}} \{L_1, L_2\} - \textit{full synchronized shuffle of} \\ \text{language } L_i \text{ over alphabet } \Sigma_i \\ \end{aligned}$

<u>Example</u>: if $L_1 = \{abc\} \subseteq \Sigma_1 = \{a, b, c\}$ and $L_2 = \{cd\} \subseteq \Sigma_2 = \{c, d\}$, then $abc \sum_1 ||_{\Sigma_2} cd = \{abcd\}$ (i.e. words must synchronize on $\Sigma_1 \cap \Sigma_2 = \{c\}$)

shuffle/free interleaving:
$$\{abccd, acbcd, cdabc, ...\}$$

Case Study: Integrity of EMSS Protocol

 $S \xrightarrow{P_{0}} \{R_{n} \mid n \geq 1\} \quad P_{0} = \langle m_{0}, \emptyset, \emptyset \rangle$ $S \xrightarrow{P_{1}} \{R_{n} \mid n \geq 1\} \quad P_{1} = \langle m_{1}, h(P_{0}), \emptyset \rangle$ $S \xrightarrow{P_{i}} \{R_{n} \mid n \geq 1\} \quad P_{i} = \langle m_{i}, h(P_{i-1}), h(P_{i-2}) \rangle \ 2 \leq i \leq last$ $S \xrightarrow{P_{sign}} \{R_{n} \mid n \geq 1\} \quad P_{sign} = \langle \{h(P_{last}), h(P_{last-1})\}_{sk(S)} \rangle$

• modeling sender and receiver as TA \mathcal{T}_S , \mathcal{T}_R

 \bullet embed $\mathcal{T}_S,~\mathcal{T}_R$ in the insecure communication scenario

• defining *integrity* as the ability of T_R to to accept a message m_i only as the *i*th message sent by T_S

 evaluating the property over two subcomponents

- applying compositionality
- ⇒ allowed us to prove that *integrity* is guaranteed in the EMSS protocol !

Conclusions and Future Work

What has been done:

Security analysis with TA by

- defining an insecure communication scenario
- reformulating GNDC in terms of TA
- formulating some effective compositional analysis strategies

What we would like to do:

- extend the analysis to other security properties
- try to automate the currently manual specification and verification of properties
- promote TA for security analysis! :)

Questions & suggestions are welcome!

Component Automaton

$$\mathcal{C} = (Q, (\Sigma_{inp}, \Sigma_{out}, \Sigma_{int}), \delta, I)$$

Q set of states $\Sigma = \Sigma_{inp} \cup \Sigma_{out} \cup \Sigma_{int} \text{ alphabet (a partition !)}$ $\delta \subseteq Q \times \Sigma \times Q \text{ transition relation} \qquad q \xrightarrow{a} q'$ $I \subseteq Q \text{ set of initial states} \qquad (q,q') \in \delta_a$

 $\left. \begin{array}{c} \Sigma_{inp} \text{ input actions} \\ \Sigma_{out} \text{ output actions} \end{array} \right\} \Sigma_{ext} \text{ externally observable}$

 Σ_{int} internal actions

cannot be observed

Composable System

a set $S = \{C_1, \dots, C_n\}$ of component automata is a *composable system* if $\forall i \in \{1, \dots, n\}$:

$$\Sigma_{i,int} \cap \bigcup_{j \in \{1,...,n\} \setminus \{i\}} \Sigma_j = \emptyset$$

14

Complete Transition Space

The complete transition space of $a \in \Sigma = \bigcup_{i \in \{1,...,n\}} (\Sigma_{i,inp} \cup \Sigma_{i,out} \cup \Sigma_{i,int})$ in S is

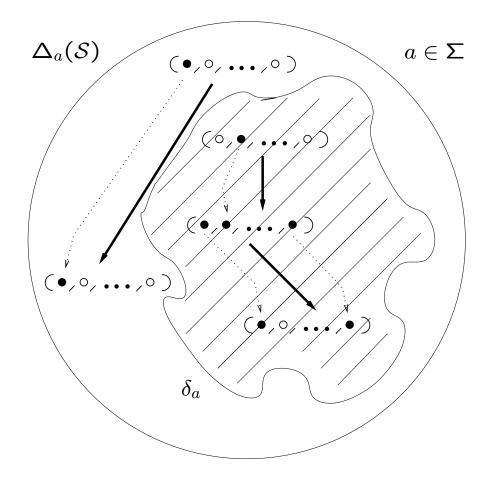
$$\Delta_a(S) = \{ (q, q') \in \prod_{i \in \{1, \dots, n\}} Q_i \times \prod_{i \in \{1, \dots, n\}} Q_i$$

 $\exists j \in \{1, \ldots, n\}$: $(\operatorname{proj}_j(q), a, \operatorname{proj}_j(q')) \in \delta_j \land$

$$\forall i \in \{1, \dots, n\} : (\operatorname{proj}_i(q), a, \operatorname{proj}_i(q')) \in \delta_i \lor \operatorname{proj}_i(q) = \operatorname{proj}_i(q')\}$$

 \Rightarrow in every team transition <u>at least 1</u> component acts <u>according</u> to its transition relation

 \Rightarrow all other components either join or are idle



⇒ the <u>choices</u> of team transition relations δ_a , $\forall a \in \Sigma$, define a specific TA !

Team Automaton

$$\mathcal{T} = (\prod_{i \in \{1,...,n\}} Q_i, (\Sigma_{inp}, \Sigma_{out}, \Sigma_{int}), \delta, \prod_{i \in \{1,...,n\}} I_i)$$

is <u>a</u> TA composed over composable system \mathcal{S} if

$$\Sigma_{int} = \bigcup_{i \in \{1,...,n\}} \Sigma_{i,int}$$

$$\Sigma_{out} = \bigcup_{i \in \{1,...,n\}} \Sigma_{i,out}$$

$$\Sigma_{inp} = (\bigcup_{i \in \{1,...,n\}} \Sigma_{i,inp}) \setminus \Sigma_{out}$$

 $\delta \subseteq \prod_{i \in \{1,...,n\}} Q_i \times \mathbf{\Sigma} \times \prod_{i \in \{1,...,n\}} Q_i$ such that

$$orall a \in \Sigma$$
 $\delta_a \subseteq \Delta_a(\mathcal{S})$
and $\delta_a = \Delta_a(\mathcal{S})$ if $a \in \Sigma_{int}$

$$\Rightarrow$$
 every TA is a component automaton!