Probabilistic Polynomial-Time Process Calculus for Security Protocol Analysis

J. Mitchell, A. Ramanathan, A. Scedrov, V. Teague

P. Lincoln, M. Mitchell P. Mateus

Security protocols

Research goals

Specific process calculus

- Probabilistic semantics & complexity
- Asymptotic equivalence & bisimulation
- Equational proof system
- Examples
 - Computational indistinguishability
 - Decision Diffie-Hellman & ElGamal encryption

Protocol security

Cryptographic Protocol

- Program distributed over network
- Use cryptography to achieve goal

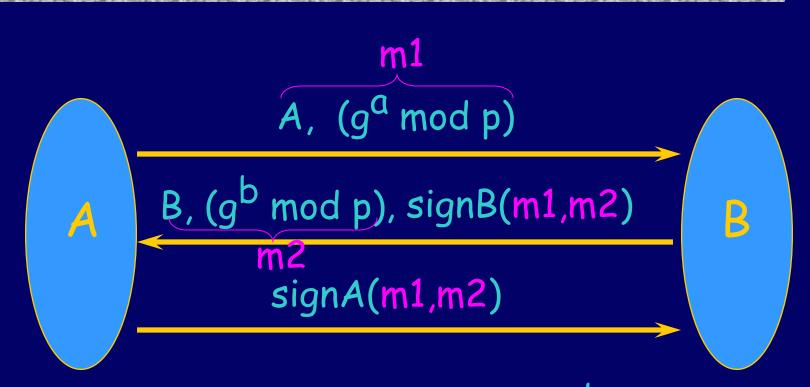
♦ Attacker

- Intercept, replace, remember messages
- Guess random numbers, some computation

♦ Correctness

 Attacker cannot learn protected secret or cause incorrect conclusion

IKE subprotocol from IPSEC



Result: A and B share secret g^{ab} mod p

Analysis involves probability, modular exponentiation, complexity, digital signatures, communication networks

Compositionality

Confidentiality

• $A \rightarrow B$: encrypt_{KB}(msg)

Authentication

• $A \rightarrow B$: sign_{KA}(msg)

Composition

- $A \rightarrow B$: encrypt_{KB}(msg), sign_{KA}(msg)
- Broken! sign_{KA}(msg) can leak info abt. msg
- Right way: encrypt_{KB}(msg), sign_{KA}(cipher)

Standard analysis methods

Model-checking (finite state analysis) Easier

Automated theorem provers

- Symbolic search of protocol runs
- Correctness proofs in formal logic (Dolev-Yao)

Computational model

- Consider probability and complexity
 - More realistic intruder model
 - Interaction between protocol and cryptography Harder

Security protocols

Research goals

Specific process calculus

- Probabilistic semantics & complexity
- Asymptotic equivalence & bisimulation
- Equational proof system
- Examples
 - Computational indistinguishability
 - Decision Diffie-Hellman & ElGamal encryption

One General Starting Point

Express security properties in terms
 of comparison to an ideal protocol
 Protocol is comparison if no odvorgent comparison

- Protocol is secure if no adversary can distinguish it from some idealized version of the protocol
 - Beaver '91, Goldwasser-Levin '90, Micali-Rogaway '91
- Security properties should be compositional

Language approach

Write protocol in process calculus

Dolev-Yao model

Express security using observational equivalence

- Standard relation from programming language theory
 P ≈ Q iff for all contexts C[], same
 observations about C[P] and C[Q]
- Inherently compositional
- Context (environment) represents adversary

 \bullet Use proof rules for \approx to prove security

 Protocol is secure if no adversary can distinguish it from some idealized version of the protocol

Probabilistic poly-time process calculus

- Probabilistic polynomial-time execution model
- Specify security via equivalence to "ideal" protocol
- Also state cryptographic assumptions via equivalences
- Leads to new proof system
 - Equational reasoning
 - Based on probabilistic bisimulation, asymptotic equivalence
- Connections with modern crypto
 - Characterize computational indistinguishability
 - Formal derivation of semantic security from computational assumption DDH (both stated as equations) and vice versa (indistinguishability of encryptions)

Neighbors

♦ Canetti; B. Pfitzmann, Waidner, Backes

- Interactive Turing machines
- General framework for crypto properties
- Protocol *realizes* an ideal setting
- Universally composable security
- Abadi, Rogaway, Jürjens;
 Micciancio, Warinschi; Corin, Laud;
 Horwitz, Gligor; Herzog
 - Toward transfer principles between formal Dolev-Yao model and computational model
- Impagliazzo, Kapron
 - Logic of the computational model

Security protocols Research goals Specific process calculus Probabilistic semantics & complexity

- Asymptotic equivalence & bisimulation
- Equational proof system
- Examples
 - Computational indistinguishability
 - Decision Diffie-Hellman & ElGamal encryption

Expressions have size poly in |n|

Bounded CCS with integer terms P ::= 0send up to q(|n|) bits $out(c_{a(|n|)},T)$. P $in(c_{q(|n|)}, x)$. P receive $υ c_{q(|n|)}.(P)$ private channel [T=T]P test PP parallel composition bounded replication $I_{q(|n|)}$. P

Terms may contain symbol n; channel width and replication bounded by poly in |n|

Evaluation

Reduction

- Evaluate unguarded terms and matches
- Local computation embodied in terms
- ♦ Scheduling
 - Probabilistically pick a type of action
- Communication
 - Pick a particular action of the chosen type uniformly at random
 - During an actual run only pick input/output actions.

Nondeterminism vs probabilism

Alice encrypts msg and sends to Bob $A \rightarrow B: \{msq\}_{\kappa}$ Adversary uses nondeterminism Process E_0 out(c,0) | ... | out(c,0) Process E_1 out(c,1) | ... | out(c,1) Process E $in(c, b_1)...in(c, b_n).out(d, b_1b_2...b_n, msq)$

In reality, at most 2⁻ⁿ chance to guess n-bit key

Complexity results

Polynomial time

- For each closed process expression P, there is a polynomial q(x) such that
 - For all n
 - For all probabilistic polynomial-time schedulers
 - eval of P halts in time q(|n|)

Security protocols
Research goals

Specific process calculus

- Probabilistic semantics & complexity
- Asymptotic equivalence & bisimulation
 - Equational proof system
 - Examples
 - Computational indistinguishability
 - Decision Diffie-Hellman & ElGamal encryption

How to define process equivalence?

Intuition

- | Prob{ $C[P] \rightarrow o$ } Prob{ $C[Q] \rightarrow o$ } | < ε • Difficulty
 - How do we choose ε?
 - Less than 1/2, 1/4, ... ? (not equiv relation)
 - Vanishingly small ? As a function of what?

Solution

- Use security parameter
 - Protocol is family { P_n } $_{n>0}$ indexed by key length
- Asymptotic form of process equivalence
- $P \approx Q$ if for all polynomials p, observables $\varepsilon < 1/p(n)$

One way to get equivalences

Labeled transition system

- Allow process to send any output, read any input
- Label with numbers "resembling probabilities"

Probabilistic bisimulation relation

- Relation ~ on processes
- If P ~ Q and P P', then exists Q'
 with Q Q' and P' ~ Q', and vice versa
- Reactive form of bisimulation (scheduling)
- van Glabbeek, Smolka, Steffen '95

Security protocols

Research goals

Specific process calculus

- Probabilistic semantics & complexity
- Asymptotic equivalence & bisimulation
- Equational proof system
 - Examples
 - Computational indistinguishability
 - Decision Diffie-Hellman & ElGamal encryption

Provable equivalences

- Assume scheduler is stable under bisimulation
- $\blacklozenge \mathsf{P} \sim \mathsf{Q} \implies \mathcal{C}[\mathsf{P}] \sim \mathcal{C}[\mathsf{Q}]$
- $\blacklozenge \mathsf{P} \sim \mathsf{Q} \implies \mathsf{P} \approx \mathsf{Q}$
- ♦ P $(Q | R) \approx (P | Q) | R$
- $| \diamond P | Q \approx Q | P$
- $\mathbf{O} = \mathbf{P} \mathbf{O} \mathbf{P}$

Provable equivalences

 \bullet P ≈ υ c. (out(c,T) | in(c,x).P) x ∉ FV(P) ♦ $P{a/x} \approx v c.$ (out(c,a) | in(c,x).P) bandwidth of c large enough \rightarrow P \approx O if no public channels in P $\blacklozenge P \approx Q \implies P\{d/c\} \approx Q\{d/c\}$ c, d same bandwidth, d fresh \diamond out(c,T) \approx out(c,T') $Prob[T \rightarrow a] = Prob[T' \rightarrow a]$ all a

Security protocols

Research goals

Specific process calculus

- Probabilistic semantics & complexity
- Asymptotic equivalence & bisimulation
- Equational proof system
- Examples

Computational indistinguishability

- Decision Diffie-Hellman & ElGamal encryption

Computational indistinguishability

♦ T(i,n), T'(i,n) terms in the calculus
• T, T' represent uniform prob. poly-time function ensembles f_i , g_i : {} → {0,1}^{q(lnl)}

◆ out(c,T) ≈ out(c,T') says exactly that the function ensembles f_i, g_i are indistinguishable by prob. poly-time statistical tests

◆Yao '82: fundamental notion in crypto

Security protocols

Research goals

Specific process calculus

- Probabilistic semantics & complexity
- Asymptotic equivalence & bisimulation
- Equational proof system
- Examples

- Computational indistinguishability

Decision Diffie-Hellman & ElGamal encryption

Connections with modern crypto

Ciphersystem consists of three parts

- Key generation
- Encryption (often probabilistic)
- Decryption
- Formal derivation of semantic security of ElGamal from DDH and vice versa
 - Well known fact in crypto [Tsiounis & Yung '98]

ElGamal cryptosystem

In security parameter (e.g., key length) G_n cyclic group of prime order p, length of p roughly n, g generator of G_n Keys • public $\langle q, y \rangle$, private $\langle q, x \rangle$ s.t. $y = q^x$ \blacklozenge Encryption of $m \in G_n$ • for random $k \in \{0, \ldots, p-1\}$ outputs $\langle g^k, m y^k \rangle$ \diamond Decryption of $\langle v, w \rangle$ is $w (v^{\times})^{-1}$ • For $v = q^k$, $w = m y^k$ get $w (v^{x})^{-1} = m y^{k} / q^{kx} = m q^{xk} / q^{kx} = m$

Semantic security

Known equivalent:

indistinguishability of encryptions

- adversary can't tell from the traffic which of the two chosen messages has been encrypted
- ElGamal:

 $\langle 1^{\sf n}, g^{\sf k}, {\sf m} \, {\sf y}^{\sf k} \rangle \, pprox \, \langle 1^{\sf n}, g^{\sf k'}, {\sf m'} \, {\sf y}^{\sf k'}
angle$

 In case of ElGamal known to be equivalent to DDH [Tsiounis-Yung]
 Formally derivable using the proof rules

Decision Diffie-Hellman (DDH)

Standard crypto assumption • n security parameter (e.g., key length) G_n cyclic group of prime order p, length of p roughly n, g generator of G_n \bullet For random a, b, c \in {0, ..., p-1} $\langle q^{a}, q^{b}, q^{ab} \rangle \approx \langle q^{a}, q^{b}, q^{c} \rangle$

DDH implies sem. sec. of ElGamal

- ◆ Start with $\langle g^a, g^b, g^{ab} \rangle \approx \langle g^a, g^b, g^c \rangle$ (random a,b,c)
- Build up statement of sem. sec. from this.
 - in(c,<x,y>).out(c, ⟨ g^r, x.g^{rx} ⟩) ≈

in(c,<x,y>).out(c, $\langle g^r, y.g^{rx} \rangle$)

- The proof consists of
 - Structural transformations
 - E.g., out(c,T(r); r random) ≈ out(c,U(r)) (any r) implies in(c,x).out(c,T(x)) ≈ in(c,x).out(c,U(x))
 - Domain-specific axioms
 - E.g., $out(c, \langle g^a, g^b, g^{ab} \rangle) \approx out(c, \langle g^a, g^b, g^c \rangle)$ implies $out(c, \langle g^a, g^b, Mg^{ab} \rangle) \approx out(c, \langle g^a, g^b, Mg^c \rangle)$ (any M)

Sem. sec. of ElGamal implies DDH

- \blacklozenge Harder direction. Compositionality of \approx makes 'building up' easier than breaking down.
- Want to go from

 $in(c, \langle x, y \rangle).out(c, \langle g^r, x.g^{rx} \rangle) \approx in(c, \langle x, y \rangle).out(c, \langle g^r, y.g^{rx} \rangle)$ to

- $\langle g^{\mathsf{x}}, g^{\mathsf{r}}, g^{\mathsf{r}}, g^{\mathsf{r}\mathsf{x}} \rangle \approx \langle g^{\mathsf{x}}, g^{\mathsf{r}}, g^{\mathsf{c}} \rangle$
- \blacklozenge Proof idea: if x = 1, then we essentially have DDH.
- The proof 'constructs' a DDH tuple by
 - Hiding all public channels except the output challenge
 - Setting a message to 1
- Need structural rule equating a process with the term simulating the process
 - We use special case where process only has one public output

Current State of Project

Compositional framework for protocol analysis

- Precise language for studying security protocols
- Replace nondeterminism with probability
- Equivalence based on ptime statistical tests
- Probabilistic ptime language
- Methods for establishing equivalence
 - Probabilistic bisimulation technique
- Notion of compositionality
- ♦ Examples
 - Decision Diffie-Hellman, semantic security, ElGamal encryption, computational indistinguishability

Conclusion

Future work

- Simplify semantics
- Weaken bisimulation technique to generate asymptotic equivalences
- Apply to more complex protocols
 - Bellare-Rogaway, Oblivious Transfer, Computational Zero Knowledge, ...
- Studying various models of compositionality for security protocols (WITS '04)
 - Canetti (ITMs), Pfitzmann-Waidner (IOAs)

Probabilistic Polynomial-Time Process Calculus for Security Protocol Analysis

J. Mitchell, A. Ramanathan, A. Scedrov, V. Teague

P. Lincoln, M. Mitchell P. Mateus