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Security Analysis a la Dolev-Yao

Specify protocol participants as processes 
following Dolev, Yao 1982: In addition to 
expected participants, model attacker who:

• may participate in some protocol runs,

• knows some data in advance,

• may intercept messages on the public 
network,

• injects messages that it can produce into the 
public network
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Symbolic Analysis: Limitations

Keys are symbols, crypto-algorithms are
abstract operations.

• Can only decrypt with right keys.

• Can only compose with available
messages.

• Cannot perform statistical attacks.

Crypto assumed perfect, which it isn’t.
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Computationally faithful analysis

Abadi, Rogaway 2000; Abadi, Jürjens 2001: 
Symbolic equivalence-based analysis faithful
wrt. classical complexity-theoretical model
(symmetric encryption, passive adversaries).

Problem: Symbolic model from AJ01 does not
directly support automated verification.

Here: Ongoing work to extend above work to 
automated verification using first-order logic
atp‘s (Dolev-Yao style).
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Context: „Verisoft“ Project

Goal: Practical application of formal methods.
Planned for 8 years from 7/2003; 12 industrial + 

academic partners.
Full formal verification from application software

down to operating system and processor.
Intended result: Verified C-implementation.
One application example: Biometric

authentication protocol (T-Systems).
Goal: Mechanical proof of complexity-

theoretical security.
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Security analysis in first-order logic

Idea: Given set P of control flow diagrams (of 
C-programs), approximate set of possible
data values known to adversary from above.

Predicate knows(E) meaning that the adversary 
may get to know E during the execution of the 
protocol.

Say that a data value s is secret in P if one can 
not derive knows(s).
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Crypto Expressions

Term algebra generated by Var
�

Keys
�

Data and
• _ :: _ (concatenation)

• ( _ )-1 (inverse key)
• { _ } _ (encryption)

• Sign_( ) (signing)
• Dec_( ) (decryption)

• Ext_( ) (extracting from signature)
with appropriate equations.
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FOL rules for Crypto Expressions
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Model for Security Protocols

State machine (Mealy automaton) with
control states, local variables and 
transitions between states labeled
(in(var_in),cond(vars),out(msg_out))
where msg_in is a local variable to which the
incoming message is assigned, msgs can be
variables to which messages have been
previously assigned, and msg_out is an 
output expression (each possibly empty).

Generate from protocol specs/code.
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Security protocols into 1st order logic

Define knows(E) for any E initially known to the 
adversary (protocol-specific).

Control flow diagram: Each transition of form
(in(msg_in),cond(msgs),out(msg_out))
is translated (in a nested way) to:�

msg_in. [knows(msg_in)� cond(msgs)� knows(msg_out)]
(where for simplicity we use same names for logical 

and local variables).
Adversary knowledge approximated from above. Can 

put in more info, then more exact (+ less efficient).
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Example: Proposed Variant of TLS (SSL)

knows(Ni)  … �
��� exp… .  (knows(argS,1,3) � knows(argS,1,2) �

snd(ExtexpS,1,2
(argS,1,3)) = argS,1,2� knows(“arguments of resp method”) � …
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Analysis
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Computationally faithful ?

Works fine for Dolev-Yao style analysis but: 
doesn‘t detect partial violation of secrecy.

Add another clause to each implication: 
Whenever condition in automaton is reached, 
all its subterms relevant to its validity are
added to adversary knowledge.

Again approximation on the „safe“ side which
works fine for practical examples.
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Comparison to symbolic AJ01

Equivalence-based approach: „extrinsic“. 
Compute observable traces (somehow) and 
compare. Close to intuitions (but maybe not
immediately clear how to efficiently verify eg
with atp‘s).

Present approach: „intrinsic“. Stay as close to 
protocol model as possible when trying to 
detect information flow to enable efficient
verification.
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The computational view
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Indistinguishable Ensembles
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Secure Encryption (variant)
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Wrong key ?
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Computational interpretation
To any set P of control flow graphs assign distribution

[[P]]Π,η on input-/output histories (given an encryption
scheme Π and a security parameter η):

Given an initial probability event τ, map each key
symbol K to a bitstring τ(K), using K(η). Mark all 
occurrences of encryptions {E}K with a different coin
symbol r: {E}r

K. Map each coin symbol r to a bit
string τ(r). Then for expressions:

• [[b]]τ
Π,η = b

• [[K]]τ
Π,η = τ(K)

• [[M::N]]τ
Π,η = ([[M]]τ

Π,η , [[N]]τ
Π,η )
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Computational interpretation II

Define [[P]]τ
Π,η([])=[].

If [[P]]τ
Π,η(ins)=outs � p � (in,gd,out)p‘ � gd(in)

then [[P[p‘ � p]]]τ
Π,η(ins.in)=outs.out.

(Assume messages to include address and 
guards to be mutually exclusive for each p.)

Define: data value s in P remains
computationally secret if any two substitutions
of s by other values are mutually
indistinguishable.
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Computational soundness

Let P be a set of state machines that does not
generate encryption cycles and Π a secure
and confusion-free encryption scheme.

If a data value s in P is secret then s is
computationally secret.

(Still for symmetric encryption against passive 
adversaries; extension in progress.)
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Conclusion

Work towards automated verification of security-critical
software using first-order logic theorem provers
which aims to be

• efficient, powerful
• intuitive, simple
• computationally faithful
• practically applicable
Limitations: 
• give up (theoretical) completeness
• complexity theory is also „just“ a theoretical model

J. Jürjens (TU Munich): Towards Automated Computationally Faithful Verification ... 23

(Advertisement block)
Use verification in industrial projects with 

HypoVereinsbank, T-Systems, BMW, … 
Hide logic behind industrial notation UML:

Book: Jan Jürjens, Secure Systems 
Development with UML, Springer-Verlag, 
2004

Summer School “Foundation of Security 
Analysis and Design”, Bertinoro (6-11/9)

More information (slides, tool etc.): 
http://www.jurjens.de/jan


