
2

1

Towards Automated
Computationally Faithful

Verification of Cryptoprotocols
Jan Jürjens

Dep. of Computer Science, TU München

Germany

juerjens@in.tum.de

http://www.jurjens.de/jan

J. Jürjens (TU Munich): Towards Automated Computationally Faithful Verification ... 2

Security Analysis a la Dolev-Yao

Specify protocol participants as processes
following Dolev, Yao 1982: In addition to
expected participants, model attacker who:

• may participate in some protocol runs,

• knows some data in advance,

• may intercept messages on the public
network,

• injects messages that it can produce into the
public network

J. Jürjens (TU Munich): Towards Automated Computationally Faithful Verification ... 3

Symbolic Analysis: Limitations

Keys are symbols, crypto-algorithms are
abstract operations.

• Can only decrypt with right keys.

• Can only compose with available
messages.

• Cannot perform statistical attacks.

Crypto assumed perfect, which it isn’t.

J. Jürjens (TU Munich): Towards Automated Computationally Faithful Verification ... 4

Computationally faithful analysis

Abadi, Rogaway 2000; Abadi, Jürjens 2001:
Symbolic equivalence-based analysis faithful
wrt. classical complexity-theoretical model
(symmetric encryption, passive adversaries).

Problem: Symbolic model from AJ01 does not
directly support automated verification.

Here: Ongoing work to extend above work to
automated verification using first-order logic
atp‘s (Dolev-Yao style).

J. Jürjens (TU Munich): Towards Automated Computationally Faithful Verification ... 5

Context: „Verisoft“ Project

Goal: Practical application of formal methods.
Planned for 8 years from 7/2003; 12 industrial +

academic partners.
Full formal verification from application software

down to operating system and processor.
Intended result: Verified C-implementation.
One application example: Biometric

authentication protocol (T-Systems).
Goal: Mechanical proof of complexity-

theoretical security.

J. Jürjens (TU Munich): Towards Automated Computationally Faithful Verification ... 6

Security analysis in first-order logic

Idea: Given set P of control flow diagrams (of
C-programs), approximate set of possible
data values known to adversary from above.

Predicate knows(E) meaning that the adversary
may get to know E during the execution of the
protocol.

Say that a data value s is secret in P if one can
not derive knows(s).

2

2

J. Jürjens (TU Munich): Towards Automated Computationally Faithful Verification ... 7

Crypto Expressions

Term algebra generated by Var
�

Keys
�

Data and
• _ :: _ (concatenation)

• (_)-1 (inverse key)
• { _ } _ (encryption)

• Sign_() (signing)
• Dec_() (decryption)

• Ext_() (extracting from signature)
with appropriate equations.

J. Jürjens (TU Munich): Towards Automated Computationally Faithful Verification ... 8

FOL rules for Crypto Expressions

J. Jürjens (TU Munich): Towards Automated Computationally Faithful Verification ... 9

Model for Security Protocols

State machine (Mealy automaton) with
control states, local variables and
transitions between states labeled
(in(var_in),cond(vars),out(msg_out))
where msg_in is a local variable to which the
incoming message is assigned, msgs can be
variables to which messages have been
previously assigned, and msg_out is an
output expression (each possibly empty).

Generate from protocol specs/code.

J. Jürjens (TU Munich): Towards Automated Computationally Faithful Verification ... 10

Security protocols into 1st order logic

Define knows(E) for any E initially known to the
adversary (protocol-specific).

Control flow diagram: Each transition of form
(in(msg_in),cond(msgs),out(msg_out))
is translated (in a nested way) to:�

msg_in. [knows(msg_in)� cond(msgs)� knows(msg_out)]
(where for simplicity we use same names for logical

and local variables).
Adversary knowledge approximated from above. Can

put in more info, then more exact (+ less efficient).

J. Jürjens (TU Munich): Towards Automated Computationally Faithful Verification ... 11

Example: Proposed Variant of TLS (SSL)

knows(Ni) … �
��� exp… . (knows(argS,1,3) � knows(argS,1,2) �

snd(ExtexpS,1,2
(argS,1,3)) = argS,1,2� knows(“arguments of resp method”) � …

J. Jürjens (TU Munich): Towards Automated Computationally Faithful Verification ... 12

Analysis

2

3

J. Jürjens (TU Munich): Towards Automated Computationally Faithful Verification ... 13

Computationally faithful ?

Works fine for Dolev-Yao style analysis but:
doesn‘t detect partial violation of secrecy.

Add another clause to each implication:
Whenever condition in automaton is reached,
all its subterms relevant to its validity are
added to adversary knowledge.

Again approximation on the „safe“ side which
works fine for practical examples.

J. Jürjens (TU Munich): Towards Automated Computationally Faithful Verification ... 14

Comparison to symbolic AJ01

Equivalence-based approach: „extrinsic“.
Compute observable traces (somehow) and
compare. Close to intuitions (but maybe not
immediately clear how to efficiently verify eg
with atp‘s).

Present approach: „intrinsic“. Stay as close to
protocol model as possible when trying to
detect information flow to enable efficient
verification.

J. Jürjens (TU Munich): Towards Automated Computationally Faithful Verification ... 15

The computational view

J. Jürjens (TU Munich): Towards Automated Computationally Faithful Verification ... 16

Indistinguishable Ensembles

J. Jürjens (TU Munich): Towards Automated Computationally Faithful Verification ... 17

Secure Encryption (variant)

J. Jürjens (TU Munich): Towards Automated Computationally Faithful Verification ... 18

Wrong key ?

2

4

J. Jürjens (TU Munich): Towards Automated Computationally Faithful Verification ... 19

Computational interpretation
To any set P of control flow graphs assign distribution

[[P]]Π,η on input-/output histories (given an encryption
scheme Π and a security parameter η):

Given an initial probability event τ, map each key
symbol K to a bitstring τ(K), using K(η). Mark all
occurrences of encryptions {E}K with a different coin
symbol r: {E}r

K. Map each coin symbol r to a bit
string τ(r). Then for expressions:

• [[b]]τ
Π,η = b

• [[K]]τ
Π,η = τ(K)

• [[M::N]]τ
Π,η = ([[M]]τ

Π,η , [[N]]τ
Π,η)

J. Jürjens (TU Munich): Towards Automated Computationally Faithful Verification ... 20

Computational interpretation II

Define [[P]]τ
Π,η([])=[].

If [[P]]τ
Π,η(ins)=outs � p � (in,gd,out)p‘ � gd(in)

then [[P[p‘ � p]]]τ
Π,η(ins.in)=outs.out.

(Assume messages to include address and
guards to be mutually exclusive for each p.)

Define: data value s in P remains
computationally secret if any two substitutions
of s by other values are mutually
indistinguishable.

J. Jürjens (TU Munich): Towards Automated Computationally Faithful Verification ... 21

Computational soundness

Let P be a set of state machines that does not
generate encryption cycles and Π a secure
and confusion-free encryption scheme.

If a data value s in P is secret then s is
computationally secret.

(Still for symmetric encryption against passive
adversaries; extension in progress.)

J. Jürjens (TU Munich): Towards Automated Computationally Faithful Verification ... 22

Conclusion

Work towards automated verification of security-critical
software using first-order logic theorem provers
which aims to be

• efficient, powerful
• intuitive, simple
• computationally faithful
• practically applicable
Limitations:
• give up (theoretical) completeness
• complexity theory is also „just“ a theoretical model

J. Jürjens (TU Munich): Towards Automated Computationally Faithful Verification ... 23

(Advertisement block)
Use verification in industrial projects with

HypoVereinsbank, T-Systems, BMW, …
Hide logic behind industrial notation UML:

Book: Jan Jürjens, Secure Systems
Development with UML, Springer-Verlag,
2004

Summer School “Foundation of Security
Analysis and Design”, Bertinoro (6-11/9)

More information (slides, tool etc.):
http://www.jurjens.de/jan

