Security Protocols and Trust

A Tutorial

Joshua D Guttman guttman@mitre.org

http://www.ccs.neu.edu/home/guttman

Coauthors:	F. Javier Thayer Jonathan C. Herzog Lenore D. Zuck
Thanks to support from:	National Security Agency MITRE-Sponsored Research

Main Topics for Today

Cryptographic Protocol Analysis

- How to find attacks on protocols
- How to prove protocols correct

Cryptographic Protocol Design

- Crafting protocol goals for limited trust
- Engineering protocols to meet goals

Protocols and Trust Management

- Protocol analysis tells what happened
- Trust management explains how protocol actions are embedded within real world activities
 - \circ What have I committed myself to in a run?
 - How must I trust my peers to complete a run?

The Dolev-Yao Problem

Abstract from details of cryptography

- Assume cryptographic implementation "perfect"
- Consider structural properties of protocol

Abstraction focuses attention on

- A kind of protocol flaw
- A class of security goal (absence of flaws of this kind)

Suggests modeling for protocols and their security goals Today's purpose: Describe how to

- Discover flaws (of this kind)
- Prove no flaws exist
- Design protocols without flaws

Needham-Schroeder

 $egin{array}{c} K_A, K_B \ N_a, N_b \ \{ |t| \}_K \ N_a \oplus N_b \end{array}$

Public (asymmetric) keys of A, BNonces, one-time random bitstrings Encryption of t with KNew shared secret

Essence of Cryptography (for this talk)

Public key cryptography: algorithm using two related values, one private, the other public

- Encryption: Public key makes ciphertext, only private key owner can decrypt
- Signature: Private key makes ciphertext, anyone can verify signature with public key

A's public key: K_A A's private key: K_A^{-1}

Symmetric key cryptography: algorithm using a single value, shared as a secret between sender, receiver

- Same key makes ciphertext, extracts plaintext

 $K = K^{-1}$

Needham-Schroeder: How does it work?

Assume A's private key K_A^{-1} uncompromised

K_A, K_B	Public (asymmetric) keys of A, B
N_a, N_b	Nonces, one-time random bitstrings
$\{ t \}_K$	Encryption of t with K
$N_a\oplus N_b$	New shared secret

Whoops

Needham-Schroeder Failure

Needham-Schroeder-Lowe

K_A, K_B	Public (asymmetric) keys of A, B
N_a, N_b	Nonces, one-time random bitstrings
$\{ t \}_K$	Encryption of t with K
$N_a\oplus N_b$	New shared secret

Protocol Executions are Bundles

Send, receive events on strands called "nodes"

- Positive for send
- Negative for receive

Bundle \mathcal{B} : Finite graph of nodes and edges representing causally well-founded execution; Edges are arrows \rightarrow , \Rightarrow

- For every reception -t in \mathcal{B} , there's a unique transmission +t where $+t \rightarrow -t$
- When nodes $n_i \Rightarrow n_{i+1}$ on same strand, if n_{i+1} in \mathcal{B} , then n_i in \mathcal{B}
- \mathcal{B} is acyclic

A Bundle

NS Attack: Adversary Activity

Bundles built from adversary strands and regular strands

Regular Strands for NSL

 $\mathsf{NSInit}[A, B, N_a, N_b]$

 $\mathsf{NSResp}[A, B, N_a, N_b]$

A protocol is a finite set of parametric strands, called the roles of the protocol

Origination

- t originates at n if
 - n positive
 - t is a subterm of term transmitted: $t \sqsubset term(n)$
 - $t \not\sqsubset \operatorname{term}(m)$ if $m \Rightarrow^+ n$

Subterms and Origination

Subterm relation \square least transitive, reflexive relation with

 $\begin{array}{l} g \sqsubseteq g, \ h \\ h \sqsubseteq g, \ h \\ h \sqsubseteq \left\{ \left| h \right| \right\}_K \end{array}$

May assume uncompromised private long-term keys originate nowhere: "Safe" keys

Note: $K \not\sqsubset \{|h|\}_K$ unless $K \sqsubset h$

Represents contents of message, not how it's constructed

```
t originates at n_1 means
```

```
n_1 is a transmission (+)
t \sqsubset \operatorname{term}(n_1)
```

if $n_0 \Rightarrow \cdots \Rightarrow n_1$, then $t \not\sqsubset \operatorname{term}(n_0)$

Unique origination, non-origination formalize probabilistic assumptions

- Unique origination expresses nonce properly chosen
- Non-origination expresses long-term key uncompromised (reason for defn of subterm)

A Secrecy Goal

Suppose:

- Bundle \mathcal{B} contains a strand Resp $[A, B, N_a, N_b]$
- K_A^{-1}, K_B^{-1} non-originating
- N_b originates uniquely in ${\cal B}$

Then:

- There is no node $n \in \mathcal{B}$ with term $(n) = N_b$

Form: \forall . This is false for NS, true for NSL To prove secrecy: (1) Non-originating values are safe (2) If a originates, but on regular strand, always inside $\{1 \dots a \dots\}_K$ with K^{-1} safe then a also safe (1),(2) inductively define Safe (relative to \mathcal{B})

An Authentication Goal

Suppose:

- Bundle \mathcal{B} contains a strand Resp $[A, B, N_a, N_b]$
- K_A^{-1} non-originating
- N_b originates uniquely in \mathcal{B}
- $N_b \neq N_a$

Then:

- There is a strand $Init[A, B, N_a, N_b]$ in \mathcal{B}

Authentication: correspondence assertions (of form $\forall \exists$) This is false for NS: Only have

 $\mathsf{Init}[A, X, N_a, N_b]$ in \mathcal{B}

for some X

Precedence within a Bundle

Bundle precedence ordering $\preceq_{\mathcal{B}}$

- $n \preceq_{\mathcal{B}} n'$ means sequence of 0 or more arrows \rightarrow , \Rightarrow lead from n to n'
 - $\preceq_{\mathcal{B}}$ is a partial order by acyclicity

 $\preceq_{\mathcal{B}}$ is well-founded by finiteness

Bundle induction: Every non-empty subset of \mathcal{B} has $\leq_{\mathcal{B}}$ -minimal members

Reasoning about protocols combines

- Bundle induction
- Induction on message structure

Occurring Within

S is a set of terms

a occurs only within S in t means

- in abstract syntax tree of tevery branch leading to a through subterms traverses some $t_0 \in S$ before reaching it
- a occurs outside S in t means
- $a \sqsubset t$ but
 - a does not occur only within S in t
- ${\cal S}$ offers export protection means
 - $t_0 \in S$ implies
 - t_0 has form $\{|h|\}_K$ where $K^{-1} \in Safe$

Only regular strands get a out through export protection

Outgoing Authentication Test

Useful because typically few regular candidates for n_0, n_1

An Example: Yahalom's Protocol

Slightly modified: $\{|A, K|\}_{K_B}$ not forwarded via A

Yahalom Responder's Guarantee: Idea

Does K' = K?

Otherwise, must be another transforming edge, but no regular strand can transform $\{|N_b|\}_{K'}$ into $\{|N_b|\}_K$

Yahalom Responder's Guarantee

 $S_1 = \{\{|B, K', N_a, N_b|\}_{K_A} \colon K' \text{ is a key}\} \cup \{\{|A, N_a, N_b|\}_{K_B}\}$

 $S_2 = \{\{|A, N_a, N_b|\}_{K_B}\}$ Either K = K' or $K \neq K'$

Import Protection

 ${\cal S}$ offers import protection means

- $t_0 \in S$ implies t_0 has form $\{|h|\}_K$ where $K \in$ Safe Only regular strands get a in through import protection

Incoming Tests

Assume $S = \{\{|h|\}_K\}$ offers import protection Conclude n_1 exists in \mathcal{B} and is regular

If also
$$a \sqsubset h$$
 originates uniquely at m_0
and $\{|h|\}_K \not\sqsubset \operatorname{term}(m_0)$
then $m_0 \prec n_0 \Rightarrow^+ n_1 \prec m_1$

Yahalom Initiator Guarantee

The Protocol Design Problem

Specific real-world tasks interweave

- Authentication
- Access control or trust determination
- Agreement on data (request or reply)

Desirable to be able to hand craft a protocol for task An Example: Electronic Purchase with a Money Order

- Deutisius Costenen Mender Deut
- Participants: Customer, Merchant, Bank
- C, M have accounts at B
- C will get money order, B puts "hold" on account
- B transfers funds when M redeems money order

Security goals

- C, M mutual authentication, agree on B, price, goods
- Confidentiality for parameters
- B learns M only if transaction completes, does not learn goods

A Solution: EPMO

 $mo = [[hash(C, N_c, N_b, N_m, price)]]_B$

EPMO and Needham-Schroeder-Lowe

EPMO and the Bank

Protocol Design

Incoming and outgoing tests are a strong heuristic

- Suggest design for special-purpose protocols
- Lead to provably correct results
- Rapid, well-constrained design process

Trust and Protocols

Reason about real world consequences of cryptographic protocols

- Capitalize on methods for protocol analysis and design
- Examples:
 - Distributed access control
 - Principals cooperate to share resources selec
 - As formulated via trust management logic
 - Electronic retail commerce
 - When is customer committed to paying?
 - When is merchant committed to shipping?
 - Whose word did you depend on when deciding?

Remainder of talk: Enrich strand space framework with formulas from a trust management logic

- Formulas for message transmissions are guaranteed by sender
- Formulas for message receipt are assumptions the receiver relies on

control access (or actions) via distribu logical deduction

Example: EPMO

EPMO: Commitments on sends

Trust management and protocols

Each principal P

- Reasons locally in Th_P
- Derives guarantee before transmitting message
- Relies on assertions of others as premises

Premises: formulas associated with message receptions

- Specifies what recipient may rely on, e.g. "B says 'I will transfer funds if authorized' "
- Provides local representation of remote guarantee
- Th_P determines whether ϕ follows from P' says ϕ

Role of protocol

- When I rely on you having asserted a formula, then you did guarantee that assertion
- Coordination mechanism for rely/guarantees
- Sound protocol: "relies" always backed by "guarantees"

EPMO: Rely/Guarantee Formulas

Contrast: Earlier Work

The BAN tradition

- Messages are formulas or formulas idealize messages
- Who asserted the formulas?
- Who drew consequences from formulas?

Embedding formulas explicitly inside messages

- Main view of logical trust mgt
- Formulas parsed out of certificates
- Problem of partial information?

Our view: Formulas part of transmission/reception, not msg

- Compatible with many insights of earlier views
- Independent method to determine what events happened
- Clarity about who makes assertions, who infers consequences
- Partial information easy to handle
- Rigorous notion of soundness

starts with LAWB

EPMO Weakened

Lowe-style attack

Soundness

Let Π be an annotated protocol, i.e.

- A set of roles (parametrized behaviors)
 - A role is a sequence of transmissions/receptions (nodes)
- For each transmission node n, a guarantee γ_n
- For each reception n, a rely formula ρ_n
- The principal active on node n is prin(n)

 γ_n , ρ_n may refer to message ingredients Π is sound if, for all executions \mathcal{B} , and message receptions $n \in \mathcal{B}$

$$\{\operatorname{prin}(m) \text{ says } \gamma_m \colon m \prec_{\mathcal{B}} n\} \longrightarrow_{\mathcal{L}} \rho_n$$

where $\longrightarrow_{\mathcal{L}}$ is the consequence relation of the underlying logic Soundness follows from authentication properties

- Authentication tests a good tool
- Recency easy to incorporate

One case of soundness

 $\rho_{m,3} = B \text{ says } \gamma_{b,2}$ and $C \text{ says } \gamma_{c,5}$ Suppose $n_{m,3} \in \mathcal{B}$

where $m \in Merchant[B, C, M, p, g, N_c, N_m, N_b]$ necessary keys uncompromised, nonces u.o.

 $\begin{array}{ll} \text{Then} & n_{b,2}, n_{c,5} \in \mathcal{B} & \text{for some} \\ & b \in \text{Bank}[B,C,*,p,N_c,N_m,N_b] \text{ and} \\ & c \in \text{Customer}[B,C,M,p,g,N_c,N_m,N_b] \\ & \text{Moreover}, & n_{m,1} \preceq_{\mathcal{B}} n_{b,2} \text{ and } n_{m,1} \preceq_{\mathcal{B}} n_{c,5} \end{array}$

Same form as an authentication result with recency In weakened EPMO, only know

 $c \in \mathsf{Customer}[B, C, X, p, g, N_c, N_m, N_b]$

Four Tenets of Logical Trust Management

- 1. Principal theories: Each principal P holds a theory Th_P ; P derives conclusions using Th_P
 - May rely on formulas P' says ψ as additional premises
 - P says ϕ only when P derives ϕ
- 2. Trust in others: "P trusts P' for a subject ψ " means

- P says $((P' \text{ says } \psi) \supset \psi)$

- 3. Syntactic authority: Certain formulas, e.g.
 - P says ϕ
 - P authorizes ϕ

are true whenever \boldsymbol{P} utters them

- 4. Access control via deduction: P may control resource r; P takes action $\phi(r, P')$ on behalf of P' when P derives
 - P' requests $\phi(r, P')$
 - P' deserves $\phi(r, P')$

Trust Management in Strand Spaces

Combining trust management with nonce-based protocols

- Trust and commitment in e-commerce

Key idea: Annotate positive nodes with guarantees, negative nodes with rely formulas

- This localizes trust management reasoning
- Each principal reasons in local theory
- Soundness ensures every rely was guaranteed

Strand spaces and authentication tests: Strong method for

- Discovering protocol flaws
- Proving protocols correct
- Shaping protocol design

Trust engineering via cryptographic protocols

Permissible Bundles

Let \mathcal{B} a bundle; let each P hold theory Th_P

 $\ensuremath{\mathcal{B}}$ is permissible if

$$\{\rho_m \colon m \Rightarrow^+ n\} \longrightarrow_{\mathsf{Th}_P} \gamma_n$$

for each positive, regular $n \in \mathcal{B}$

Means, every principal derives guarantee before sending each message

- permissible is vertical (strand-by-strand)
- sound is horizontal (cross-strand)

What trust is needed in permissible bundles of a sound protocol? For which P' and ψ must P accept

$$P$$
 says $((P' \text{ says } \psi) \supset \psi)$

Trust Mgt Reasoning for EPMO, 1: Bank

 $\gamma_{b,2} \quad \forall P_M \quad \text{if} \qquad C \text{ authorizes transfer}(B, \text{price}, P_M, N_m), \\ \text{and} \qquad P_M \text{ requests transfer}(B, \text{price}, P_M, N_m), \\ \text{then} \quad \text{transfer}(B, \text{price}, P_M, N_m).$

 $\rho_{b,3}$ $C \text{ says } C \text{ authorizes transfer}(B, \text{price}, M, N_m),$ and $M \text{ says } M \text{ requests transfer}(B, \text{price}, M, N_m).$

Universal quantifier $\forall P_M$ expresses "payable to bearer"

After node $n_{b,3}$, B can deduce

transfer(B, price, P_M , N_m)

Uses syntactic authority (authorizes, requests) but not trust

Trust Mgt Reasoning for EPMO, 2: Merchant

$\gamma_{m,2}$	$\forall P_B$	if then	transfer(P_B , price, M, N_m), ship(M , goods, C).
ρ _{m,3}		and	B says $\gamma_{b,2}$, C says $\gamma_{c,5}$.
$\gamma_{m,4}$		and	M requests transfer(B , price, M , N_m), ship(M , goods, C).

After node $n_{m,3}$, can M can deduce ship(M, goods, C)? Yes, if M requests transfer and accepts

B says $\gamma_{b,2}$ implies $\gamma_{b,2}$

i.e. M trusts B to transfer the funds as promised $\gamma_{b,2} \forall P_M$ if C authorizes transfer $(B, \text{price}, P_M, N_m)$, and P_M requests transfer $(B, \text{price}, P_M, N_m)$, then transfer $(B, \text{price}, P_M, N_m)$.

Trust Mgt Formulas for EPMO, 3: Customer

Customer:

$ ho_{c,2}$	M says $\gamma_{m,2}$.
$ ho_{c,4}$	B says $\gamma_{b,2}.$
$\gamma_{c,5}$	C authorizes transfer $(B, price, M, N_m)$.

Decision to assert $\gamma_{c,5}$ depends on C's trust in M: M says $\gamma_{m,2}$ implies $\gamma_{m,2}$ and C's trust in B:

B says $\gamma_{b,2}$ implies $\gamma_{b,2}$

A Signed Alternate: SEPMO

Signed Electronic Purchase using Money Order mo = $[[hash(C, N_c, N_b, N_m, price)]]_B$