

Evolution teaches predicting protein function

Burkhard Rost CUBIC, NESG, C2B2 Dept. Biochemistry & Mol. Biophysics Columbia University http://www.rostlab.org/

© Burkhard Rost (Columbia New York)

I. Introduction: protein function evolution

Protein function

- chemical
 biochemical
 cellular (kinase)
 developmental
 physiological
 - genetic

how atom bound? transferase cell cycle time, regulatory related to disease dominant/recessive

Function =

anything that happens to or through a protein

Our goals

Predict protein function from sequence + structure Where?

- nuclear/cytoplasmic/extra-cellular/mitochondrial/other, membrane/not/which, nuclear matrix, ER/Golgi/vesicle?
- What?
 - protein-protein, protein-DNA, protein-small substrate, "is enzyme", "is cell-cycle control protein", "SNP deleterious?"
- When?
 - 💡 pathways

Predict protein structure: focus on aspects relevant for function

Increasing wealth of experimental data!

Increasing wealth of experimental data!

Gap sequence/annotation grows!

methyltransferase

identity	protein
100%	guanidinoacetate N-methyltra
99%	magnesium protoporphyrin IX
70%	phosphoribosylglycinamide fo
65%	inositol 3-methyltransferase
65%	phosphoribosylglycinamide fo
63%	aspartate carbamoyltransfera
62%	glycine amidinotransferase
61%	inositol 3-methyltransferase

1 50 fyn human VTLFVALYDY EARTEDDLSF HKGEKFQILN SSEGDWWEAR SLTTGETGYI yrk chick VTLFIALYDY EARTEDDLSF QKGEKFHIIN NTEGDWWEAR SLSSGATGYI fgr human VTLFIALYDY EARTEDDLTF TKGEKFHILN NTEGDWWEAR SLSSGKTCCI yes chick VTVFVALYDY EARTTDDLSF KKGERFQIIN NTEGDWWEAR SIATGKTGYI src avis2 VTTFVALYDY ESRTETDLSF KKGERIQIVN NTEGDWWLAH SLTTGQTGYI src aviss VTTFVALYDY ESRTETDLSF KKGERLQIVN NTEGDWWLAH SLTTGQTGYI src avisr VTTFVALYDY ESRTETDLSF KKGERIQIVN NTEGDWWLAH SLTTGQTGYI src chick VTTFVALYDY ESRTETDLSF KKGERIQIVN NTEGDWWLAH SLTTGQTGYI stk hydat VTIFVALYDY EARISEDLSF KKGERLQIIN TADGDWWYAR SLITNSEGYI src rsvpa ESRIETDLSF KKRERIQIVN NTEGTWWLAH SLTTGQTGYI hck human .. IVVALYDY EAIHHEDLSF QKGDQMVVLE ES.GEWWKAR SLATRKEGYI blk mouse .. FVVALFDY AAVNDRDLQV LKGEKLQVLR .STGDWWLAR SLVTGREGYV hck mouse .TIVVALYDY EAIHREDLSF QKGDQMVVLE .EAGEWWKAR SLATKKEGYI lyn human .. IVVALYPY DGIHPDDLSF KKGEKMKVLE .EHGEWWKAK SLLTKKEGFI lck human ..LVIALHSY EPSHDGDLGF EKGEQIRILE QS.GEWWKAQ SLTTGQEGFI ss81 yeast....ALYPY DADDDdeISF EQNEILQVSD .IEGRWWKAR R.ANGETGII abl mouse ..LFVALYDF VASGDNTLSI TKGEKIRVLG YnnGEWCEAQ ..TKNGQCWV abl1 human..LFWALYDF VASGDNTLSI TKGEKIRVLG YnnGEWCEAQ ..TKNGQCWV src1 drome..VV%LYDY KSRDESDLSF MKGDRMEVID DTESDWWRVV NLTTRQEGLI mysd dicdi....ALYDF DAESSMELSF KEGDILTVLD QSSGDWWDAE L..KGRRGKV yfj4 yeast....WALYSF AGEESGDLPF RKGDVITILK ksQNDWWIGR V..NGREGIF abl2 human..LFWALYDF VASGDNTLSI TKGEKIRVLG YNQNGEWSEV RSKNG.QGWV tec human .EIVVAMYDF QAAEGHDLRL ERGQEYLILE KNDVHWWRAR D.KYGNEGYI abl1 caeel..LFWALYDF HGVGEEQLSL RKGDQVRILG YNKNNEWCEA RIrLGEIGWV txk humanALYDF LPREPCNLAL RRAEEYLILE KYNPHWWKAR D.RLGNEGLI yha2 yeastVRRVALYDL TTNEPDELSF RKGDVITVLE QVYRDWWKGA L..RGNMGIF abp1 sacex....AEYDY EAGEDNELTF AENDKIINIE FVDDDWWLGE LETTGQKGLF

methyltransferase

TRUE FALSE

identity protein

- **100%** guanidinoacetate N-methyltransferase
- 99% magnesium protoporphyrin IX methyltransferase
- 70% phosphoribosylglycinamide formyltransferase
- 65% inositol 3-methyltransferase
- 65% phosphoribosylglycinamide formyltransferase
- 63% aspartate carbamoyltransferase
- 62% glycine amidinotransferase
- 61% inositol 3-methyltransferase

TRUE

	11	
moth	litranctoraco	
	יונו מווסוקו מסק	

identity protein

- **100%** guanidinoacetate N-methyltransferase
- 99% magnesium protoporphyrin IX methyltransferase
- 70% phosphoribosylglycinamide formyltransferase
- 65% inositol 3-methyltransferase
- 65% phosphoribosylglycinamide formyltransferase
- 63% aspartate carbamoyltransferase
- 62% glycine amidinotransferase
- 61% inositol 3-methyltransferase

2/3 accuracy ; 2/4 coverage

FALSE

	methyltransferase	TRUE	FALSE
identity	protein guanidinagastata N. mathyltransforaga		
	guailiuliluacelale N-Illelilyillalisterase magnesium protonornhyrin IX methyltransferas	•	
70%	phosphoribosvlqlvcinamide formvltransferase	2/3	accuracy ; 2/4 coverage
65%	inositol 3-methyltransferase		
65%	phosphoribosylglycinamide formyltransferase		
63%	aspartate carbamoyltransferase		
62%	glycine amidinotransferase	o /o	
61%	inositol 3-methyltransferase	3/8	accuracy ; 4/4 coverage

TRUE

FALSE

methyltransferase

Some problems of homology transfer

Inot all annotations as informative as "methyltransferase"

- ID 1433_TRIHA STANDARD; PRT; 262 AA.
- DE 14-3-3 PROTEIN HOMOLOG (TH1433).
- CC -!- DEVELOPMENTAL STAGE: HIGHEST EXPRESSION DURING THE ACTIVE GROWTH
- CC PERIOD 10-12 HOURS AFTER GERMINATION.
- CC -!- SIMILARITY: BELONGS TO THE 14-3-3 FAMILY.

70% multi-domain proteins

Less than 25% have some annotation

coverage of homology transfer

we clearly need something more!

B Rost, Nair, Liu, Wrzeszczynski & Ofran 2003 CMLS 60 2637-50

© Burkhard Rost (Columbia New York) 9/62

Point mutation
 Binding (Substrate/Protein)
 Environmental change (DNA close/pH)
 Need to know history to predict!

Evolution is history!

B Rost 1999 Prot Engin 12:85-94

Evolution is history!

B Rost 1999 Prot Engin 12:85-94

SH3 Src-homology 3 domain one domain of proteins such as Src tyrosine kinase (STK)

SH3 Src-homology 3 domain one domain of proteins such as Src tyrosine kinase (STK)

fyn_human VTLFVALYDY EARTEDDLSF HKGEKFQILN SSECDWWEAR SLTTGETGYI yrk_chick VTLFIALYDY EARTEDDLSF QKGEKFHIIN NTEGDWWEAR SLSSGATGYI fgr_human VTLFIALYDY EARTEDDLTF TKGEKFHILN NTEGDWWEAR SLSSGKTGCI

1

50

Evolution improves prediction

Evolutionary profile implicitly captures

history of and individual protein!

Evolution improves prediction

Evolutionary profile implicitly captures

history of and individual protein!

Evolution improves prediction

Evolutionary profile implicitly captures

history of and individual protein!

II. Focus: Predict physical protein-protein interactions

Implement simple method to do this failed entirely: too many false positives

Implement simple method to do this failed entirely: too many false positives

Implement simple method to do this failed entirely: too many false positives

Reduce false positives:

Implement simple method to do this failed entirely: too many false positives

- Reduce false positives:
 - Inote: 1/2 of residues (PROFacc, 1999) note: 1/2 of residues -> 1/4 of false positives!

Implement simple method to do this failed entirely: too many false positives

- Reduce false positives:
 - Inote: 1/2 of residues (PROFacc, 1999) note: 1/2 of residues -> 1/4 of false positives!
 - predict residues in external interfaces (ISIS, 2004)

Different interfaces = different physics?

HIV gp120 / CD4 / FAB

PD Kwong, R Wyatt, J Robinson, RW Sweet, J Sodroski & WA Hendrickson (1998) *Nature* **393**, 648-659. PD Kwong, R Wyatt, S Majeed, J Robinson, RW Sweet, J Sodroski & WA Hendrickson (2000) *Structure* **8**, 1329-1339.
Different interfaces = different physics?

At least 6 types of interfaces differ in sequence!

Internal (inter-domain and intra-domain) External homomers (permanent/transient) External heteromers (permanent/transient)

Y Ofran & B Rost (2003) J Mol Biol **325**, 377-87

Interface types differ in composition

Y Ofran & B Rost 2005 submitted

Chi-square test:

- known problem: small data sets
- here millions of points

Chi-square test:

known problem: small data sets
here millions of points

SIGNIFICANT
SIGNIFICANT

Chi-square test:

known problem: small data sets
here millions of points

SIGNIFICANT
SIGNIFICANT

... unfortunately also: proteins [a-b] vs [c-d]
1 vs 2 authors random subsets ...

Y Ofran & B Rost 2005 submitted

Find-self test (statistical significance)

Find-self test on six types of interfaces

Y Ofran & B Rost 2003 J Mol Biol 325:377-87

Using evolution to predict structure

B Rost 1996 Meth Enzymol 266:525-539

More complex system to predict structure

Much more complex system for function

Much more complex system for function

What makes it work?

Evolutionary information:

- Optimally choosing profile
- Explicitly using conserved residues
- (Predicted) 1D Structure important: good prediction + used correctly
 - Surface residues
 - Secondary structure
 - Mark low-complexity and sticky
- Filtering "isolated predictions"

Strength of prediction reflects reliability?

Strength of prediction reflects reliability?

PP interfaces predicted from sequence

Y Ofran & B Rost **2003 FEBS Lett** 544:236-9 Y Ofran & B Rost 2006 submitted

Prediction of hot spots for CD4

alanine scan for
 V1 domain of CD4

 (bound to gp120)
 (A Ashkenazi et al. & DJ Capon (1990)
 PNAS 87, 7150)
 red: observed

Prediction of hot spots for CD4

alanine scan for
 V1 domain of CD4

 (bound to gp120)
 (A Ashkenazi et al. & DJ Capon (1990)
 PNAS 87, 7150)
 red: observed
 purple: predicted

(Y Ofran & B Rost (2006) ISIS submitted)

Prediction of hot spots for CD4

alanine scan for
 V1 domain of CD4

 (bound to gp120)
 (A Ashkenazi et al. & DJ Capon (1990)
 PNAS 87, 7150)
 red: observed
 purple: predicted

(Y Ofran & B Rost (2006) ISIS submitted)

• structure:

PD Kwong et al. & WA Hendrickson (2000) *Structure* **8**, 1329-1339.

Hot spots reliably predicted from sequence!

Y Ofran & B Rost 2006 submitted

Predict protein-protein binding partners

- Reducing false positives:
 - 7 predict surface residues (PROFacc, 1999)

- predict residues in external interfaces (ISIS, 2004)
- predict residues saturated internally (PROFcon, 2004)
- localization (e.g. only all nuclear, LOCtree, 2004)

Predict protein-protein binding partners

Reducing false positives:

predict surface residues (PROFacc, 1999)

predict residues in external interfaces (ISIS, 2004)

predict residues saturated internally (PROFcon, 2004)

localization (e.g. only all nuclear, LOCtree, 2004)

predict residues in protein-substrate interfaces (active)

Most predictions are discoveries!

Predict protein-protein binding partners

Predict protein-protein binding partners

Reducing false positives:

- predict surface residues (PROFacc, 1999)
- predict residues in external interfaces (ISIS, 2004)
- localization (e.g. only all nuclear, LOCo, 2004)
- predict residues in protein-substrate interfaces (active)
- N
- predict residues saturated internally (PROFcon, 2004) predict protein domains/improve alignments (2003/2004)

Put all together and predict binding partners!

III. In passing: Predict subcellular localization

Predict sub-cellular localization

Hierarchical prediction system

vesicular transport

B Alberts et al. (1994) The Cell Garland

Hierarchical prediction system

B Alberts et al. (1994) The Cell Garland

R Nair & B Rost (2005) *JMB* **348** 85-100

© Burkhard Rost (Columbia New York) 39/62

Complete map of localization

R Nair & B Rost 2005 JMB 348:85-100

SWISS-PROT: transcription factor E2F-1

Description and origin of the Protein

I O	
Description	Transcription factor E2F1 (E2F-1) (Retinoblastoma binding protein 3) (RBBP-3) (PRB- binding protein E2F-1) (PBR3) (Retinoblastoma-associated protein 1) (RBAP-1).
Gene name(s)	E2F1 OR RBBP3.
Organism source	Homo sapiens (Human).
Taxonomy	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
Comments	
FUNCTION	TRANSCRIPTION ACTIVATOR THAT BINDS DNA COOPERATIVELY WITH DP PROTEINS THROUGH THE E2 RECOGNITION SITE, TTTCC/GCGC, FOUND IN THE PROMOTER REGION OF A NUMBER OF GENES WHOSE PRODUCTS ARE INVOLVED IN CELL CYCLE REGULATION OR IN DNA REPLICATION. THE DRTF1/E2F COMPLEX FUNCTIONS IN THE CONTROL OF CELL-CYCLE PROGRESSION FROM G1 TO S PHASE. E2F-1 BINDS PREFERENTIALLY RB1 PROTEIN, IN A CELL-CYCLE DEPENDENT MANNER. IT CAN MEDIATE BOTH CELL PROLIFERATION AND P53-DEPENDENT APOPTOSIS.
SUBUNIT	COMPONENT OF THE DRTF1/E2F TRANSCRIPTION FACTOR COMPLEX. FORMS HETERODIMERS WITH DP FAMILY MEMBERS. THE E2F-1 COMPLEX BINDS SPECIFICALLY HYPOPHOSPHORYLATED RETINOBLASTOMA PROTEIN RB1. DURING THE CELL CYCLE, RB1 BECOMES PHOSPHORYLATED IN MID-TO-LATE G1 PHASE, DETACHES FROM THE DRTF1/ E2F COMPLEX, RENDERING E2F TRANSCRIPTIONALLY ACTIVE. VIRAL ONCOPROTEINS, NOTABLY E1A, T- ANTIGEN AND HPV E7, ARE CAPABLE OF SEQUESTERING RB PROTEIN, THUS RELEASING THE ACTIVE COMPLEX.
SUBCELLULAR LOCATION	NUCLEAR.
Keywords	

Transcription regulation; Activator; DNA-binding; Nuclear protein; Phosphorylation; Cell cycle;Apoptosis; Polymorphism;© Burkhard Rost (Columbia New York)41/62

SWISS-PROT: transcription factor E2F-1

Description and origin of the Protein

1 8	
Description	Transcription factor E2F1 (E2F-1) (Retinoblastoma binding protein 3) (RBBP-3) (PRB- binding protein E2F-1) (PBR3) (Retinoblastoma-associated protein 1) (RBAP-1).
Gene name(s)	E2F1 OR RBBP3.
Organism source	Homo sapiens (Human).
Taxonomy	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
Comments	
FUNCTION	TRANSCRIPTION ACTIVATOR THAT BINDS DNA COOPERATIVELY WITH DP PROTEINS THROUGH THE E2 RECOGNITION SITE, TTTCC/GCGC, FOUND IN THE PROMOTER REGION OF A NUMBER OF GENES WHOSE PRODUCTS ARE INVOLVED IN CELL CYCLE REGULATION OR IN DNA REPLICATION. THE DRTF1/E2F COMPLEX FUNCTIONS IN THE CONTROL OF CELL-CYCLE PROGRESSION FROM G1 TO S PHASE. E2F-1 BINDS PREFERENTIALLY RB1 PROTEIN, IN A CELL-CYCLE DEPENDENT MANNER. IT CAN MEDIATE BOTH CELL PROLIFERATION AND P53-DEPENDENT APOPTOSIS.
SUBUNIT	COMPONENT OF THE DRTF1/E2F TRANSCRIPTION FACTOR COMPLEX. FORMS HETERODIMERS WITH DP FAMILY MEMBERS. THE E2F-1 COMPLEX BINDS SPECIFICALLY HYPOPHOSPHORYLATED RETINOBLASTOMA PROTEIN RB1. DURING THE CELL CYCLE, RB1 BECOMES PHOSPHORYLATED IN MID-TO-LATE G1 PHASE, DETACHES FROM THE DRTF1/ E2F COMPLEX, RENDERING E2F TRANSCRIPTIONALLY ACTIVE. VIRAL ONCOPROTEINS, NOTABLY E1A, T- ANTIGEN AND HPV E7, ARE CAPABLE OF SEQUESTERING RB PROTEIN, THUS RELEASING THE ACTIVE COMPLEX.
SUBCELLULAR LOCATION	
Keywords	
Transariation manual	ations Astivators DNA hinding. Nuclear nuctains Dhagnhamdations Call avalas

Transcription regulation; Activator; DNA-binding; Nuclear protein; Phosphorylation; Cell cycle;Apoptosis; Polymorphism;© Burkhard Rost (Columbia New York)41/62

Localization: better and more detail

http://www.rostlab.org/services/nlprot/

SIMILARITY: Contains 2 RNA recognition motif (RRM) domains

NLProt first step toward: Machine-reading literature and building databases from extracted information

S Mika & B Rost 2004 Bioinformatics (ISMB) 20:1241-20

IV. In passing: Function from 3D-Structural Genomics

Structural genomics: 1 structure / family for all

B Rost 1998 Structure 6:259-263
Speeding up structure determination

- today: more structures in 27 days than in first 27 years
- 8% 'new sequence-structure family'

Speeding up structure determination

- today: more structures in 27 days than in first 27 years
- 8% 'new sequence-structure family'

Acronym	Name	Country
JCSG MCSG NYSGRC NESG Gene3D CESG CHTSB CSMP	The Joint Center for Structural Genomics The Midwest Center for Structural Genomics New York Structural Genomics Research Consortium Northeast Structural Genomics Consortium Accelerated Technologies Center for Gene to 3D Structure Center for Eukaryotic Structural Genomics Center for High-Throughput Structural Biology Center for Structures of Membrane Proteins	USA USA USA USA USA USA USA
ICSFI	Integrated Center for Structure and Function Innovation	USA
NYCOMPS BSGC SECSG SGPP S2F SGC	New York Consortium on Membrane Protein Structure Berkeley Structural Genomics Center The Southeast Collaboratory for Structural Genomics Structural Genomics of Pathogenic Protozoa Consortium Structure to function Structural Genomics Consortium	USA USA USA USA Canada
PSF PSB SGM YSG SPINE	Protein Structure Factory Partnership for Structural Biology Structural Genomics of Micobacteria Yeast Structural genomics Structural Proteomics in Europe	Germany France France France Europe
RSGI	RIKEN Structural Genomics Initiative	Japan

>\$150M/year

Japan © Burkhard Rost (Columbia New York)

Speeding up structure determination

- today: more structures in 27 days than in first 27 years
- 8% 'new sequence-structure family'

Acronym Name

	JCSG MCSG	The Joint Center for Structural Genomics The Midwest Center for Structural Genomics	USA USA
	NYSGRC	New York Structural Genomics Research Consortium	USA
	NESG	Northeast Structural Genomics Consortium	USA
Mano	Gene3D	Accelerated Technologies Center for Gene to 3D Structure	USA
Control Provident Raj Naj Angewe Print Carter	CESG	Center for Eukaryotic Structural Genomics	USA
	CHTSB	Center for High-Throughput Structural Biology	USA
	CSMP	Center for Structures of Membrane Proteins	USA
	ICSFI	Integrated Center for Structure and Function Innovation	USA
	NYCOMPS	S New York Consortium on Membrane Protein Structure	USA
	BSGC	Berkeley Structural Genomics Center	USA
	SECSG	The Southeast Collaboratory for Structural Genomics	USA
	SGPP	Structural Genomics of Pathogenic Protozoa Consortium	USA
	S2F	Structure to function	USA
	SGC	Structural Genomics Consortium	Canada
	PSF	Protein Structure Factory	Germany
	PSB	Partnership for Structural Biology	France
	SGM	Structural Genomics of Micobacteria	France
	YSG	Yeast Structural genomics	France
	SPINE	Structural Proteomics in Europe	Europe
	RSGI	RIKEN Structural Genomics Initiative	Japan

>\$150M/year

© Burkhard Rost (Columbia New York) 45/62

Country

Structure reveals function

Claudia **Bertonati**, Sharon Goldsmith-Fischman & Barry **Honig**, unpublished

Automatic annotation of function

MODEL/PDBid:XXX

Protein Information

Protein name Protein CGI-1 Organism Homo sapiens Gene Name Name=Ufc1;

Protein CGI-126 (HSPC155). Homo sapiens Name=Ufc1:

Sequence

Chain: A Length: 175 AA MADEATRRVVSEIPVLKTNAGPRDRELWVQRLKE EYQSLIRYVENNKNADNDWFRLESNKEGTRWFGK CWYIHDLLKYEFDIEFDIPITYPTTAPEIAVPEL DGKTAKMYRGGKICLTDHFKPLWARNVPKFGLAH LMALGLGPWLAVEIPDLIQKGVIQHKEKCNQLEH HHHHH

Predictions-Predictions-Prediction

Structure

Secondary Structure TM, coiled coil, low complexity Disorder Region Predictions B-factors Metal Binding Sites Protein-Protein interaction

Function

Fully Automated Servers Subcellular Localization Posttraslational Modifications

© Burkhard Rost (Columbia New York) 50/

Electrostatic Potential

Cavities

Automatic annotation of function

MODEL/PDBid:XXX

Protein Information

Protein nameProtein CGI-126 (HSPC155).OrganismHomo sapiensGene NameName=Ufc1;

Sequence

Chain: A Length: 175 AA MADEATRRVVSEIPVLKTNAGPRDRELWVQRLKE EYQSLIRYVENNKNADNDWFRLESNKEGTRWFGK CWYIHDLLKYEFDIEFDIPITYPTTAPEIAVPEL DGKTAKMYRGGKICLTDHFKPLWARNVPKFGLAH LMALGLGPWLAVEIPDLIQKGVIQHKEKCNQLEH HHHHH

Analysis Databases Sequence Annotation Genomic Context Structure Classification Available Literature Sequence Sequence Similarity Sequence Motifs Structure

Structure

Secondary Structure TM, coiled coil, low complexity Disorder Region Predictions B-factors Metal Binding Sites Protein-Protein interaction

Function

Predictions-Predictions-Prediction

Fully Automated Servers Subcellular Localization Posttraslational Modifications Structure Validation Structure Homologues Structure Motifs Conservation Map Electrostatic Potential Cavities

GeneTegrate: ontology for comp bio

PredictProtein

- growing since 1992
- >50,000 users
- from 102 countries

www.predictprotein.org/doc/flowchart/syn.html

GeneTegrate: ontology for comp bio

PredictProtein

- growing since 1992
- >50,000 users
- from 102 countries

www.predictprotein.org/doc/flowchart/syn.html

GeneTegrate

Yechiam Yemini (CU)

Yoav Freund (UCSD), Gal Kaiser (CU), Ken Ross (CU)

5 challenges:

Diversity, Confidence, Scaling, Complexity, Reuse

Solution:

- ontology for computational biology
- unified abstractions of enriched object-relationship semantic layer
- classifier-based indexing, look-ahead caching, generalized objectrelationship spreadsheet

PiNat (Protein Interaction Network analysis tool)

Y Ofran et al. 2006 Bioinformatics

V. In passing: Model organisms pose problems for proteinprotein interactions

Can we transfer binding through homology?

Obviously, otherwise no value in model organisms ...

©Sven Mika & Burkhard Rost (Columbia New York) 54/62

Inter and Intra-species the same?

Inter and Intra-species the same?

©Sven Mika & Burkhard Rost (Columbia New York) 55

Much better intra-species

©Sven Mika & Burkhard Rost (Columbia New York) 56/62

Excerpt of work papers 2002-2006

 CAF Andersen <i>et al.</i> 2002 <i>Structure</i> 10:175-184 CP Chen & B Rost 2002 <i>Appl Bioinf</i> 1:21-35 CP Chen <i>et al.</i> 2002 <i>Prot Sci</i> 11:2774-2791 CP Chen & B Rost 2002 <i>Bioinformatics</i> 18:S1 J Liu & B Rost 2002 <i>Bioinformatics</i> 18:S1 J Liu & B Rost 2002 <i>J Mol Biol</i> 322:53-64 MA Marti-Renom <i>et al.</i> 2002 <i>Structure</i> 10:435-440 R Nair & B Rost 2002 <i>Prot Sci</i> 11:2836-2847 G Pollastri <i>et al.</i> 2002 <i>Proteins</i> 47:228-235 D Przybylski & B Rost 2002 <i>Proteins</i> 46:195-205 B Rost 2002 <i>J Mol Biol</i> 318:595-608 B Rost 2002 <i>J Mol Biol</i> 12:409-416 B Rost 2003 <i>Methods Biochem Anal</i> 44:559-587 CAF Andersen & B Rost 2003 <i>Methods Biochem Anal</i> 44:341-363 B Rost 2003 In <i>Artificial intelligence and heuristic methods in bioinformatics</i> (P Frasconi & R Shamir) IOS Press:34-50 B Rost <i>et al.</i> 2003 <i>I R Handbook of Chemoinformatics - from data to knowledge</i> (J Gasteiger & T Engel) Wiley-VCH:1789-1811 Y Ofran & B Rost 2003 <i>NAR</i> 31:397-399 P Carter <i>et al.</i> 2003 <i>NAR</i> 31:397-399 P Carter <i>et al.</i> 2003 <i>NAR</i> 31:397-399 	 31. J Liu & B Rost 2003 <i>NAR</i> 31:3833-3835 32. B Rost & J Liu 2003 <i>NAR</i> 31:3300-3304 33. A Kernytsky & B Rost 2003 <i>NAR</i> 31:3293-3295 35. R Nair & B Rost 2003 <i>Proteins</i> 53:917-930 36. VA Eyrich <i>et al.</i> 2003 <i>Proteins</i> 53 Suppl 6:548-560 37. B Rost <i>et al.</i> 2003 <i>CMLS</i> 60:2637-2650 38. B Rost 2003 In <i>Protein structure determination, analysis, and modeling for drug discovery</i> (D. Chasman) Dekker:207-249 39. JM Aramini <i>et al.</i> 2003 <i>Proteins</i> 56:12:2823-2830 40. D Przybylski & B Rost 2004 <i>JMB</i> 341:255-269 41. J Liu & B Rost 2004 <i>NAR</i> 32:3522-3530 42. J Liu <i>et al.</i> 2004 <i>Proteins</i> 56:188-200 43. Z Wunderlich <i>et al.</i> 2004 <i>Proteins</i> 56:181-187 44. S Mika & B Rost 2004 <i>AIM</i> 82:3522-3530 45. KO Wrzeszczynski & B Rost 2004 <i>CMLS</i> 61:1341-1353 46. R Nair & B Rost 2004 <i>AI Magazine</i> 25:45-56 47. J Liu & B Rost 2004 <i>NAR</i> 32:W321-W326 49. S Mika & B Rost 2004 <i>NAR</i> 32:W5266-2577 51. R Nair & B Rost 2004 <i>NAR</i> 32:W517-W521 52. J Liu & B Rost 2004 <i>NAR</i> 32:W569-W571 53. J Glasgow <i>et al.</i> 2004 <i>Proteins</i> 56:181-7 56. Z Wunderlich <i>et al.</i> 2004 <i>Proteins</i> 56:181-7 	 61.R Nair & B Rost 2005 JMB 348:85-100 62.M Punta & B Rost 2005 Bioinformatics 21:2960-2968 63.M Punta & B Rost 2005 JMB 348:507-512 64.J Benach et al. 2005 Acta Crystallogr D Biol Crystallogr 61:589-98 65.Grana et al. 2005 Nucleic Acids Res 33:W347-51 66.HV Jagadish et al. 2005 Bioinformatics 21 Suppl 1:11-i2 67.A Schlessinger & B Rost 2005 Proteins 61:115-26 68.The FANTOM Consortium 2005 Science 309:1559-1563 69.Y Ofran, M Punta, R Schneider & B Rost 2005 Drug Disc Today 10:1475-1482 70.R Powers et al. 2005 Proteins 61:3-7 73.O Grana et al. 2005 Proteins 61:214-224 74.A Schlessinger, Y Ofran, G Yachdav & B Rost 2006 NAR 34:D777-D780 75.J Liu, J Gough & B Rost 2005 PLoS Genetics in press 76.R Nair & B Rost 2006 In silico technology in drug target identification and validation (Eds. D Leon & S Markel) Boca Raton, FL: CRC Press, in press. 77.D Przybylski & B Rost 2006 In Bioinformatics – From Genomes to Therapies (T Lengauer) Weinheim: Wiley-VCH, in press
IOS Press:34-50 19.B Rost <i>et al.</i> 2003 In <i>Handbook of Chemoinformatics - from data to knowledge</i> (J Gasteiger & T Engel) Wiley-VCH:1789-1811	 48.B Rost <i>et al.</i> 2004 <i>NAR</i> 32:W321-W326 49.S Mika & B Rost 2004 <i>NAR</i> 32:W634-W637 50.H Bigelow <i>et al.</i> 2004 <i>NAR</i> 32:2566-2577 51.R Nair & B Rost 2004 <i>NAR</i> 32:W517-W521 	 75.J Liu, J Gough & B Rost 2005 <i>PLoS Genetics</i> in press 76.R Nair & B Rost 2006 <i>In silico technology in drug target identification and validation</i> (Eds. D Leon & S
20.Y Ofran & B Rost 2003 <i>FEBS Letters</i> 544 :236- 239	52.J Liu & B Rost 2004 <i>NAR</i> 32 :W569-W571 53.J Glasgow <i>et al.</i> 2004 <i>AI Magazine</i> 25 :7-8 54 KO Wrzeszczynski & B Rost 2004 <i>Math Mol Biol</i>	Markel) Boca Raton, FL: CRC Press, in press. 77.D Przybylski & B Rost 2006 In <i>Bioinformatics</i> – <i>From Concerns to Therapias</i> (T. Longauor)
 21. R Nail et al. 2003 NAR 31:397-399 22. P Carter et al. 2003 NAR 31:410-413 23.KO Wrzeszczynski & B Rost 2003 In Cell cycle checkpoint control protocols (H Lieberman) Humana Press:219-233 24. J Liu & B Rost 2003 Cur Opinion Chem Biol 7:5- 	241 :219-233 55.Z Wunderlich <i>et al.</i> 2004 <i>Proteins</i> 56 :181-7 56.R Powers <i>et al.</i> 2004 <i>J Biomolecular NMR</i> 30 :107-108	 78.Y Ofran & B Rost 2006 submitted 2004 79.S Mika & B Rost 2005 PLoS Comp Biol submitted 80 Y Ofran & B Rost 2006 in preparation
11 25.R Zidovetzki <i>et al.</i> 2003 <i>JBC</i> 15 :555-575 26.Y Ofran & B Rost 2003 <i>JMB</i> 325 :377-387 27.IYY Koh <i>et al.</i> 2003 <i>NAR</i> 31 :3311-3315 28.R Nair & B Rost 2003 <i>NAR</i> 31 :3337-3340 29.VA Eyrich & B Rost 2003 <i>NAR</i> 31 :3308-3310 30.S Mika & B Rost 2003 <i>NAR</i> 31 :3789-3791	 57.B Rost 2005 In <i>The Proteomics Protocols Handbook</i> (J. Walker) 875-901 58.A Schlessinger & B Rost 2005 <i>Proteins</i> 61:115-126 59.Y Ofran & B Rost 2005 In <i>Bioinformatics</i> (A. D. Baxevanis and B. F. Ouellette) Wiley:197-222 60.S Mika & B Rost 2005 <i>NAR</i> 33:D160-163 	

Excerpt of work papers 2002-2006

Excerpt of work papers 2002-2006

Conclusions

- Transient protein-protein interfaces specific
 -> specific prediction very accurate
- Localization predicted at levels of accuracy similar to high-throughput experiments
- Structural genomics is increasingly impacting biology; it builds on computational biology

Evolution provides the key for *de novo* prediction of (protein) function

Predict function from sequence+structure

- **Molecular level**
 - Localization Protein-X interactions
- System level

THIS is the beginning

Thanksgiving

Group (left): Claus AF Andersen, Hepan Tang, Murat Cokol, Trevor Siggers, Chen Peter Chien, Shoshanna Posy, Venkatesh Mysore STRACK Guy Montelione (Rutgers), Diana Murray (Cornell NYC), Tom Acton (Rutgers), Liang long & John Hunt (Columbia), George DeTitta (Buffalo), Cheryl Arrowsmith (Toronto), Wayne Hendrickson (Columbia) General CU: Barry Honig, Ann McDermott, Art Palmer, David Hirsh, Yoav Freund, Yechiam Yemini) Dimitris Thanos, Richard Mann, Richard Axel, Eric Kandel, Max Gottesmann, Oliver Hobert, Iva Greenwald, Marty Chalfie, Larry Shapiro, Christine Leslie, Dimitris Anastassiou **EVA:** Andrej Sali (UCSF), Alfonso Valencia (Madrid) **ASF:** Anna Tramantano (Rome), Terry Gaasterland (UCSD) Reinhard Schneider (EMBL), Chris Sander (Sloan), Debbie Marks (Harvard)

Karima Djabali, Lena Rezkia Inge Rost

X=http://www.rostlab.org

PredictProtein PP X/predictprotein/

META-PP EVA services: PredictNLS NORSp **DSSPcont** NLProt **CHOP/CHOPnet**

databases: PEP CellCycleDB NMPdb X/meta/submit_meta.html X/eva/ X/services/ X/services/loctree/ X/predictNLS/ X/services/norsp/ X/services/dsspcont/ X/services/nlprot/ X/services/chop/ X/services/isis/ X/db/ X/db/PEP/ X/db/cellcycledb/ X/db/nmpdb/

