Annotation & Inference New genomes, New functions

Michal Linial , Institute of Life Sciences The Hebrew University of Jerusalem

Center for Discrete Mathematics & Theoretical Computer Science Founded as a National Science Foundation Science and Technology Center

Annotation & Inference New genomes, New functions

Domain families by EVEREST Automatic identification of Protein Domain Performance and analysis w.r.t to other resources

New Annotation by Inference A method for inference – testing on a new genome

New Function to Disserted Proteins High level functionality – story of the toxin like proteins

Motivation

Why domain families? what is wrong with protein classification

Nothing is wrong, But:

- Reducing **false** transitivity.
- Exposing Mix and Match evolution
- Immediate relevance to structural domain-families
- Suggesting evolutionary 'robust units'

Why automatic?

Overcoming large amounts of data

Unbiased identification of new families (even without an identified seed)

EVEREST : A domain families resource A comparative quality tool for other resources

Automatic / de-novo identification and classification of protein domains in all known sequences

Rigorous evaluation against manually / automated & structurally based domain- family resources

- Scoring methods for a 'quality control'
- Exposing any (interesting) relationships within 'the world' of domains
- Web interactive tool

www.everest.cs.huji.ac.il

Method

The Modular Nature of Proteins

- Serine/Threonine protein kinase family active site
- Protein kinase C-terminal domain
- PDZ domain
- SH3 domain
- Guanylate kinase

False Transitivity of Local Alignment

If we cluster these proteins, assuming transitivity of local alignment scores, we will cluster K6A1_MOUSE with MPP3_HUMAN

Method

Working With Segments

Clustering Segments

input

The Easy Case

All segments on CSKP_HUMAN defined by alignments with e-score 1e-40 or better:

We collect all Blast value that are < 100 !

~14 million values

EVEREST: Process Scheme

3 Years in one slide (Elon Portugaly)

- Cluster the segments into conservative groups by overlap similarity
- Each group is a **putative domain**
- We apply average linkage hierarchical clustering on the putative domains
- Creates a binary tree of clusters
- Each cluster is a **putative domain family**
- Machine learning & Scoring w.r.t. PfamA
- Choosing good families (intrinsic properties) training/ disjoin to test
- Each family modelled by HMM, redefine **EV families**.
- Iteration (3 times from 100K to 25K)
- Jointing HMMs and voting for EV consensus family.

Method

Quality & Evaluation

Comparing with Pfam

Pfam is a domain signature DB, manual curation, covers 62% aa, 7500 signatures

Accuracy – how well a typical EVEREST domain family scores w.r.t Pfam

Size of the intersection over the size of the union Scores range from 0 to 1.0 (Jaccard Score)

EV of 10 instances matches Pfam with 10 with only 9 are overlapping

Score: 0.81

Getting Better (accuracy measure)

EVEREST – Evaluation vs Reference

- EVEREST is evaluated against reference sets of known families (Pfam, SCOP, CATH)
- Score of EVERSET family w.r.t. Intersecting reference family:
 - size of intersection / size of union

- Accuracy

- Each EVEREST family scored vs. best matching reference
- Look at score profile across
 EVEREST families
- Ignore EVEREST families
 unknown to reference set

- Coverage

- Each reference family scored vs. best matching EVEREST
- Look at score profile across interesting subsets of refrence set
- Non-Trivial: family size>=5
- Hetero: non-trivial + appearing in hetero-multi-domain proteins

Evaluation – wrt Pfam EVEREST & ADDA (Holm)

EVEREST & ADDA Evaluation vs Pfam

Evaluation – Compare w.r.t SCOP manual classification of structural domains

EVEREST – Evaluation vs SCOP (family) coverage

Evaluation – Compare wrt CATH /SCOP superfamily (coverage)

Overall Numbers (for UniProt/SWP)

13,569 EV families were defined. Providing Joint HMMs.

Jointly cover **83% of the aa** in the SWP DB.

The average (median) size of an **EVEREST domain family** is 81 (41).

The average (median) length of the domains is 117 (76) aa.

Move to some examples (web based querying)

Examples: New Functional Annotation

EVEREST family 1017
PF04673 (Polyketide synthesis cyclase)
PF04486 (SchA/CurD like protein)

PF04486 has no known function

- Two of its members are known to be in gene clusters involved in the synthesis of polyketidebased spore pigments.
- Could these two families be considered one?

 Everest Protein ID: 15110; Swissprot ID: CURD_STRCN; Length in AA: 367 Name: Polyketide synthase curD

 Everest Protein ID: 15111; Swissprot ID: CURG_STRCN; Length in AA: 107 Name: Polyketide synthase curG

 Everest Protein ID: 69285; Swissprot ID: TA34_TREPA; Length in AA: 204 Name: 34 kDa membrane antigen precursor (Pathogen-specific membrane antigen)

 Everest Protein ID: 69940; Swissprot ID: TCMI_STRGA; Length in AA: 109 Name: Tetracenomycin polyketide synthesis protein tcml

 Everest Protein ID: 78204; Swissprot ID: VMTM_LAMBD; Length in AA: 109 Name: Minor tail protein M

 Everest Protein ID: 79716; Swissprot ID: WH42_STRCO; Length in AA: 397 Name: 42.8 kDa protein in whiE locus (WhiE ORF I)

 Everest Protein ID: 116529; Swissprot ID: YHB2_STRCO; Length in AA: 111 Name: Hypothetical protein SCO5314 (WhiE ORF VII)

New Family (1)

- EV02275 is unknown to Pfam
- 54 out of its 55 domains appear 90 positions N-terminal to PF03171 (20G-Fe(II) oxygenase superfamily)
 - Perhaps this is a new domain family?

PDB 1UOG

- **RED EVEREST 2275**
- BLUE PF03171

New domain family (2)

48 proteins – Pesticidial crystal protein cry5Aa (Insecticidal delta-endotoxin CryVA(a) (Crystaline entomocidal protoxin)

EV covers the 48 proteins of PFAM (and SCOP / CATH) - perfectly

Two that became one

Examples in Pfam CLANs

PFAM (OLD) Taurine catabolism dioxygenase TauD, TfdA family Pfam (NEW) a composed entry: **TauD**

 Everest Protein ID: 88322; Swissprot ID: YHC1_YEAST; Length in AA: 465 Name: Hypothetical 53.1 kDa protein in SPO11-OPI1 intergenic region

Superfamily

- EVEREST family EVO4463 fully covers both PF00465 (Iron-containing alcohol dehydrogenase) and PF01761 (3-dehydroquinate synthase).
- ENZYME: PF00465 is EC1.1-
- ENZYME: PF01761 is sometimes EC4.6 and sometimes EC1.1
- SCOP /CATH: Same superfamily/ Homology group

ODIQVQQKLDTKVYELVGKLI **Alternative Family Definition** TGEGIPELLTnLnGLAQQYLREQLKIEEDS RDnYVPIKVADIGDVSRRDWNAGIAI (VIPSAAOEI SDIKLFQGNVIYRLnEEYEEVWRGIEEEI 'OSKPAIGGVEVI TGVIROGYPI nNI SRGQKVAnAIKDAVYGKTIHEGDTLYVDIPENHYHILKEQL **Elongation Factor** CATH SCOP 3 'domain family' : All support same proteins

Half C-terminal SCOP - two adjacent domains (yellow, blue) CATH – two separated (blue, red) spacer (green) EVEREST – one domain (pink)

Proteins search

Protein P-64671																						
Everest ID	P-64671																					
System	SwissProt 4	0.28																				
ID in Source	SC17_YEAS	ST																				
Accession number	P32602	Sco	res:																			
EMBL Protein-ID		0	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.5	0.55	0.6	0.65	0.7	0.75	0.8	0.85	0.9	0.95	1
Protein name	Vesicular-fus																					
Length in amino acids	291											fror	n: 137	to: 1	48			_				
Theoretical pl	4.96										_	PFA Nar	M ID: ne: NS	PF02 F atta	071 achme	nt pro	otein					
Molecular weight:	32757 Da										-											
PDB																						

Sequence of prot

1	MSDPVELLKRAEKKGVPS
	YKFEEAADLCVQAATIYR
61	LKAADYQKKAGNEDEAGN
	GNSVNAVDSLENPIQIFT.
121	FELGEILENDLHDYAKAI
	DQSVALSNKCFIKCADLK
181	YSKLIKSSMGNRLSQWSL
	AATDAVAARTLQEGQSED
241	KSLIDAVNEGDSEQLSEH
	WKITILNKIKESIQQQED

Keywords							
Swissprot	Endoplasmic reticulum, Golgi stack, Protein transport, Transport						
InterPro accession number	IPR000744						
GO	 GO cellular component: Golgi apparatus, Cell, Cellular_component, Cytoplasm, Endoplasmic reticulum, Intracellular GO molecular function: Intracellular transporter, Molecular_function, Protein transporter, Transporter GO biological process: Biological_process, Cell growth and/or maintenance, Intracellular protein transport, Protein transport, Transport 						
NCBI Taxonomy							
SUP	ERKINGDOM - eukaryota _ KINGDOM - fungi _ PHYLUM - ascomycota _ SUBPHYLUM - saccharomycotina _ CLASS - saccharomycetes _ ORDER - saccharomycetales _ FAMILY - saccharomycetaceae _ GENUS - saccharomyces						

[____SPECIES -___saccharomyces cerevisiae

On the Web

Evaluate any reference domain resources

Legend: Families Appearances						
	Family ID	Count	Count total			
	10369	9	25			
	12204	9	25			
	1875	9	25			
	10564	9	25			
	2328	5	17			
	6667	4	8			
	2118	3	7			
	11462	1	1			
	11047	1	10			
	11787	1	3			

Is there any added value for The overlapping EV families?

EV10564 /100% - perfect match but 220 aa not 640 aa

EV01875/ 87% cover / 3 new

Total 25 proteins. Representative: 9 proteins

Downloads:	1	
Global-local HMM:	\mathbf{N}	
Global-global HMM:	¥	

View list of all proteins | View list of representative proteins only | View PFAM intersections with family 10369

1. Everest Protein ID: 65047; Swissprot ID: SEC1_YEAST; Length in AA: 724 Name: Protein transport protein SEC1

2. Everest Protein ID: 65772; Swissprot ID: SLP1_CAEEL; Length in AA: 576 Name: Protein slp-1

3. Everest Protein ID: 65806; Swissprot ID: SLY1_YEAST; Length in AA: 666 Name: SLY1 protein

4. Everest Protein ID: 67547; Swissprot ID: STB2_CANFA; Length in AA: 593 Name: Syntaxin binding protein 2 (Unc-18 homolog 2) (Unc-18B) (Unc18-2)

 Everest Protein ID: 114200; Swissprot ID: VP33_YEAST; Length in AA: 691 Name: Vacuolar protein sorting 33 (SLP1 protein)

7. Everest Protein ID: 114204; Swissprot ID: VP3A_HUMAN; Length in AA: 596 Name: Vacuolar protein sorting 33A (hVPS33A)

 Everest Protein ID: 114207; Swissprot ID: VP3B_HUMAN; Length in AA: 617 Name: Vacuolar protein sorting 33B (hVPS33B)

9. Everest Protein ID: 114211; Swissprot ID: VP45_MOUSE; Length in AA: 570 Name: Vacuolar protein sorting-associated protein 45 (mVps45)

	1	2	3	
Global-Local HMM:	¥	8	¥	
lobal-Global HMM:	¥	¥	¥	

- List of domains of EV00014 in tabular form.
- Scoring of EV00014 by families from other systems.

Family color code legend: Current family always in red Relationship of current family to other families **Type refers to relationship between boundar** es: same = similar boundaries subdomain superdomain **C-terminal neighbor N-terminal neighbor Forward ="how many of the member of the** current family participate in the relationship **Backward ="how many of the member of the** other family participate in the relationship 3. Everest Protein ID: 45068; Swiss-Prot ID: NIFU_ANAAZ; Length in AA: 300 Name: Nitrogen fixation protein nifU 4. Everest Protein ID: 45071; Swiss-Prot ID: NIFU_AQUAE; Length in AA: 157 Name: NifU-like protein

Next Phase:

 Improving EVEREST web •Evaluation of ALL used resources

79 proteins

protein S4

- Phylogenetic View
- •Enrich queries (according to
- reference Resource)
- •Names for EVxxxx
- •Paste your protein
- Domain boundaries

 Everest Protein ID: 10004919; Swissprot ID / PDB ID: 1c05_A; Name: Ribosomal Protein S4 Delta 41

Summary:

- We provide an automated framework for identification and classification of new protein domains
- recovering 60% of difficult known Pfam families.
- Suggests new families for 8% (with > 51% fidelity)
- For 20% we suggest a new view on domain families
- Manual inspection of families scoring low w.r.t. Pfam suggested that many of those are valid families.
- Enabling inspection of EVEREST families and additional resources in http://www.everest.cs.huji.ac.il

Annotation & Inference New genomes, New functions

EVEREST

Having Function

Experiments Literature Expert view Automatic (no pre-knowledge)

Partition to 'domains' (no transitivity)

Robustness (evaluate w.r.t others)

No Function

New genomes No similarity No evidence

May 2006

Annotation & Inference New genomes, New functions

Domain families by EVEREST Automatic identification of Protein Domain Performance and analysis w.r.t to other resources

New Annotation by Inference A method for inference – testing on a new genome-the BEE

New Function to Disserted Proteins High level functionality – story of the toxin like proteins

Motivation Honey Bee The brain & complex neuronal behavior

C Elegans	19,000
(worm)	
Miniat. Wasp	10,000
Drosophila	14.000
(fruit fly)	14,000
Apis	10,000
(honey bee)	
Homo Sapiens	25,000

The number of neurons or genes is not indicative for the brain and behavior complexity.

The makeup of a social behaving insect

ProtoBee: Goal ProtoBee.cs.huji.ac.il

Honey bee genome recently sequenced: ~200 MB (by HGSC at Baylor College of Medicine)

10,157 predicted ORFs

- Produce a hierarchical (functional) organization of the bee proteome
- Annotate the bee sequences
- Systematically find putative instances of
 - Bee gene-loss events
 - Bee-specific paralogs
 - Bee-specific functionality
 - Mis-predicted genes (FN/FP)

ProtoNet classifications The Principles: A reminder

- Unsupervised
- •Only sequence information as input
- •All proteins involved (incl. hypothetical..)
- Family definition is hierarchical

Only based on statistical significance of the similarity score

•Clustering process after ALL mutual 'distance' information is computed (Blast of All against All for 120 K proteins, E=100)

Evaluation vs InterPro, GO etc Pfam, Prosite, SMART, PRINTS, SCOP, CATH...

www.protonet.cs.huji.ac.il

Clustering Method

First, each protein is considered a singleton (a cluster of its own).

Clustering Method

- Next, we iteratively merge the pairs of clusters
- We choose to merge the 'most similar' pair of clusters.

Clustering Method

The clustering process gradually generates a tree of clusters

 $\underline{x_1 + x_2 + \ldots + x_n}$

п

 $\sqrt[n]{x_1 x_2 \dots x_n}$

п

Pruning: Compact the tree to 12% of its size without Reduction in performance (w.r.t. InterPro)

quality..

ProtoNet Hierarchical organization

Protein database:

SwissProt ~133,000 proteins -

Testing the 'Matching Score' for InterPro (combining all high – quality domain based / structure base / knowledge based)

Annotation Inference for proteins in clusters

C- cluster C ; K - keyword Annotation Score AS (C,K) = specificity² x sensitivity = 0.25 $\left(\frac{TP}{TP + FP}\right)^{2} \times \frac{TP}{TP + FN}$ *TP* is the proteins in C that have the keyword K *FN* is the proteins not in C that have the keyword K *FP* is proteins in C that do not have the keyword K.

The high-confidence annotation threshold

Method for the Bee Hierarchical organization

Protein database (200,000 pr) • Predicted bee protein set: 10,157 pr – SwissProt (without bee) – ~133,000 proteins. – Drosophila proteome (insect) – 20,730 pr. – mouse proteome (UniProt) – 35,199 pr. –

ProtoBee: results

Bee annotation inference high confidence

For each cluster, **calculate its annotations**. Each annotation is required to:

(a) be assigned > 75% of the proteins in the cluster
(b) achieve p-value <= 0.001 (hypergeometric distribution).

Only clusters with > 5 proteins are considered For each bee protein, assign to it the annotations of its cluster and all parents.

Annotation summary

How good is this method?

Pros (assuming negligible transitivity):

Any kind of external information source can be used for – annotation.

"Robustness" reduces chance of false positives. -

Potentially links biological properties to localized – sequence features.

Cons:

Incorrect transitivity due to multiple domains. -

Not as sensitive/specific as motif-based methods. -

Results overview

Clusters organized into 18,936 trees (roots).

5095 roots contain **bee** proteins.

Annotation: 70% of proteins are annotated (InterProScan covers ~72-78%).

Interesting biological information on the evolution of the bee relative to other insects (different talk)

Annotation & Inference New genomes, New functions

Having Function

Experiments Literature Expert view

ProtoBee

Annotation Score (high confidence)

Clusters leading to Retesting ORFs **No Function**

New genomes No similarity No evidence

