Towards the prediction of residues involved in the folding nucleus of proteins Dimacs, May 2006

Jacques CHOMILIER, Mathieu LONQUETY IMPMC, Paris Nikolaos PAPANDREOU, AUA, Athens Igor BEREZOVSKY, Harvard

Topohydrophobic positions

- Bressler & Talmud (1944) : a globular protein is made of a hydrophobic core (1/3 of the AA)
- Analysis of the core from the structures
 - Families of structures. Sequence identity $\leq 25\%$
 - Superposition of structures
 - Derived multiple alignment
 - Positions with only hydrophobic residues (VILMFYW) are called Topohydrophobic positions

Ref: Poupon & Mornon. Proteins. 1998 33:329-42

Amino acid groups

Strict = group 1 = VILFMYW Extended = no group 3, 75% group 1 at least **Topohydrophobic** positions

Globin family

Solvent accessibility

Hydrophobic AA more buried at topohydrophobic positions

Topohydrophobic positions network

M = 5,85 Å $\sigma = 1,25 \text{ Å}$

Topohydrophobic positions form a network within the internal core

The core of the core

- Mean number of Topohydrophobic positions in:
 - Helices = 2.25
 - Strands = 1.67
 - Loops = 0.54
- Residues occupying TH positions are related by a set of distances smaller than other unconserved hydrophobic positions
- One third of Hydrophobic are TH
- Statiscally correspond to the folding nucleus

The folding nucleus

Limits or difficulties

- Both ways possible to determine Topohydrophobic positions : Structure or Sequence
- Structural family of high divergence <25% ID: Algorithms do not give same results
- Multiple alignment difficult for sequences <25% ID (Not automatic)

Automatic TH

- Retrieve members of families from PDB bank with CE
- - SSM (Secondary Structure Matching)
 - CE (Combinatorial Extension)
 - MATRAS

Choice of a consensus of the two programs which give consistent results

Topohydrophobic positions

Distance distribution (in sequence) among TH which are close in 3D space : frequency of separation

Comparative literature

Universally conserved positions in protein folds... Shakhnovich... JMB (1999) 291:177-196

Conserved Key Amino Acids Positions (CKAAPs)... P. Bourne... Proteins (2001) 42:148-163. /ckaaps.sdsc.edu/

Non functional conserved residues in globins and their possible role as a folding nucleus. Ptitsyn... JMB (1999) 291:671-682

Protein structural alignments and functional genomics. Lesk... Proteins (2001) 42:378-382

How to predict the folding nucleus?

- Prediction of topohydrophobic positions
- Lattice simulation
- Monte Carlo procedure

Lattice simulation

Initial state: unfolded chain; 100 initial states

Observation of compact fragments at the beginning of the simulation (10⁶ MC steps)

Fragments are stable in sequence Inter fragment regions = loops

Time of simulation

Typical 10⁵-10⁶ MC steps

First steps of simulation (~10⁶ MC)

Bottom : secondary structures

Mean Number of contacts during simulation

For each residue, number of non-covalent neighbours (NCN) $MIR=(NCN \ge 6)$, Most Interacting Residues

Protein Poteins Foteins

13% of residues have NCN ≥ 692% of MIR are hydrophobic (VIMWYLF)

Most Interacting Residues (MIR)

MIR & nucleus

Prediction of the folding nucleus :

- MIR = Prediction of topohydrophobic positions from a sequence or a multiple alignment
- Residues involved in the folding nucleus do correspond to TH

ASA=4000Å²

1ztr L16A

ASA6500Å²

 Function is concerned since mutation of some nucleus residues destroys compacity of the globule

MIR & nucleus

- Prediction of the folding nucleus : overprediction with the MIR?
- Some do not fall into the core
- How to avoid them?
 - Multiple prediction with several distantly related sequences
 - Other approaches

MIR & tripeptides

Different approaches to separate both classes of MIR: (Barrowed from Ed Trifonov & E. Aharonovsky, JBSD 2005 22:545)

Some tripeptides are anchor points close to MIR

Cinema & Ambrosia

Xml structural database maintained in Manchester (Terri Attwood & Steve Pettifer): Functional annotation in the future

<u>Mutations</u>

MIR calculations are sensible to point mutation

On a limited test set, mutations giving rise to amyoid behavior are located at MIR positions Lysozyme: Two mutations give rise to amyloid I56T D67H

Lysozyme

D67, in a loop, β domain

aginents

156 is at the interface between both domains

Lysozyme folding rate

Fragments

Lysozyme

Lysozyme

Lactalbumin (1f6re) and lysozymes (1iiz, 1ix0, 1jwr) 1f6rE 1ix0 1iizA 1jwrA 1f6rE 100.000 33.913 30.435 36.522 1ix0 100.000 33.913 97.391 1iizA 100.000 36.522 1jwrA 100.000

Strong MIR are conserved Mutations : I56T and D67H. I56 is a MIR D67 is not

EQLTKCEVFRELK--DLKGYGGVSLPEWVCTTFHTSGYDTQAIVQNN--DSTEYGLFQINNKIWCKD KRFTRCGLVNELRKQGFDE--NL-MRDWVCLVENESARYTDKIANVNKNGSRDYGLFQINDKYWCSK KVFERCELARTLKRLGMDGYRGISLANWMCLAKWESGYNTRATNYNAGDRSTDYGIFQANSRYWCND KVFERCELARTLKRLGMDGYRGISLANWMCLAKWESGYNTRATNYNAGDRSTDYGIFQINSRYWCND

	L	L	MCL	W	Y 🗆 F	c 56
F	L	L	WMCL	W	IF]	67

Effect of mutation on function

1enh Homeodomain

ASA=4000Å²

1ztr L16A

Amyloid fragments

FUTURE :

Is there a correlation between fragments agregating ends and the presence of a MIR

MIR might delimitate fragments candidate for amyloid fibril formation

Protein Folding Fragments

Closed loop = protion of the backbone in between two contacts: $a - C\alpha < 10 \text{ Å}$

Sequence length between two neighbors

TEF

- Closed loops = 28 AA
 - \approx super SSR
 - mimimal length to fold
- $\boldsymbol{\cdot}$ Ends in the core
 - Topohydrophobic
 - Folding nucleus (Structuraly required)
- Tightened End Fragments = Closed Loop + TH = TEF

Cytochrome b562

Comparison MIR & TEF's ends are TH.

TEF & amyloid fragments

Prediction of MIR allows to predict TEF ends

Are TEF Autonomous Folding Units?

They must be compared to fragments involved in production of amyloid fibrils

Accueil P-S

P-Serveur

Services Spécifiques

Logiciels

english version

Séquences Structure Modélisation des structures protéiques Interactions Protéiques Petites Molécules

http://bioserv.rpbs.jussieu.fr/

Séquences

Cet ensemble de liens et de services pour chercher, analyser, aligner des séquences protéiques

Structure

Cet ensemble de services permet la recherche et l'analyse des structures protéiques.

Modélisation des structures protéiques

Cet ensemble de services est relatif a la modelisation des structures proteiques

Interactions Protéiques

Cet ensemble de services est relatif aux interactions entre protéines

Petites Molécules

Cet ensemble de services est relatif aux interactions entre protéines et petites molécules (drogues)

Athens: Elias Eliopoulos

Haifa: Edward Trifonov, Elik Aharonovsky

Heidelberg: Luis Serrano

Bruxelles: Marianne Rooman, Jean-Marc Kwasigroch, Dimitri Gillis

Manchester: Terry Attwood, Manuel Corpas, Steve Pettifer, Dave Thorne, James Sinnott

