Algebraic Property Testing: Survey

Madhu Sudan
MIT

Algebraic Property Testing: Personal Perspective

Madhu Sudan
MIT

Algebraic Property Testing:

Perspective

Madhu Sudan

MIT

Property Testing

- Distance: $\delta(f, g)=\operatorname{Pr}_{x \in D}[f(x) \neq g(x)]$

$$
\begin{aligned}
& \delta(f, \mathcal{F})=\min _{g \in \mathcal{F}}\{\delta(f, g)\} \\
& f \approx_{\epsilon} g \text { if } \delta(f, g) \leq \epsilon .
\end{aligned}
$$

- Definition:
\mathcal{F} is (k, ϵ, δ)-locally testable if \exists a k-query tester T s.t.

$$
\begin{aligned}
& f \in \mathcal{F} \Rightarrow T^{f} \text { accepts w.p. } \geq 1-\epsilon \\
& \delta(f, \mathcal{F}) \geq \delta \Rightarrow \quad T^{f} \text { rejects w.p. } \geq \epsilon .
\end{aligned}
$$

- Notes: k-locally testable implies $\exists \epsilon, \delta>0$ locally testable implies $\exists k=O(1)$
One-sided error: Accept $f \in \mathcal{F}$ w.p. 1

Brief History

- [Blum,Luby,Rubinfeld - S'90]
- Linearity + application to program testing
- [Babai,Fortnow,Lund - F'90]
- Multilinearity + application to PCPs (MIP).
- [Rubinfeld+S.]
- Low-degree testing + Formal Definition
- [Goldreich,Goldwasser,Ron]
- Graph property testing.
- Since then ... many developments
- Graph properties
- Statistical properties
- More algebraic properties

Specific Directions in Algebraic P.T.

- More Properties
- Low-degree ($\mathrm{d}<\mathrm{q}$) functions [RS]
- Moderate-degree ($\mathrm{q}<\mathrm{d}<\mathrm{n}$) functions
- q=2: [AKKLR]
- General q: [KR, JPRZ]
- Long code/Dictator/Junta testing [PRS]
- BCH codes (Trace of low-deg. poly.) [KL]
- All nicely "invariant" properties [KS]
- Better Parameters (motivated by PCPs).
- \#queries, high-error, amortized query complexity, reduced randomness.

Contrast w. Combinatorial P.T.

Goal of this talk

- Implications of linearity
- Constraints, Characterizations, LDPC structure
- One-sided error, Non-adaptive tests [BHR]
- Redundancy of Constraints
- Tensor Product Codes
- Symmetries of Code
- Testing affine-invariant codes
- Yields basic tests for all known algebraic codes (over small fields).

Basic Implications of Linearity [BHR]

- Generic adaptive test = decision tree.
- Pick path followed by random $g \in \mathcal{F}$.
- Query f according to path.
- Accept iff f on path consistent with some $h \in \mathcal{F}$.
- Yields non-adaptive one-sided error test for linear \mathcal{F}.

Basic Implications of Linearity [BHR]

- Generic adaptive test = decision tree.
- Pick path followed by random $g \in \mathcal{F}$.
- Query f according to path.
- Accept iff f on path consistent with some $h \in \mathcal{F}$.
- Yields non-adaptive one-sided error test for linear \mathcal{F}.

Constraints, Characterizations

- Say test queries i_{1}, \ldots, i_{k} $\operatorname{accepts}\left\langle f\left(i_{1}\right), \ldots, f\left(i_{k}\right)\right\rangle \in V \neq \mathbb{F}^{k}$
- $\left(i_{1}, \ldots, i_{k} ; V\right)=$ Constraint Every $f \in \mathcal{F}$ satisfies it.
- If every $f \notin \mathcal{F}$ rejected w. positive prob.
then \mathcal{F} characterized
by constraints.
- Like LDPC Codes!

Constraints, Characterizations

- Say test queries i_{1}, \ldots, i_{k} $\operatorname{accepts}\left\langle f\left(i_{1}\right), \ldots, f\left(i_{k}\right)\right\rangle \in V \neq \mathbb{F}^{k}$
- $\left(i_{1}, \ldots, i_{k} ; V\right)=$ Constraint Every $f \in \mathcal{F}$ satisfies it.
- If every $f \notin \mathcal{F}$ rejected w. positive prob.
then \mathcal{F} characterized
by constraints.
- Like LDPC Codes!

Example: Linearity Testing [BLR]

- Constraints:

$$
\begin{aligned}
C_{x, y} & =(x, y, x+y ; V) \mid x, y \in \mathbb{F}^{n} \text { where } \\
V & =\{(a, b, a+b) \mid a, b \in \mathbb{F}\}
\end{aligned}
$$

- Characterization:
f is linear iff
$\forall x, y, C_{x, y}$ satisfied

Insufficiency of local characterizations

- [Ben-Sasson, Harsha, Raskhodnikova]
- There exist families \mathcal{F} characterized by k-local constraints that are not o(|D|)-locally testable.
- Proof idea: Pick LDPC graph at random ...
(and analyze resulting property)

Why are characterizations insufficient?

- Constraints too minimal.
- Not redundant enough!
- Proved formally in [Ben-Sasson, Guruswami, Kaufman, S., Viderman]
- Constraints too asymmetric.
- Property must show some symmetry to be testable.
- Not a formal assertion ... just intuitive.

Redundancy?

- E.g. Linearity Test:
$-\Omega\left(D^{2}\right)$ constraints on domain D
- Standard LDPC analysis:
- Dimension $(\mathcal{F}) \approx D-m$ for m constraints.
- Requires \#constraints $<D$.
- Does not allow much redundancy!
- What natural operations create redundant local constraints?
- Tensor Products!

Tensor Products of Codes!

- Tensor Product: $\mathcal{F} \times \mathcal{G}$
$=\{$ Matrices such every row in \mathcal{F} and every column in $\mathcal{G}\}$
- Redundancy?

Suppose \mathcal{F}, \mathcal{G} systematic
First ℓ entries free
rest determined by them.
\square Free
$\square \mathcal{F}$ determined
$\square \mathcal{G}$ determined

\square determined twice, by \mathcal{F} and \mathcal{G} !

Testability of tensor product codes?

- Natural test:
- Given Matrix M
- Test if random row in F
- Test if random column in G
- Claim:
- If F, G codes of constant (relative) distance; then if test accepts w.h.p. then M is close to codeword of F x G
- Yields $O(\sqrt{ } n)$ local test for codes of length n.
- Can we do better? Exploit local testability of F, G?

Robust testability of tensors?

- Natural test (if F,G locally testable):
- Given Matrix M
- Fiestdinait fatnforno rovindloseoto F

- Suppose M close on most rows/columns to F, G. Does this imply M is close to $\mathrm{F} \times \mathrm{G}$?
- Generalizes test for bivariate polynomials. True for F, G = class of low-degree polynomials. [BFLS, Arora+Safra, Polishchuk+Spielman].
- General question raised by [Ben-Sasson+S.]
- [P. Valiant] Not true for every F, G !
- [Dinur, S., Wigderson] True if F (or G) locally testable.

Tensor Products and Local Testability

- Robust testability allows easy induction (essentially from [BFL, BFLS]; see also [BenSasson+S.])
- Let $\mathcal{F}^{n}=n$-fold tensor of \mathcal{F}.
- Given $f: D^{n} \rightarrow \mathbb{F}$

Natural test: Pick random axis-parallel line verify $\left.f\right|_{\text {line }} \in \mathcal{F}$

Robust testability of tensors (contd.)

- Unnatural test (for F x F x F):
- Given 3-d matrix M:
- Pick random 2-d submatrix.
- Verify it is close to F x F
- Theorem [BenSasson+S., based on Raz+Safra]: Distance to F x F x F proportional to average distance of random 2-d submatrix to F x F.
- [Meir]: "Linear-algebraic" construction of Locally Testable Codes (matching best known parameters) using this (and many other ingredients).

Redundant Characterizations (contd.)

- Redundant constraints necessary for testing [BGKSV]
- How to get redundancy?
- Tensor Products
- Sufficient to get some local testability
- Invariances (Symmetries)
. Sufficient?
- Counting (See Tali's talk)

Testing by symmetries

Invariance \& Property testing

- Invariances (Automorphism groups):

For permutation $\pi: D \rightarrow D, \mathcal{F}$ is π-invariant if $f \in \mathcal{F}$ implies $f \circ \pi \in \mathcal{F}$.
$\operatorname{Aut}(\mathcal{F})=\{\pi \mid \mathcal{F}$ is π-invariant $\}$
Forms group under composition.

- Hope: If Automorphism group is "large" ("nice"), then property is testable.

Examples

- Majority:
- Aut group $=S_{D}$ (full group).
- Easy Fact: If $\operatorname{Aut}(\mathcal{F})=S_{D}$ then \mathcal{F} is poly $(R, 1 / \epsilon)$-locally testable.
- Graph Properties:
- Aut. group given by renaming of vertices
- [AFNS, Borgs et al.] implies regular properties with this Aut group are testable.
- Algebraic Properties: What symmetries do they have?

Algebraic Properties \& I nvariances

- Properties:
$D=\mathbb{F}^{n}, R=\mathbb{F}$ (Linearity, Low-degree, Reed-Muller)
Or $D=\mathbb{K} \supseteq \mathbb{F}, R=\mathbb{F}$ (Dual-BCH) (\mathbb{K}, \mathbb{F} finite fields)
- Automorphism groups?

Linear transformations of domain.
$\pi(x)=A x$ where $A \in \mathbb{P}^{n \times n} \quad$ (Linear-Invariant)
Affine transformations of domain. $\pi(x)=A x+b$ where $A \in \mathbb{F}^{n \times n}, b \in \mathbb{F}^{n} \quad$ (Affine-Inv.)

- Question: Are Linear/Affine-Inv., Locally Characterized Props. Testable? ([Kaufman + S.])

Linear-I nvariance \& Testability

- Unifies previous studies on Alg. Prop. Testing. (And captures some new properties)
- Nice family of 2-transitive group of symmetries.
- Conjecture [Alon, Kaufman, Krivelevich, Litsyn, Ron] : Linear code with k -local constraint and 2transitive group of symmetries must be testable.

Some Results [Kaufman + S.]

- Theorem 1: $\mathcal{F} \subseteq\left\{\mathbb{K}^{n} \rightarrow \mathbb{F}\right\}$ linear, linear-invariant, k-locally characterized implies \mathcal{F} is $f(\mathbb{K}, k)$-locally testable.
- Theorem 2: $\mathcal{F} \subseteq\left\{\mathbb{K}^{n} \rightarrow \mathbb{F}\right\}$ linear, affine-invariant, has k-local constraint implies \mathcal{F} is $f(\mathbb{K}, k)$-locally testable.

Examples of Linear-I nvariant Families

- Linear functions from \mathbb{F}^{n} to \mathbb{F}.
- Polynomials in $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ of degree at most d
- Traces of Poly in $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ of degree at most d
- (Traces of) Homogenous polynomials of degree d
$-\mathcal{F}_{1}+\mathcal{F}_{2}$, where $\mathcal{F}_{1}, \mathcal{F}_{2}$ are linear-invariant. Polynomials supported by degree $2,3,5,7$ monomials.

What Dictates Locality of Characterizations?

- Precise locality not yet understood:

Depends on p-ary representation of degrees.
Example: \mathcal{F} supported by monomials $x^{p^{i}+p^{j}}$
behaves like degree two polynomial

- For affine-invariant family dictated (coarsely) by highest degree monomial in family
- For some linear-invariant families, can be much less than the highest degree monomial.
Example: $\mathbb{K}=\mathbb{F}=\mathbb{F}_{7} ; \mathcal{F}=\mathcal{F}_{1}+\mathcal{F}_{2}$
$\mathcal{F}_{1}=$ poly of degree at most 16
$\mathcal{F}_{2}=$ poly supported on monomials of degree $3 \bmod 6$. $\operatorname{Degree}(\mathcal{F})=\Omega(n) ; \operatorname{Locality}(\mathcal{F}) \leq 49$.

Property Testing from Invariances

Key Notion: Formal Characterization

- \mathcal{F} has single-orbit characterization if
\exists a single constraint $C=\left(x_{1}, \ldots, x_{k} ; V\right)$ such that $\{C \circ \pi\}_{\pi \in \operatorname{Aut}(\mathcal{F})}$ characterize \mathcal{F}.

Theorem: If \mathcal{F} has single-orbit characterization by a k-local constraint (with some restrictions) then it is k-locally testable.

Rest of talk: Analysis (extending BLR)

BLR Analysis: Outline

- Have f s.t. $\operatorname{Pr}_{x, y}[f(x)+f(y) \neq f(x+y)]=\delta<1 / 20$. Want to show f close to some $g \in \mathcal{F}$.
- Define $g(x)=\operatorname{most}^{\text {likely }}\{f(x+y)-f(y)\}$.
- If f close to \mathcal{F} then g will be in \mathcal{F} and close to f.
- But if f not close? g may not even be uniquely defined!
- Steps:
- Step 0: Prove f close to g
- Step 1: Prove most likely is overwhelming majority.
- Step 2: Prove that g is in \mathcal{F}.

BLR Analysis: Step 0

- Define $g(x)=$ most likely ${ }_{y}\{f(x+y)-f(y)\}$.

Claim: $\operatorname{Pr}_{x}[f(x) \neq g(x)] \leq 2 \delta$

$$
- \text { Let } B=\left\{x \left\lvert\, \operatorname{Pr}_{y}[f(x) \neq f(x+y)-f(y)] \geq \frac{1}{2}\right.\right\}
$$

$-\operatorname{Pr}_{x, y}[$ linearity test rejects $\mid x \in B] \geq \frac{1}{2}$

$$
\Rightarrow \operatorname{Pr}_{x}[x \in B] \leq 2 \delta
$$

- If $x \notin B$ then $f(x)=g(x)$

BLR Analysis: Step 1

- Define $g(x)=$ most likely ${ }_{y}\{f(x+y)-f(y)\}$.
- Suppose for some x, \exists two equally likely values.

Presumably, only one leads to linear x, so which one?

- If we wish to show g linear,
then need to rule out this case.
Lemma: $\left.\forall x, \operatorname{Pr}_{y, z}\left[\operatorname{Vote}_{x}(y) \neq \operatorname{Vote}_{x}(z)\right)\right] \leq 4 \delta$

BLR Analysis: Step 1

- Define $g(x)=$ most likely $y_{y}\{f(x+y)-f(y)\}$.
- Suppose for some x, \exists two equally likely values.

Presumably, only one leads to linear x, so which one?

- If we wish to show g linear,
then need to rule out this case.
Lemma: $\left.\forall x, \operatorname{Pr}_{y, z}\left[\operatorname{Vote}_{x}(y) \neq \operatorname{Vote}_{x}(z)\right)\right] \leq 4 \delta$

BLR Analysis: Step 1

- Define $g(x)=$ most likely $_{y}\{f(x+y)-f(y)\}$.

Lemma: $\left.\forall x, \operatorname{Pr}_{y, z}\left[\operatorname{Vote}_{x}(y) \neq \operatorname{Vote}_{x}(z)\right)\right] \leq 4 \delta$

BLR Analysis: Step 1

- Define $g(x)=$ most likely $_{y}\{f(x+y)-f(y)\}$.

Lemma: $\left.\forall x, \operatorname{Pr}_{y, z}\left[\operatorname{Vote}_{x}(y) \neq \operatorname{Vote}_{x}(z)\right)\right] \leq 4 \delta$

BLR Analysis: Step 2 (Similar)

Lemma: If $\delta<\frac{1}{20}$, then $\forall x, y, g(x)+g(y)=g(x+y)$

$g(x)$ $g(y)$ $-g(x+y)$
Prob. Row/column sum non-zero $\leq 4 \delta$.
$f(z)$
$-f(x+z)$

Our Analysis: Outline

- f s.t. $\operatorname{Pr}_{L}\left[\left\langle f\left(L\left(x_{1}\right), \ldots, f\left(L\left(x_{k}\right)\right)\right\rangle \in V\right]=\delta \ll 1\right.$.
- Define $g(x)=\alpha$ that maximizes

$$
\operatorname{Pr}_{\left\{L \mid L\left(x_{1}\right)=x\right\}}\left[\left\langle\alpha, f\left(L\left(x_{2}\right)\right), \ldots, f\left(L\left(x_{k}\right)\right)\right\rangle \in V\right]
$$

- Steps:
- Step 0: Prove f close to g
- Step 1: Prove "most likely" is overwhelming majority.
- Step 2: Prove that g is in \mathcal{F}.

Our Analysis: Outline

- f s.t. $\operatorname{Pr}_{L}\left[\left\langle f\left(L\left(x_{1}\right), \ldots, f\left(L\left(x_{k}\right)\right)\right\rangle \in V\right]=\delta \ll 1\right.$.
- Define $g(x)=\alpha$ that maximizes

$$
\operatorname{Pr}_{\left\{L \mid L\left(x_{1}\right)=x\right\}}\left[\left\langle\alpha, f\left(L\left(x_{2}\right)\right), \ldots, f\left(L\left(x_{k}\right)\right)\right\rangle \in V\right]
$$

- Steps:
- Step 0: Prove f close to g
- Step 1: Prove "most likely" is overwbelming majority.
- Step 2: Prove that g is in \mathcal{F}.

Matrix Magic?

- Define $g(x)=\alpha$ that mavinilies

$$
\operatorname{Pr}_{\left\{L \mid L\left(x_{1}\right)=x\right\}}\left[\left\langle\alpha, f\left(L\left(x_{2}\right)\right), \ldots, f\left(L\left(x_{k}\right)\right)\right\rangle \in V\right]
$$

Lemma: $\left.\forall x, \operatorname{Pr}_{L, K}\left[\operatorname{Vote}_{x}(L) \neq \operatorname{Vote}_{x}(K)\right)\right] \leq 2(k-1) \delta$

x	$L\left(x_{2}\right)$	\ldots	$L\left(x_{k}\right)$
$K\left(x_{2}\right)$			
\vdots			
$K\left(x_{k}\right)$			
Algebraic Property Testing @ DIMACS			

Matrix Magic?

- Want marked rows to be random constraints.
- Suppose x_{1}, \ldots, x_{ℓ} linearly independent; and rest dependent on them.
Fill with random entries
Matrix Magic?

- Suppose x_{1}, \ldots, x_{ℓ} linearly independent;
Fill with random entries
Matrix Magic?

Summarizing

- Affine invariance + single-orbit characterizations imply testing.
- Unifies analysis of linearity test, basic low-degree tests, moderate-degree test (all A.P.T. except dual- BCH ?)

Concluding thoughts - 1

- Didn't get to talk about
- PCPs, LTCs (though we did implicitly)
- Optimizing parameters
- Parameters
- In general
- Broad reasons why property testing works worth examining.
- Tensoring explains a few algebraic examples.
- Invariance explains many other algebraic ones.
(More about invariances in
[Grigorescu,Kaufman, S. '08], [GKS'09])

Concluding thoughts - 2

- Invariance:
- Seems to be a nice lens to view all property testing results (combinatorial, statistical, algebraic).
- Many open questions:
- What groups of symmetries aid testing?
- What additional properties needed?

■ Local constraints?

- Linearity?
- Does sufficient symmetry imply testability?
- Give an example of a non-testable property with a ksingle orbit characterization.

Thank You!

