Algebraic Property Testing: A Survey

Madhu Sudan MIT

April 1, 2009

Algebraic Property Testing: Personal Perspective

Madhu Sudan MIT

April 1, 2009

Algebraic Property Testing: Perspective

Madhu Sudan MIT

April 1, 2009

Property Testing

Distance:
$$\delta(f,g) = \Pr_{x \in D}[f(x) \neq g(x)]$$

 $\delta(f,\mathcal{F}) = \min_{g \in \mathcal{F}} \{\delta(f,g)\}$
 $f \approx_{\epsilon} g \text{ if } \delta(f,g) \leq \epsilon.$

• Notes: k-locally testable implies $\exists \epsilon, \delta > 0$ locally testable implies $\exists k = O(1)$ One-sided error: Accept $f \in \mathcal{F}$ w.p. 1

April 1, 2009

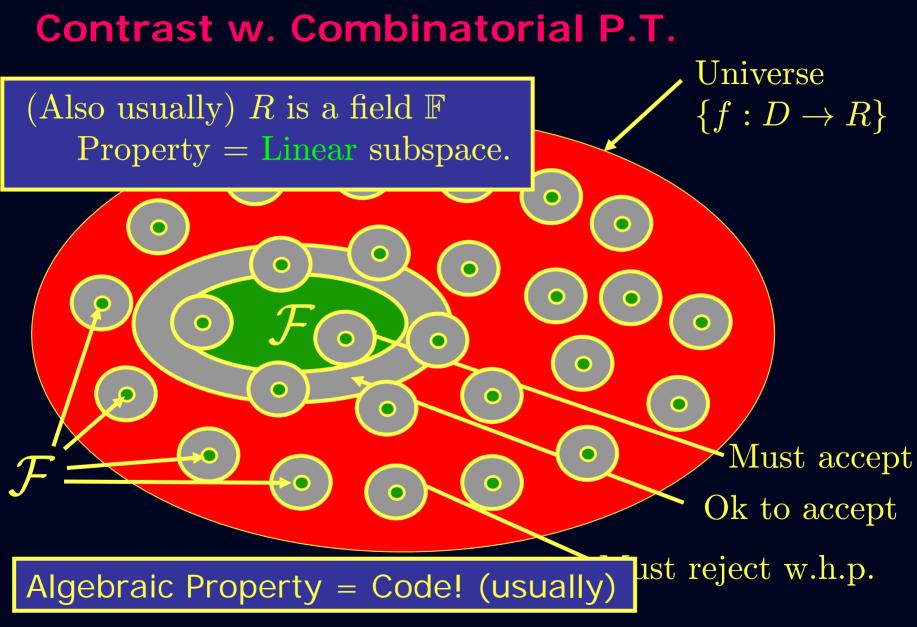
Brief History

Blum, Luby, Rubinfeld – S'90] Linearity + application to program testing Babai, Fortnow, Lund – F'90] Multilinearity + application to PCPs (MIP). Rubinfeld+S.] Low-degree testing + Formal Definition Goldreich, Goldwasser, Ron Graph property testing. Since then ... many developments Graph properties Statistical properties More algebraic properties

Specific Directions in Algebraic P.T.

More Properties

- Low-degree (d < q) functions [RS]</p>
- Moderate-degree (q < d < n) functions</p>
 - q=2: [AKKLR]
 - General q: [KR, JPRZ]
- Long code/Dictator/Junta testing [PRS]
- BCH codes (Trace of low-deg. poly.) [KL]
- All nicely "invariant" properties [KS]
- Better Parameters (motivated by PCPs).
 - #queries, high-error, amortized query complexity, reduced randomness.



April 1, 2009

Goal of this talk

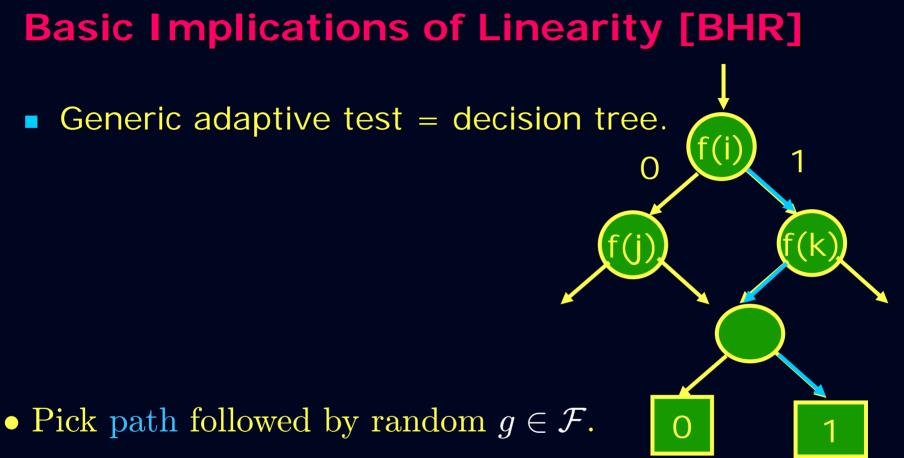
Implications of linearity

- Constraints, Characterizations, LDPC structure
- One-sided error, Non-adaptive tests [BHR]

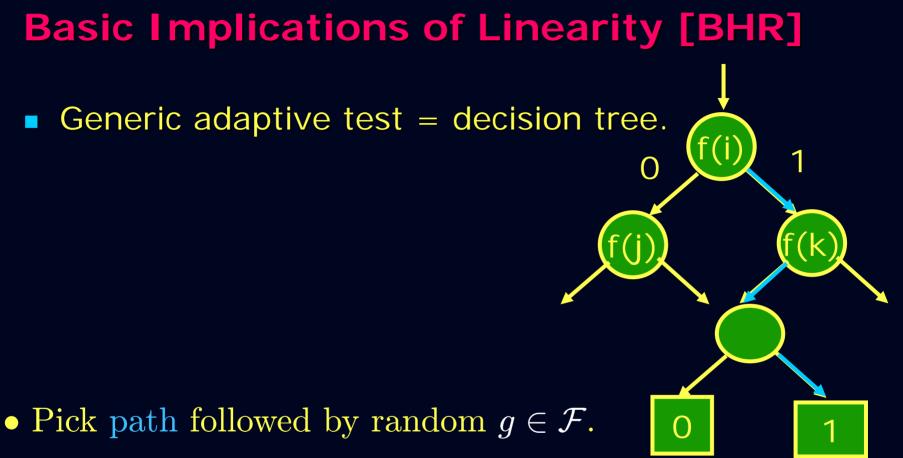
Redundancy of Constraints
 Tensor Product Codes

Symmetries of Code
 Testing affine-invariant codes
 Yields basic tests for all known algebraic codes (over small fields).

April 1, 2009



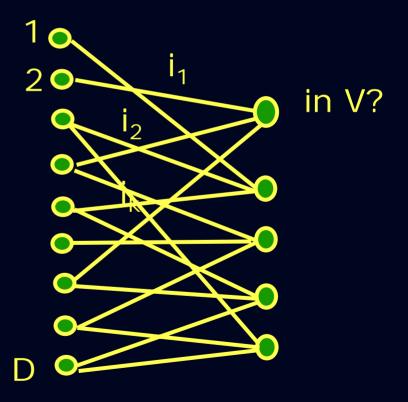
- Query f according to path.
- Accept iff f on path consistent with some $h \in \mathcal{F}$.
- Yields non-adaptive one-sided error test for linear \mathcal{F} . April 1, 2009 Algebraic Property Testing @ DIMACS



- Query f according to path.
- Accept iff f on path consistent with some $h \in \mathcal{F}$.
- Yields non-adaptive one-sided error test for linear \mathcal{F} . April 1, 2009 Algebraic Property Testing @ DIMACS

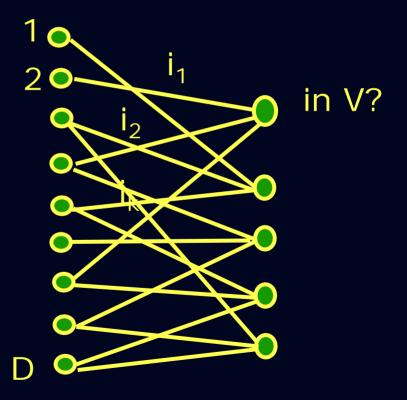
Constraints, Characterizations

- Say test queries i_1, \ldots, i_k accepts $\langle f(i_1), \ldots, f(i_k) \rangle \in V \neq \mathbb{F}^k$
- $(i_1, \ldots, i_k; V) = \text{Constraint}$ Every $f \in \mathcal{F}$ satisfies it.
- If every f ∉ F rejected w. positive prob. then F characterized by constraints.
 - Like LDPC Codes!



Constraints, Characterizations

- Say test queries i_1, \ldots, i_k accepts $\langle f(i_1), \ldots, f(i_k) \rangle \in V \neq \mathbb{F}^k$
- $(i_1, \ldots, i_k; V) = \text{Constraint}$ Every $f \in \mathcal{F}$ satisfies it.
- If every f ∉ F rejected w. positive prob. then F characterized by constraints.
 - Like LDPC Codes!



Example: Linearity Testing [BLR]

• Constraints:

$$C_{x,y} = (x, y, x + y; V) | x, y \in \mathbb{F}^n \text{ where}$$
$$V = \{(a, b, a + b) | a, b \in \mathbb{F}\}$$

• Characterization:

f is linear iff $\forall x, y, C_{x,y}$ satisfied

Insufficiency of local characterizations

- [Ben-Sasson, Harsha, Raskhodnikova]
- There exist families \mathcal{F} characterized by k-local constraints that are not o(|D|)-locally testable.
- Proof idea: Pick LDPC graph at random ... (and analyze resulting property)

Why are characterizations insufficient?

Constraints too minimal.

- Not redundant enough!
 - Proved formally in [Ben-Sasson, Guruswami, Kaufman, S., Viderman]

Constraints too asymmetric.

- Property must show some symmetry to be testable.
 - Not a formal assertion ... just intuitive.

Redundancy?

- E.g. Linearity Test:
 - $\Omega(D^2)$ constraints on domain D
- Standard LDPC analysis:
 - Dimension(\mathcal{F}) $\approx D m$ for m constraints.
 - Requires #constraints < D.
 - Does not allow much redundancy!
- What natural operations create redundant local constraints?
 - Tensor Products!

Tensor Products of Codes!

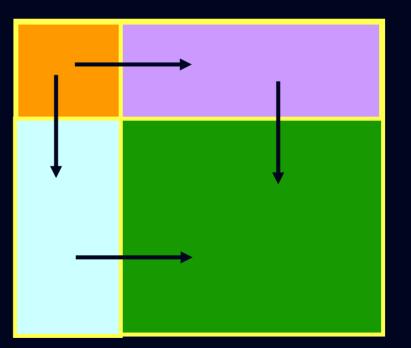
• Tensor Product: $\mathcal{F} \times \mathcal{G}$ = { Matrices such every row in \mathcal{F} and every column in \mathcal{G} }

 Redundancy?
 Suppose \$\mathcal{F}\$, \$\mathcal{G}\$ systematic
 First \$\ell\$ entries free rest determined by them.

April 1, 2009

- ${\mathcal F}$ determined
- ${\cal G}$ determined

determined twice, by \mathcal{F} and \mathcal{G} !



Testability of tensor product codes?

Natural test:

- Given Matrix M
 - Test if random row in F
 - Test if random column in G

Claim:

If F, G codes of constant (relative) distance; then if test accepts w.h.p. then M is close to codeword of F x G

Yields O(√n) local test for codes of length n.
 Can we do better? Exploit local testability of F, G?

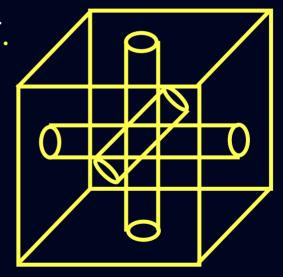
April 1, 2009

Robust testability of tensors?

- Natural test (if F,G locally testable):
 - Given Matrix M
 - Rest_thatTeandomonowndoseoto F
 - Rest-thatTrandom columnem closento G
- Suppose M close on most rows/columns to F, G. Does this imply M is close to F x G?
 - Generalizes test for bivariate polynomials. True for F, G = class of low-degree polynomials. [BFLS, Arora+Safra, Polishchuk+Spielman].
 - General question raised by [Ben-Sasson+S.]
 - [P. Valiant] Not true for every F, G !
 - [Dinur, S., Wigderson] True if F (or G) locally testable.

Tensor Products and Local Testability

- Robust testability allows easy induction (essentially from [BFL, BFLS]; see also [Ben-Sasson+S.])
 - Let $\mathcal{F}^n = n$ -fold tensor of \mathcal{F} .



• Given $f: D^n \to \mathbb{F}$

Natural test: Pick random axis-parallel line verify $f|_{\text{line}} \in \mathcal{F}$

April 1, 2009

Robust testability of tensors (contd.)

Unnatural test (for F x F x F):

- Given 3-d matrix M:
 - Pick random 2-d submatrix.
 - Verify it is close to F x F
- Theorem [BenSasson+S., based on Raz+Safra]: Distance to F x F x F proportional to average distance of random 2-d submatrix to F x F.
- [Meir]: "Linear-algebraic" construction of Locally Testable Codes (matching best known parameters) using this (and many other ingredients).

April 1, 2009

Redundant Characterizations (contd.)

- Redundant constraints necessary for testing [BGKSV]
- How to get redundancy?
 - Tensor Products
 - Sufficient to get some local testability
 - Invariances (Symmetries)Sufficient?

Counting (See Tali's talk)

Testing by symmetries

Invariance & Property testing

Invariances (Automorphism groups):

For permutation $\pi: D \to D$, \mathcal{F} is π -invariant if $f \in \mathcal{F}$ implies $f \circ \pi \in \mathcal{F}$. Aut $(\mathcal{F}) = \{\pi \mid \mathcal{F} \text{ is } \pi\text{-invariant}\}$ Forms group under composition.

 Hope: If Automorphism group is "large" ("nice"), then property is testable.

Examples

Majority:

- Aut group = S_D (full group).
- Easy Fact: If $\operatorname{Aut}(\mathcal{F}) = S_D$ then
 - \mathcal{F} is $\operatorname{poly}(R, 1/\epsilon)$ -locally testable.
- Graph Properties:
 - Aut. group given by renaming of vertices
 - [AFNS, Borgs et al.] implies *regular* properties with this Aut group are testable.
- Algebraic Properties: What symmetries do they have?

Algebraic Properties & Invariances

Properties:

 $D = \mathbb{F}^n, R = \mathbb{F}$ (Linearity, Low-degree, Reed-Muller)

Or $D = \mathbb{K} \supseteq \mathbb{F}, R = \mathbb{F}$ (Dual-BCH) (K, F finite fields)

Automorphism groups?

Linear transformations of domain. $\pi(x) = Ax$ where $A \in \mathbb{F}^{n \times n}$ (Linear-Invariant)

Affine transformations of domain. $\pi(x) = Ax + b$ where $A \in \mathbb{F}^{n \times n}, b \in \mathbb{F}^n$ (Affine-Inv.)

 Question: Are Linear/Affine-Inv., Locally Characterized Props. Testable? ([Kaufman + S.])

April 1, 2009

Linear-Invariance & Testability

 Unifies previous studies on Alg. Prop. Testing. (And captures some new properties)

Nice family of 2-transitive group of symmetries.

 Conjecture [Alon, Kaufman, Krivelevich, Litsyn, Ron] : Linear code with k-local constraint and 2transitive group of symmetries must be testable.

Some Results [Kaufman + S.]

• Theorem 1: $\mathcal{F} \subseteq \{\mathbb{K}^n \to \mathbb{F}\}$ linear, linear-invariant, k-locally characterized implies \mathcal{F} is $f(\mathbb{K}, k)$ -locally testable.

• Theorem 2: $\mathcal{F} \subseteq \{\mathbb{K}^n \to \mathbb{F}\}$ linear, *affine*-invariant, has k-local constraint implies \mathcal{F} is $f(\mathbb{K}, k)$ -locally testable.

April 1, 2009

Examples of Linear-Invariant Families

- Linear functions from \mathbb{F}^n to \mathbb{F} .
- Polynomials in $\mathbb{F}[x_1, \ldots, x_n]$ of degree at most d
- Traces of Poly in $\mathbb{K}[x_1, \ldots, x_n]$ of degree at most d
- (Traces of) Homogenous polynomials of degree d
- $-\mathcal{F}_1 + \mathcal{F}_2$, where \mathcal{F}_1 , \mathcal{F}_2 are linear-invariant. Polynomials supported by degree 2, 3, 5, 7 monomials.

What Dictates Locality of Characterizations?

- Precise locality not yet understood:
 Depends on *p*-ary representation of degrees.
 Example: \$\mathcal{F}\$ supported by monomials \$x^{p^i + p^j}\$
 behaves like degree two polynomial
- For affine-invariant family dictated (coarsely)
 by highest degree monomial in family
- For some linear-invariant families, can be *much* less than the highest degree monomial. Example: $\mathbb{K} = \mathbb{F} = \mathbb{F}_7$; $\mathcal{F} = \mathcal{F}_1 + \mathcal{F}_2$ $\mathcal{F}_1 = \text{poly of degree at most 16}$ $\mathcal{F}_2 = \text{poly supported on monomials of degree 3 mod 6.}$ $\text{Degree}(\mathcal{F}) = \Omega(n)$; $\text{Locality}(\mathcal{F}) \leq 49.$

April 1, 2009

Property Testing from Invariances

Key Notion: Formal Characterization

- \mathcal{F} has single-orbit characterization if $\exists a single constraint C = (x_1, \dots, x_k; V)$ such that $\{C \circ \pi\}_{\pi \in \operatorname{Aut}(\mathcal{F})}$ characterize \mathcal{F} .
- Theorem: If \mathcal{F} has single-orbit characterization by a k-local constraint (with some restrictions) then it is k-locally testable.

Rest of talk: Analysis (extending BLR)

BLR Analysis: Outline

- Have f s.t. $\Pr_{x,y}[f(x) + f(y) \neq f(x+y)] = \delta < 1/20$. Want to show f close to some $g \in \mathcal{F}$.
- Define $g(x) = \text{most likely}_y \{ f(x+y) f(y) \}.$
- If f close to \mathcal{F} then g will be in \mathcal{F} and close to f.
- But if f not close? g may not even be uniquely defined!
- Steps:
 - Step 0: Prove f close to g
 - Step 1: Prove most likely is overwhelming majority.
 - Step 2: Prove that g is in \mathcal{F} .

April 1, 2009

BLR Analysis: Step 0

• Define $g(x) = \text{most likely }_{y} \{ f(x+y) - f(y) \}.$

Claim: $\Pr_x[f(x) \neq g(x)] \le 2\delta$

- Let $B = \{x | \Pr_y[f(x) \neq f(x+y) - f(y)] \ge \frac{1}{2}\}$

 $-\Pr_{x,y}[\text{linearity test rejects } | x \in B] \ge \frac{1}{2}$ $\Rightarrow \Pr_x[x \in B] \le 2\delta$

- If $x \notin B$ then f(x) = g(x)

April 1, 2009

BLR Analysis: Step 1

• Define $g(x) = \text{most likely }_{y} \{ f(x+y) - f(y) \}.$

- Suppose for some x, \exists two equally likely values. Presumably, only one leads to linear x, so which one?
- If we wish to show g linear, then need to rule out this case.

Lemma: $\forall x, \Pr_{y,z}[\operatorname{Vote}_x(y) \neq \operatorname{Vote}_x(z))] \leq 4\delta$

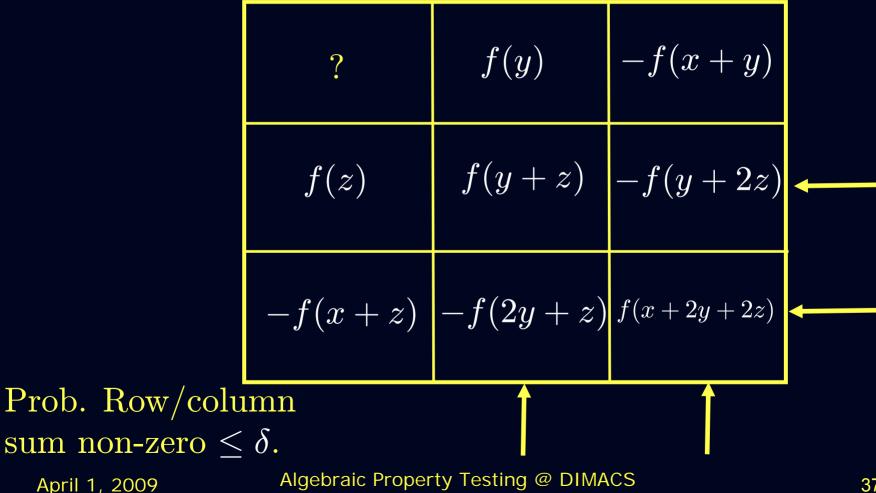
 $Vote_{x}(y)$

$Vote_x(y)$

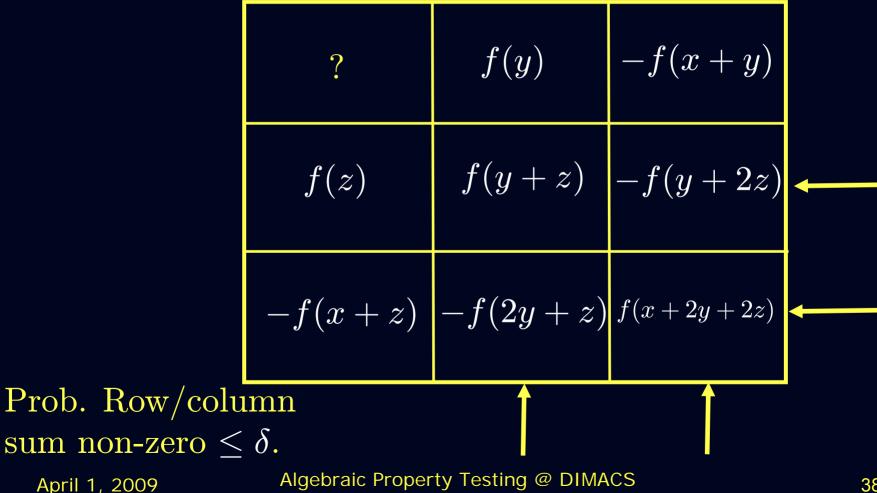
BLR Analysis: Step 1

- Define $g(x) = \text{most likely }_{y} \{ f(x+y) f(y) \}.$
- Suppose for some x, \exists two equally likely values. Presumably, only one leads to linear x, so which one?
- If we wish to show g linear, then need to rule out this case.
- Lemma: $\forall x, \Pr_{y,z}[\operatorname{Vote}_x(y) \neq \operatorname{Vote}_x(z))] \leq 4\delta$

BLR Analysis: Step 1 $Vote_x(y)$ • Define $g(x) = \text{most likely }_{y} \{ f(x+y) - f(y) \}.$ Lemma: $\forall x, \Pr_{y,z}[\operatorname{Vote}_x(y) \neq \operatorname{Vote}_x(z))] \leq 4\delta$

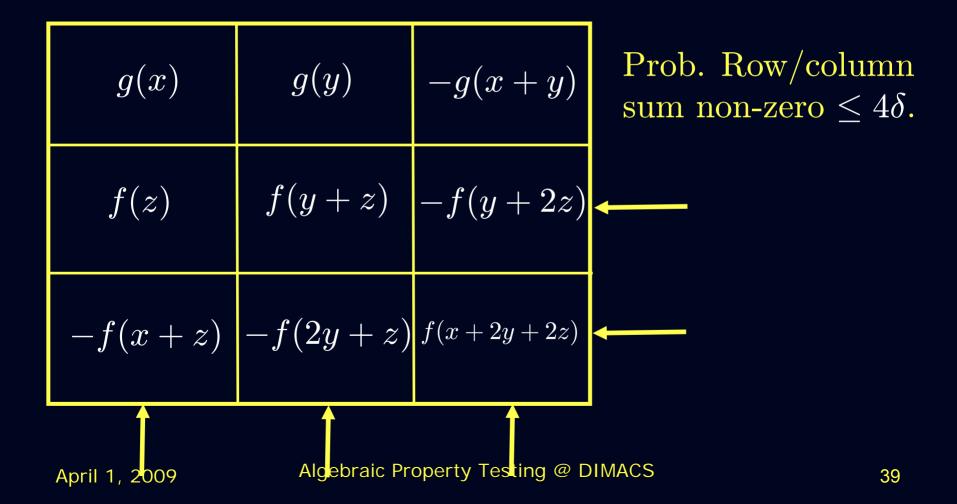


BLR Analysis: Step 1 $Vote_x(y)$ • Define $g(x) = \text{most likely }_{y} \{ f(x+y) - f(y) \}.$ Lemma: $\forall x, \Pr_{y,z}[\operatorname{Vote}_x(y) \neq \operatorname{Vote}_x(z))] \leq 4\delta$



38

BLR Analysis: Step 2 (Similar) Lemma: If $\delta < \frac{1}{20}$, then $\forall x, y, g(x) + g(y) = g(x + y)$



Our Analysis: Outline

•
$$f$$
 s.t. $\Pr_L[\langle f(L(x_1), \ldots, f(L(x_k))) \rangle \in V] = \delta \ll 1.$

• Define $g(x) = \alpha$ that maximizes $\Pr_{\{L|L(x_1)=x\}}[\langle \alpha, f(L(x_2)), \dots, f(L(x_k)) \rangle \in V]$

• Steps:

- Step 0: Prove f close to g
- Step 1: Prove "most likely" is overwhelming majority.
- Step 2: Prove that g is in \mathcal{F} .

April 1, 2009

Our Analysis: Outline

•
$$f$$
 s.t. $\Pr_L[\langle f(L(x_1), \ldots, f(L(x_k))) \rangle \in V] = \delta \ll 1.$

• Define $g(x) = \alpha$ that maximizes $\Pr_{\{L|L(x_1)=x\}}[\langle \alpha, f(L(x_2)), \dots, f(L(x_k)) \rangle \in V]$

Same as before

• Steps:

- Step 0: Prove f close to g
- Step 1: Prove "most likely" is overwhelming majority.
- Step 2: Prove that g is in \mathcal{F} .

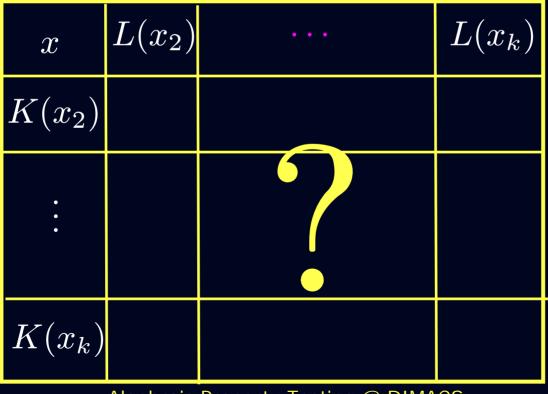
April 1, 2009

$\operatorname{Vote}_{x}(L)$

Matrix Magic?

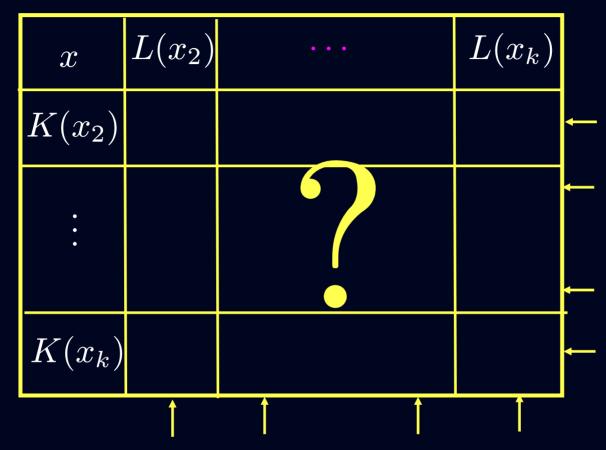
• Define $g(x) = \alpha$ that maximizes $\Pr_{\{L|L(x_1)=x\}}[\langle \alpha, f(L(x_2)), \dots, f(L(x_k)) \rangle \in V]$

Lemma: $\forall x, \Pr_{L,K}[\operatorname{Vote}_x(L) \neq \operatorname{Vote}_x(K))] \leq 2(k-1)\delta$

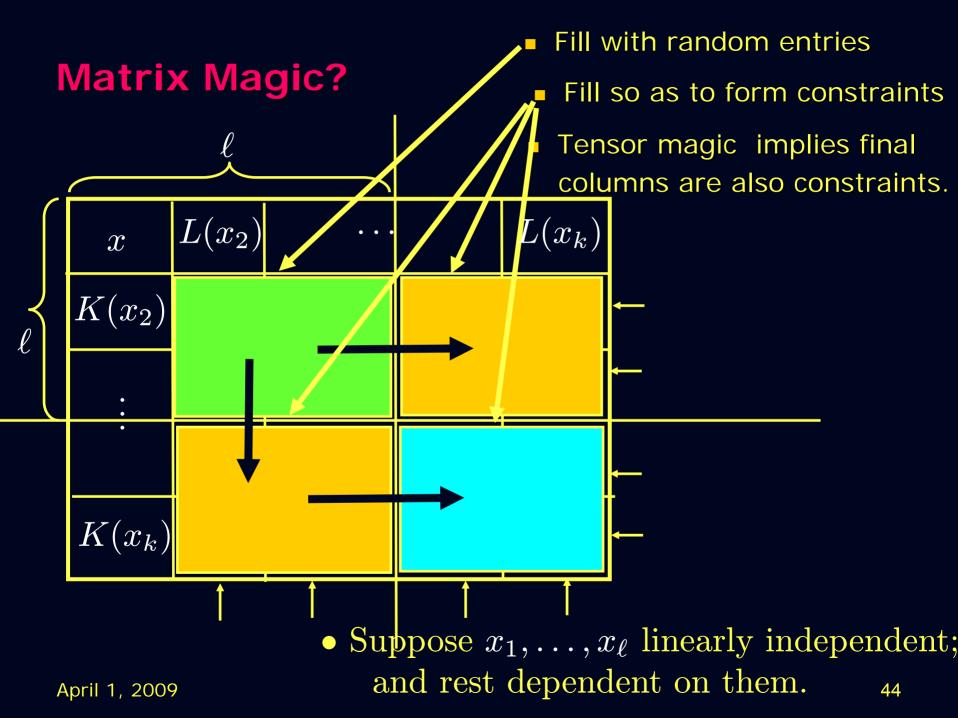


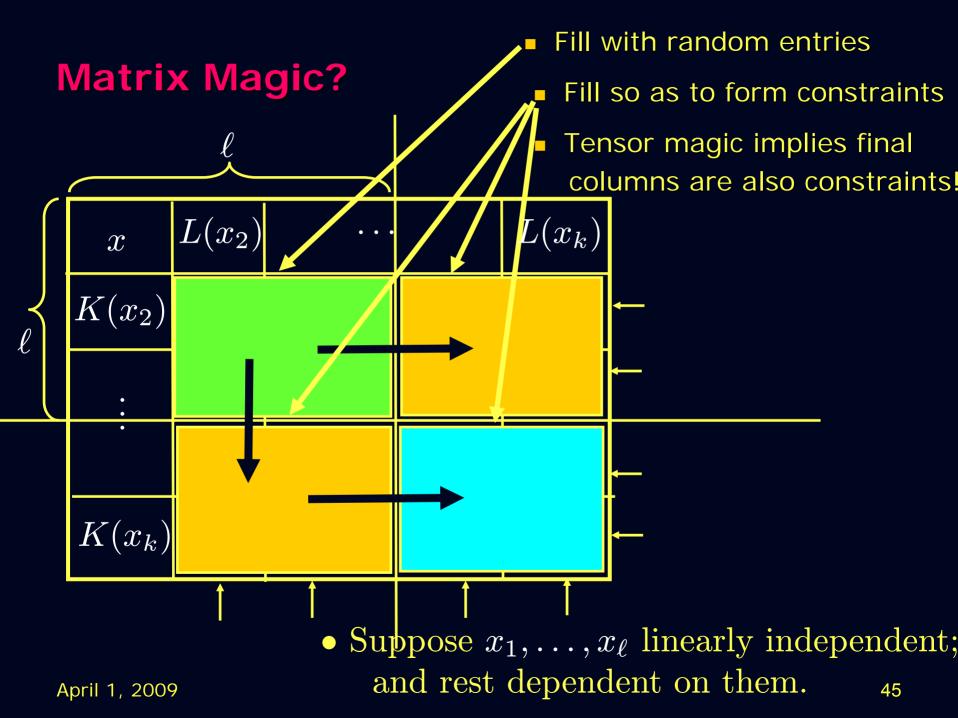
April 1, 2009

Matrix Magic?



- Want marked rows to be random constraints.
- Suppose x_1, \ldots, x_ℓ linearly independent; and rest dependent on them.





Summarizing

- Affine invariance + single-orbit characterizations imply testing.
- Unifies analysis of linearity test, basic low-degree tests, moderate-degree test (all A.P.T. except dual-BCH?)

Concluding thoughts - 1

Didn't get to talk about

- PCPs, LTCs (though we did implicitly)
- Optimizing parameters
- Parameters

In general

- Broad reasons why property testing works worth examining.
- Tensoring explains a few algebraic examples.
- Invariance explains many other algebraic ones. (More about invariances in [Grigorescu,Kaufman,S. '08], [GKS'09])

Concluding thoughts - 2

Invariance:

- Seems to be a nice lens to view all property testing results (combinatorial, statistical, algebraic).
- Many open questions:
 - What groups of symmetries aid testing?
 - What additional properties needed?
 - Local constraints?
 - Linearity?
 - Does sufficient symmetry imply testability?
 - Give an example of a non-testable property with a ksingle orbit characterization.

Thank You!

April 1, 2009