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Property TestingProperty Testing

Distance:Distance:

Definition: Definition: 

Notes: Notes: 

δ(f, g) = Prx∈D[f(x) 6= g(x)]
δ(f,F) = ming∈F{δ(f, g)}
f ≈² g if δ(f, g) ≤ ².

F is (k, ², δ)-locally testable if
∃ a k-query tester T s.t.
f ∈ F ⇒ T f accepts w.p. ≥ 1− ²
δ(f,F) ≥ δ ⇒ T f rejects w.p. ≥ ².

k-locally testable implies ∃², δ > 0
locally testable implies ∃k = O(1)
One-sided error: Accept f ∈ F w.p. 1
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Brief HistoryBrief History

[[Blum,Luby,RubinfeldBlum,Luby,Rubinfeld –– SS’’90]90]
Linearity + application to program testing Linearity + application to program testing 

[[Babai,Fortnow,LundBabai,Fortnow,Lund –– FF’’90]90]
MultilinearityMultilinearity + application to PCPs (MIP).+ application to PCPs (MIP).

[[Rubinfeld+SRubinfeld+S..] ] 
LowLow--degree testing + degree testing + Formal DefinitionFormal Definition

[[Goldreich,Goldwasser,RonGoldreich,Goldwasser,Ron]]
Graph property testing. Graph property testing. 

Since then Since then …… many developmentsmany developments
Graph properties Graph properties 
Statistical propertiesStatistical properties
More algebraic propertiesMore algebraic properties
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Specific Directions in Algebraic P.T.Specific Directions in Algebraic P.T.

More PropertiesMore Properties
LowLow--degree (d < q) functions [degree (d < q) functions [RSRS]]
ModerateModerate--degree (q < d < n) functionsdegree (q < d < n) functions

q=2: [q=2: [AKKLRAKKLR]]
General q: [General q: [KR, JPRZKR, JPRZ]]

Long code/Dictator/Junta testing [Long code/Dictator/Junta testing [PRSPRS]]
BCH codes (Trace of lowBCH codes (Trace of low--deg. poly.) [deg. poly.) [KLKL]]
All nicely All nicely ““invariantinvariant”” properties [properties [KSKS]]

Better Parameters (motivated by PCPs).Better Parameters (motivated by PCPs).
#queries, high#queries, high--error, amortized query error, amortized query 
complexity, reduced randomness.complexity, reduced randomness.
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Contrast w. Combinatorial P.T. Contrast w. Combinatorial P.T. 
Universe
{f : D → R}

Must accept

Ok to accept

Must reject w.h.p.

F

Algebraic Property = Code! (usually)

F

(Also usually) R is a field F
Property = Linear subspace.
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Goal of this talkGoal of this talk

Implications of linearityImplications of linearity
Constraints, Characterizations, LDPC structureConstraints, Characterizations, LDPC structure
OneOne--sided error, Nonsided error, Non--adaptive tests [BHR]adaptive tests [BHR]

Redundancy of ConstraintsRedundancy of Constraints
Tensor Product CodesTensor Product Codes

Symmetries of Code Symmetries of Code 
Testing affineTesting affine--invariant codesinvariant codes

Yields basic tests for all known algebraic Yields basic tests for all known algebraic 
codes (over small fields).codes (over small fields).
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• Accept iff f on path consistent with some h ∈ F .

• Yields non-adaptive one-sided error test for linear F .

Basic Implications of Linearity [BHR]Basic Implications of Linearity [BHR]

Generic adaptive test = decision tree.Generic adaptive test = decision tree.
f(i)

f(k)f(j)

0

0 1

1• Pick path followed by random g ∈ F .

• Query f according to path.
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Constraints, CharacterizationsConstraints, Characterizations

• Say test queries i1, . . . , ik
accepts hf(i1), . . . , f(ik)i ∈ V 6= Fk

1

D

i1
i2

ik

in V?
2

• (i1, . . . , ik;V ) = Constraint
Every f ∈ F satisfies it.

• If every f 6∈ F rejected
w. positive prob.

then F characterized
by constraints.

• Like LDPC Codes!
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Example: Linearity Testing [BLR]Example: Linearity Testing [BLR]

in V?
x

• Constraints:

• Characterization:

y

x+y

f is linear iff
∀x, y, Cx,y satisfied

Cx,y = (x, y, x+ y;V )|x, y ∈ Fn where
V = {(a, b, a+ b)|a, b ∈ F}



April 1, 2009April 1, 2009 Algebraic Property Testing @ DIMACSAlgebraic Property Testing @ DIMACS 1414

Insufficiency of local characterizationsInsufficiency of local characterizations

[Ben[Ben--SassonSasson, , HarshaHarsha, , RaskhodnikovaRaskhodnikova]]

There exist families     There exist families     characterizedcharacterized by by kk--local local 
constraintsconstraints that are not that are not o(|Do(|D|)|)--locally testablelocally testable..

Proof idea: Pick LDPC graph at random Proof idea: Pick LDPC graph at random ……
(and analyze resulting property)(and analyze resulting property)

F
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Why are characterizations insufficient?Why are characterizations insufficient?

Constraints too minimal.Constraints too minimal.
Not redundant enough!Not redundant enough!

Proved formally in [BenProved formally in [Ben--SassonSasson, , 
GuruswamiGuruswami, Kaufman, S., , Kaufman, S., VidermanViderman]]

Constraints too asymmetric.Constraints too asymmetric.
Property must show some symmetry to be Property must show some symmetry to be 
testable.testable.

Not a formal assertion Not a formal assertion …… just intuitive.just intuitive.
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Redundancy?Redundancy?

E.g. Linearity Test:E.g. Linearity Test:

Standard LDPC analysis: Standard LDPC analysis: 

What natural operations create redundant local What natural operations create redundant local 
constraints?constraints?

Tensor Products!Tensor Products!

− Dimension(F) ≈ D −m for m constraints.
− Requires #constraints < D.
− Does not allow much redundancy!

− Ω(D2) constraints on domain D
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Tensor Products of Codes!Tensor Products of Codes!

Tensor Product:Tensor Product:

Redundancy?Redundancy?

F × G
= { Matrices such every row in F

and every column in G }

Suppose F , G systematic

First ` entries free
rest determined by them.

Free

F determined
G determined
determined twice, by F and G!
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Testability of tensor product codes?Testability of tensor product codes?

Natural test: Natural test: 
Given Matrix Given Matrix MM

Test if random row in Test if random row in FF
Test if random column in Test if random column in GG

Claim:Claim:
If If F, GF, G codes of constant (relative) distance; codes of constant (relative) distance; 
then if test accepts then if test accepts w.h.pw.h.p. then . then MM is close to is close to 
codeword of codeword of F x GF x G

Yields Yields O(O(√√nn)) local test for codes of length local test for codes of length nn..
Can we do better? Exploit local testability of Can we do better? Exploit local testability of F,F,
GG? ? 
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Robust testability of tensors?Robust testability of tensors?

Natural test (if Natural test (if F,GF,G locally testable): locally testable): 
Given Matrix Given Matrix MM

Run Local Test forRun Local Test for FF on random rowon random row
Run Local Test for Run Local Test for GG on random columnon random column

Suppose Suppose MM close close on most rows/columns to on most rows/columns to F, GF, G. Does this . Does this 
imply imply MM is is closeclose to to F x GF x G??

Generalizes test for Generalizes test for bivariatebivariate polynomials. True for polynomials. True for F, GF, G
= class of low= class of low--degree polynomials. degree polynomials. [BFLS, [BFLS, Arora+SafraArora+Safra, , 
Polishchuk+SpielmanPolishchuk+Spielman].].
General question raised byGeneral question raised by [Ben[Ben--Sasson+SSasson+S.].]
[P. Valiant][P. Valiant] Not true for every  Not true for every  F, GF, G !!
[[DinurDinur, S., , S., WigdersonWigderson]] True ifTrue if FF (or (or GG) locally testable.) locally testable.

• Test that random rowTest that random row close close to to FF
• Test that random columnTest that random column close close to to GG
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Tensor Products and Local TestabilityTensor Products and Local Testability

Robust testability allows easy induction Robust testability allows easy induction 
(essentially from (essentially from [BFL, BFLS];[BFL, BFLS]; see also see also [Ben[Ben--
Sasson+SSasson+S.]).])

• Let Fn = n-fold tensor of F .

• Given f : Dn → F
Natural test: Pick random axis-parallel line

verify f |line ∈ F
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Robust testability of tensors (contd.)Robust testability of tensors (contd.)

Unnatural test (for Unnatural test (for F x F x FF x F x F): ): 
Given 3Given 3--d matrix M:d matrix M:

Pick random 2Pick random 2--d d submatrixsubmatrix..
Verify it is close to Verify it is close to F x FF x F

TheoremTheorem [[BenSasson+SBenSasson+S., based on ., based on Raz+SafraRaz+Safra]: ]: 
Distance to Distance to F x F x FF x F x F proportional to average proportional to average 
distance of random 2distance of random 2--d d submatrixsubmatrix to to F x FF x F..

[Meir]:[Meir]: ““LinearLinear--algebraicalgebraic”” construction of Locally construction of Locally 
Testable Codes (matching best known Testable Codes (matching best known 
parameters) using this (and many other parameters) using this (and many other 
ingredients).ingredients).
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Redundant Characterizations (contd.)Redundant Characterizations (contd.)

Redundant constraints necessary for testing Redundant constraints necessary for testing 
[[BGKSVBGKSV]]

How to get redundancy?How to get redundancy?
Tensor Products Tensor Products 

Sufficient to get some local testabilitySufficient to get some local testability

InvariancesInvariances (Symmetries)(Symmetries)
Sufficient?Sufficient?

Counting (See Counting (See TaliTali’’ss talk)talk)
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Testing by symmetriesTesting by symmetries
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Invariance & Property testingInvariance & Property testing

InvariancesInvariances ((AutomorphismAutomorphism groups):groups):

Hope: If Hope: If AutomorphismAutomorphism group is group is ““largelarge”” ((““nicenice””), ), 
then property is testable.then property is testable.

Aut(F) = {π | F is π-invariant}
Forms group under composition.

For permutation π : D → D, F is π-invariant if
f ∈ F implies f ◦ π ∈ F .
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ExamplesExamples

Majority:Majority:

Graph Properties: Graph Properties: 

Algebraic Properties: What symmetries do they Algebraic Properties: What symmetries do they 
have? have? 

− Easy Fact: If A’ut(F) = SD then
F is poly(R, 1/²)-locally testable.

− Aut group = SD (full group).

− Aut. group given by renaming of vertices
− [AFNS, Borgs et al.] implies regular properties

with this Aut group are testable.
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Algebraic Properties & Algebraic Properties & InvariancesInvariances

Properties: Properties: 

AutomorphismAutomorphism groups?groups?

Question: Are Linear/AffineQuestion: Are Linear/Affine--Inv., Locally Inv., Locally 
Characterized Props. Testable? (Characterized Props. Testable? ([Kaufman + S.])[Kaufman + S.])

(Linear-Invariant)

D = Fn, R = F (Linearity, Low-degree, Reed-Muller)

Or D = K ⊇ F, R = F (Dual-BCH) (K,F finite fields)

Linear transformations of domain.
π(x) = Ax where A ∈ Fn×n

Affine transformations of domain.
π(x) = Ax+ b where A ∈ Fn×n, b ∈ Fn (Affine-Inv.)
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LinearLinear--Invariance & TestabilityInvariance & Testability

Unifies previous studies on Alg. Prop. Testing.Unifies previous studies on Alg. Prop. Testing.
(And captures some new properties)(And captures some new properties)

Nice family of Nice family of 22--transitive group of symmetriestransitive group of symmetries..

ConjectureConjecture [[AlonAlon, Kaufman, , Kaufman, KrivelevichKrivelevich, , LitsynLitsyn, Ron], Ron] : : 
Linear code with Linear code with kk--local constraintlocal constraint and and 22--
transitive group of symmetriestransitive group of symmetries must be must be testabletestable. . 
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Some Results [Kaufman + S.]Some Results [Kaufman + S.]

Theorem 1:Theorem 1:

Theorem 2:Theorem 2:

F ⊆ {Kn → F} linear, linear-invariant,
k-locally characterized

implies F is f(K, k)-locally testable.

F ⊆ {Kn → F} linear, affine-invariant,
has k-local constraint

implies F is f(K, k)-locally testable.
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Examples of LinearExamples of Linear--Invariant FamiliesInvariant Families

− Polynomials in F[x1, . . . , xn] of degree at most d

− Traces of Poly in K[x1, . . . , xn] of degree at most d

− F1 + F2, where F1, F2 are linear-invariant.
Polynomials supported by degree 2, 3, 5, 7 monomials.

− (Traces of) Homogenous polynomials of degree d

− Linear functions from Fn to F.
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What Dictates Locality of Characterizations?What Dictates Locality of Characterizations?

− For affine-invariant family dictated (coarsely)
by highest degree monomial in family

− For some linear-invariant families,
can be much less than the highest degree monomial.

− Precise locality not yet understood:
Depends on p-ary representation of degrees.
Example: F supported by monomials xp

i+pj

behaves like degree two polynomial

Example: K = F = F7; F = F1 + F2
F1 = poly of degree at most 16
F2 = poly supported on monomials of degree 3 mod 6.
Degree(F) = Ω(n); Locality(F) ≤ 49.
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Property Testing from Property Testing from 
InvariancesInvariances
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Key Notion: Formal CharacterizationKey Notion: Formal Characterization

− F has single-orbit characterization if
∃ a single constraint C = (x1, . . . , xk;V ) such that
{C ◦ π}π∈Aut(F) characterize F .

Theorem: If F has single-orbit characterization by
a k-local constraint (with some restrictions)
then it is k-locally testable.

Rest of talk: Analysis (extending BLR)
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BLR Analysis: OutlineBLR Analysis: Outline

• Steps:

• If f close to F then g will be in F and close to f .

• But if f not close? g may not even be uniquely defined!

− Step 0: Prove f close to g

− Step 2: Prove that g is in F .

• Define g(x) = most likelyy{f(x+ y)− f(y)}.

− Step 1: Prove most likely is overwhelming majority.

• Have f s.t. Prx,y[f(x) + f(y) 6= f(x+ y)] = δ < 1/20.
Want to show f close to some g ∈ F .



April 1, 2009April 1, 2009 Algebraic Property Testing @ DIMACSAlgebraic Property Testing @ DIMACS 3434

BLR Analysis: Step 0BLR Analysis: Step 0

• Define g(x) = most likely y{f(x+ y)− f(y)}.

− Prx,y[linearity test rejects |x ∈ B] ≥ 1
2

− If x 6∈ B then f(x) = g(x)

⇒ Prx[x ∈ B] ≤ 2δ

Claim: Prx[f(x) 6= g(x)] ≤ 2δ

− Let B = {x|Pry[f(x) 6= f(x+ y)− f(y)] ≥ 1
2}
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BLR Analysis: Step 1BLR Analysis: Step 1

• Define g(x) = most likely y{f(x+ y)− f(y)}.

Votex(y)

• Suppose for some x, ∃ two equally likely values.
Presumably, only one leads to linear x, so which one?

• If we wish to show g linear,
then need to rule out this case.

Lemma: ∀ x, Pry,z[Votex(y) 6= Votex(z))] ≤ 4δ
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BLR Analysis: Step 1BLR Analysis: Step 1
Votex(y)

• Suppose for some x, ∃ two equally likely values.
Presumably, only one leads to linear x, so which one?

• Define g(x) = most likely y{f(x+ y)− f(y)}.

• If we wish to show g linear,
then need to rule out this case.

Lemma: ∀ x, Pry,z[Votex(y) 6= Votex(z))] ≤ 4δ
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BLR Analysis: Step 1BLR Analysis: Step 1

?

Lemma: ∀ x, Pry,z[Votex(y) 6= Votex(z))] ≤ 4δ

Votex(y)

f(y) −f(x+ y)

f(z) f(y + z) −f(y + 2z)

−f(x+ z) −f(2y + z) f(x+ 2y + 2z)

Prob. Row/column
sum non-zero ≤ δ.

• Define g(x) = most likely y{f(x+ y)− f(y)}.
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BLR Analysis: Step 1BLR Analysis: Step 1

?

Lemma: ∀ x, Pry,z[Votex(y) 6= Votex(z))] ≤ 4δ

Votex(y)

f(y) −f(x+ y)

f(z) f(y + z) −f(y + 2z)

−f(x+ z) −f(2y + z) f(x+ 2y + 2z)

Prob. Row/column
sum non-zero ≤ δ.

• Define g(x) = most likely y{f(x+ y)− f(y)}.
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BLR Analysis: Step 2 (Similar)BLR Analysis: Step 2 (Similar)

Lemma: If δ < 1
20 , then ∀ x, y, g(x) + g(y) = g(x+ y)

Prob. Row/column
sum non-zero ≤ 4δ.

g(x) g(y) −g(x+ y)

f(z) f(y + z) −f(y + 2z)

−f(x+ z) −f(2y + z) f(x+ 2y + 2z)



April 1, 2009April 1, 2009 Algebraic Property Testing @ DIMACSAlgebraic Property Testing @ DIMACS 4040

Our Analysis: OutlineOur Analysis: Outline

• Steps:

Step 1: Prove Step 1: Prove ““most likelymost likely”” is overwhelming majority.is overwhelming majority.−

• f s.t. PrL[hf(L(x1), . . . , f(L(xk))i ∈ V ] = δ ¿ 1.

• Define g(x) = α that maximizes
Pr{L|L(x1)=x}[hα, f(L(x2)), . . . , f(L(xk))i ∈ V ]

− Step 0: Prove f close to g

− Step 2: Prove that g is in F .
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Our Analysis: OutlineOur Analysis: Outline

• Steps:

Step 1: Prove Step 1: Prove ““most likelymost likely”” is overwhelming majority.is overwhelming majority.−

Same as before

• Define g(x) = α that maximizes
Pr{L|L(x1)=x}[hα, f(L(x2)), . . . , f(L(xk))i ∈ V ]

• f s.t. PrL[hf(L(x1), . . . , f(L(xk))i ∈ V ] = δ ¿ 1.

− Step 0: Prove f close to g

− Step 2: Prove that g is in F .
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Matrix Magic?Matrix Magic?

· · ·

Votex(L)

Lemma: ∀ x, PrL,K [Votex(L) 6= Votex(K))] ≤ 2(k − 1)δ

• Define g(x) = α that maximizes
Pr{L|L(x1)=x}[hα, f(L(x2)), . . . , f(L(xk))i ∈ V ]

K(x2)

...

x L(x2) L(xk)

K(xk)
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Matrix Magic?Matrix Magic?

· · ·

• Want marked rows to be random constraints.

K(x2)

K(xk)

...

x L(x2) L(xk)

• Suppose x1, . . . , x` linearly independent;
and rest dependent on them.
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Matrix Magic?Matrix Magic?
Fill with random entriesFill with random entries

Fill so as to form constraintsFill so as to form constraints

Tensor magic  implies final    Tensor magic  implies final    
columns are also constraints.columns are also constraints.

• Suppose x1, . . . , x` linearly independent;
and rest dependent on them.

K(xk)

K(x2)

x L(x2) L( xk)

`

`

· · ·

...
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Matrix Magic?Matrix Magic?
Fill with random entriesFill with random entries

Fill so as to form constraintsFill so as to form constraints

Tensor magic implies final Tensor magic implies final 
columns are also constraints!columns are also constraints!

• Suppose x1, . . . , x` linearly independent;
and rest dependent on them.

K(xk)

K(x2)

x L(x2) L(xk)

`

`

· · ·

...



April 1, 2009April 1, 2009 Algebraic Property Testing @ DIMACSAlgebraic Property Testing @ DIMACS 4646

SummarizingSummarizing

Affine invariance + singleAffine invariance + single--orbit characterizations orbit characterizations 
imply testing.imply testing.

Unifies analysis of linearity test, basic lowUnifies analysis of linearity test, basic low--degree degree 
tests, moderatetests, moderate--degree test (all A.P.T. except degree test (all A.P.T. except 
dualdual--BCH?)BCH?)
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Concluding thoughts Concluding thoughts -- 11

DidnDidn’’t get to talk about t get to talk about 
PCPs, PCPs, LTCsLTCs (though we did implicitly)(though we did implicitly)
Optimizing parametersOptimizing parameters
ParametersParameters

In generalIn general
Broad reasons why property testing works Broad reasons why property testing works 
worth examining.worth examining.
TensoringTensoring explains a few algebraic examples.explains a few algebraic examples.
Invariance explains many other algebraic ones.Invariance explains many other algebraic ones.
(More about (More about invariancesinvariances in in 

[[Grigorescu,Kaufman,SGrigorescu,Kaufman,S. . ’’08], [GKS08], [GKS’’09])09])
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Concluding thoughts Concluding thoughts -- 22

Invariance:Invariance:
Seems to be a nice lens to view all property Seems to be a nice lens to view all property 
testing results (combinatorial, statistical, testing results (combinatorial, statistical, 
algebraic).algebraic).
Many open questions:Many open questions:

What groups of symmetries aid testing?What groups of symmetries aid testing?
What additional properties needed?What additional properties needed?

Local constraints?Local constraints?
Linearity?Linearity?

Does sufficient symmetry imply testability?Does sufficient symmetry imply testability?
Give an example of a nonGive an example of a non--testable property with a ktestable property with a k--
single orbit characterization.single orbit characterization.
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Thank You!Thank You!
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