
Tester for Nearly-Sortedness
and its Applications in Databases

Arie Matsliah

Sagi Ben-Moshe

Eldar Fischer

Yaron Kanza

Outline

• New definition: “nearly-sorted”

• Tolerant tests for the property of being
nearly-sorted

• Applications in Databases

Database

data

query

processor

result

Example (data)

apartments for rent

Address Fee ($) Size (m2) …

Main rd 29, … 500 70 …

First ave 3, … 850 120 …

…

…

records

attributes

Example (query)

query

select all apts. in NY,
having size between 70 and 80 m2,
present sorted by monthly fee

Example (processor)

processor

parse query
…
select apts. of right size
…
sort result according to fee
…
return result

Random access is
expensive

Sequential pass is
cheap

In-memory
computation is
cheapest

data

Facts

• Some queries/operations can be
processed more efficiently if the data is
ordered (sorted acd. to some attribute)

• Additional examples: natural join,
intersection, union, except, …

• However, in many cases processor cannot
assume the data is ordered

Observation (from experiments)

• Monitoring the “sort” function of a DB-management
system (PostgreSQL)

• In many cases, even before sorting the data is
“nearly sorted”

• Idea:

1. test whether the data is “nearly sorted”

2. if it is – use sorting algorithm that is tailored
for nearly-sorted data

Ingredients

1. property tester for the property of being nearly-sorted

* few queries = few random access to data

* must be tolerant

2. efficient sorting algorithm that works if the data is nearly-
sorted

* no random access, few sequential passes

* always correct (discovers failure)

Definition: Nearly-Sorted

• f:[n]R

• R – attribute values, total order (<,≤,>,≥)

• f is sorted if for all i<j, f(i)≤f(j)

• f is k-sorted if for all i,j: i≤j-k  f(i)≤f(j)

• 1-sorted  sorted

• f is e-close to being sorted if
for some E[n], |E|≤en: f|[n]\E is sorted

• f is (e,k)-nearly-sorted if
for some E[n], |E|≤en: f|[n]\E is k-sorted

Example 1

• 1/n-close (e=1/n), n-sorted (k=n)

i

f(i)

Example 2

• 1/2-close (e=1/2), 2-sorted (k=2)

i

f(i)

i

f(i)

Example 3

• (1/5,2)-nearly-sorted

i

f(i)

Next

• (Tolerant) Test for nearly-sortedness

• Algorithm for sorting nearly-sorted
functions

• Experiments

Testing Nearly-Sortedness

([e1,e2],[k1,k2])-test:
– ACCEPT w.p. 2/3 if (e1,k1)-nearly sorted
– REJECT w.p. 2/3 if not (e2,k2)-nearly sorted

• ([0,e],[1,1])-test = tester for monotonicity
#queries = O(log(n)/e)
[BRW, DGLRRS, EKKRRV, GGLRS, FLNRRS, HK]

• ([e,ce],[1,1])-test = tolerant tester for monotonicity
#queries = Õ(log(n)/e)
[PRR,ACCL]

• ([e,ce],[k,ck])-test = tolerant test for nearly-sortedness
#queries = Õ(log(n)/e)
[this work]

• (i,j) is a k-violation if i≤j-k and f(i)>f(j)

k-Violations and (δ,k)-Active Indices

550 …

>k

• (i,j) is a k-violation if i≤j-k and f(i)>f(j)

• i is (δ,k)-active if for ≥δ(j-i) indices h[i,j],
(i,h) is a k-violation

k-Violations and (δ,k)-Active Indices

550 …

k

…

δ(j-i) values <50

• (i,j) is a k-violation if i≤j-k and f(i)>f(j)

• i is (δ,k)-active if for ≥δ(j-i) indices h[i,j],
(i,h) is a k-violation

• j is (δ,k)-active if for ≥δ(j-i) indices h[i,j],

(h,j) is a k-violation

k-Violations and (δ,k)-Active Indices

550 …

k

…

δ(j-i) values >5

• either i or j must be (½-k/(j-i),k)-active

 if f is not (e,k)-nearly sorted,

(½-k/(j-i),k)-actives ≥ en

k-Violations and (δ,k)-Active Indices

550 …

k

…

(j-i)-2k

…

k

Towards tolerant testing
based on [ACCL]

Lemma

• if f is (e,k)-nearly sorted then

(1/4,k)-actives ≤ 5en

• if f is not (6e,6k)-nearly sorted then

(1/3,k)-actives ≥ 6en

counter=0

repeat T=O(1/e) times:

pick i[n]

If i is 1/3-active then counter++

if (counter/T >5.5e)

REJECT

else

ACCEPT

([e,ce],[k,ck])-test

Problem: how to check if i is 1/3-active?

Activity-testing algorithm

input: i,d
• if i is (1/3,k)-active,

output YES w.p. ≥ 1-d
• if i is not (1/4,k)-active,

output NO w.p. ≥ 1-d

query complexity: Õ(log(1/d) log(n))

works by approximating the number of violations (by

sampling) within neighborhoods of increasing size

count=0

repeat T=O(1/e) times:

pick i[n]

if AT(i,1/T) = YES then count++

if (count/T >5.5e)

REJECT

else

ACCEPT

query complexity: Õ(log(n)/e)

• if f is (e,k)-nearly sorted
 fraction of (1/4,k)-actives ≤5e
“” ACCEPT w.p. ≥2/3

([e,6e],[k,6k])-tolerant test

•if f is not (6e,6k)-nearly sorted
 fraction of (1/3,k)-actives ≥6e
“” REJECT w.p. ≥2/3

Sorting Nearly-Sorted relations

• Use the Replacement-Selection algorithm

• Thm: if f is (e,k)-nearly-sorted, then RS
with M=en+k, sorts f in two passes

Replacement-Selection

6 3 1 4 5 2 7 8 10 9

1

Replacement-Selection

3 6 4 5 2 7 8 10 9

1 3

Replacement-Selection

6 4 5 2 7 8 10 9

1 3 4

Replacement-Selection

6 5 2 7 8 10 9

1 3 4 5

Replacement-Selection

6 2 7 8 10 9

1 3 4 5 6

Replacement-Selection

2 7 8 10 9

1 3 4 5 6 7

Replacement-Selection

2 8 10 9

1 3 4 5 6 7 8

Replacement-Selection

2 10 9

1 3 4 5 6 7 8 9

Replacement-Selection

2 10

1 3 4 5 6 7 8 9 10

Replacement-Selection

2

1 3 4 5 6 7 8 9 10

Replacement-Selection

2 1 3 4 5 6 7 8 9 10

1

Replacement-Selection

2 3 4 5 6 7 8 9 10

1

If #marked ≤ M, the data is sorted after two passes

Sorting Nearly-Sorted relations

Lemma: #marked ≤ M (=en+k)

Proof:
let E1,…,Et [n] be “bad” subsets of size ≤en
let D be their intersection
clearly D≤en

Claim: If i is marked, then iD #marked ≤ en

Proof:
for i≤en+k, no index is marked
let i>en+k be marked, assume i not in D  i not in Eh for some h

 Eh>en (contradiction)

f(i)

>en k-violations

Experiments

• monitoring the “sort” function of PostgreSQL

• data was (1/√n, √n)-nearly sorted in most cases

• testing with parameters compatible with currently typical
memory size is faster than making one pass

• in-memory sorting (6/√n, 6√n])-nearly sorted data with
RS is >2 times faster than standard quicksort

• more elaborate tests pending…

Experiments

50,000,000 Records

0

50

100

150

200

250

300

350

10
0,

00
0

50
0,

00
0

1,
00

0,
00

0

5,
00

0,
00

0

10
,0

00
,0

00

20
,0

00
,0

00

l/e + k

S
ec

o
n
d
s

Our algorithm

QuickSort

Thank you

