Tester for Nearly-Sortedness and its Applications in Databases

Arie Matsliah

Sagi Ben-Moshe
Eldar Fischer
Yaron Kanza

Outline

- New definition: "nearly-sorted"
- Tolerant tests for the property of being nearly-sorted
- Applications in Databases

Database

Example (query)

select all apts. in NY, having size between $\mathbf{7 0}$ and $\mathbf{8 0} \mathbf{m}^{\mathbf{2}}$, present sorted by monthly fee

query

Example (processor)

parse query

select apts. of right size

sort result according to fee

return result

Random access is expensive

Sequential pass is cheap

In-memory

 computation is cheapest

Facts

- Some queries/operations can be processed more efficiently if the data is ordered (sorted acd. to some attribute)
- Additional examples: natural join, intersection, union, except, ...
- However, in many cases processor cannot assume the data is ordered

Observation (from experiments)

- Monitoring the "sort" function of a DB-management system (PostgreSQL)
- In many cases, even before sorting the data is "nearly sorted"
- Idea:

1. test whether the data is "nearly sorted"
2. if it is - use sorting algorithm that is tailored for nearly-sorted data

Ingredients

1. property tester for the property of being nearly-sorted

* few queries = few random access to data
* must be tolerant

2. efficient sorting algorithm that works if the data is nearlysorted

* no random access, few sequential passes
* always correct (discovers failure)

Definition: Nearly-Sorted

- $\mathrm{f}:[\mathrm{n}] \rightarrow \mathrm{R}$
- R - attribute values, total order $(<, \leq,>, \geq)$
- $\quad f$ is sorted if for all $i<j, f(i) \leq f(j)$
- f is k-sorted if for all i, j : $i \leq j-k \rightarrow f(i) \leq f(j)$
- 1 -sorted \longleftrightarrow sorted
- f is ε-close to being sorted if for some $E \subseteq[n],|E| \leq \varepsilon n:\left.f\right|_{[n] \mid E}$ is sorted
- f is $(\varepsilon, \mathrm{k})$-nearly-sorted if
for some $E \subseteq[n],|E| \leq \varepsilon n$: $\left.f\right|_{[n] \mid E}$ is k-sorted

Example 1

- $1 / n$-close $(\varepsilon=1 / n)$, n-sorted ($k=n$)

Example 2

- 1/2-close $(\varepsilon=1 / 2), \quad 2$-sorted $(k=2)$

Example 3

- $(1 / 5,2)$-nearly-sorted

Next

- (Tolerant) Test for nearly-sortedness
- Algorithm for sorting nearly-sorted functions
- Experiments

Testing Nearly-Sortedness

($\left.\left[\varepsilon_{1}, \varepsilon_{2}\right],\left[\mathrm{k}_{1}, \mathrm{k}_{2}\right]\right)$-test:

- ACCEPT w.p. 2/3 if $\left(\varepsilon_{1}, k_{1}\right)$-nearly sorted
- REJECT w.p. $2 / 3$ if not $\left(\varepsilon_{2}, k_{2}\right)$-nearly sorted
- $([0, \varepsilon],[1,1])$-test $=$ tester for monotonicity \#queries = $\mathrm{O}(\log (\mathrm{n}) / \varepsilon)$ [BRW, DGLRRS, EKKRRV, GGLRS, FLNRRS, HK]
- ([$\varepsilon, \mathrm{c} \varepsilon],[1,1])$-test $=$ tolerant tester for monotonicity \#queries = $\tilde{O}(\log (\mathrm{n}) / \varepsilon)$ [PRR,ACCL]
- $([\varepsilon, \mathrm{c} \varepsilon],[\mathrm{k}, \mathrm{ck}])$-test $=$ tolerant test for nearly-sortedness \#queries = O(log(n)/ع) [this work]

k -Violations and (δ, k)-Active Indices

- (i, j) is a k-violation if $i \leq j-k$ and $f(i)>f(j)$

k -Violations and ($\overline{\mathrm{J}} \mathrm{k}$)-Active Indices

- (i, j) is a k-violation if $i \leq j-k$ and $f(i)>f(j)$
- i is (δ, k)-active if for $\geq \delta(j-i)$ indices $h \in[i, j]$, (i, h) is a k-violation

k -Violations and ($\overline{\mathrm{J}, \mathrm{k}) \text {-Active Indices }}$

- (i, j) is a k-violation if $i \leq j-k$ and $f(i)>f(j)$
- i is (δ, k)-active if for $\geq \delta(j-i)$ indices $h \in[i, j]$, (i, h) is a k-violation
- j is (δ, k)-active if for $\geq \delta(j-i)$ indices $h \in[i, j]$,
(h, j) is a k-violation

k -Violations and (δ, k)-Active Indices

- either i or j must be ($1 / 2-\mathrm{k} /(\mathrm{j}-\mathrm{i}), \mathrm{k})$-active

\rightarrow if f is not $(\varepsilon, \mathrm{k})$-nearly sorted,

$$
\text { \# (1⁄2-k/(j-i),k)-actives } \geq \varepsilon n
$$

Towards tolerant testing based on [ACCL]

Lemma

- if f is $(\varepsilon, \mathrm{k})$-nearly sorted then

$$
\#(1 / 4, k) \text {-actives } \leq 5 \varepsilon n
$$

- if f is not $(6 \varepsilon, 6 k)$-nearly sorted then

$$
\#(1 / 3, k) \text {-actives } \geq 6 \varepsilon n
$$

([$\varepsilon, c \varepsilon],[k, c k])$-test

```
counter=0
repeat T=O(1/\varepsilon) times:
        pick i\in[n]
        If i is 1/3-active then counter++
if (counter/T >5.5\varepsilon)
    REJECT
else
    ACCEPT
```

Problem: how to check if i is $1 / 3$-active?

Activity-testing algorithm

input: i, δ

- if i is $(1 / 3, k)$-active,

$$
\text { output YES w.p. } \geq 1-\delta
$$

- if i is not $(1 / 4, k)$-active,

$$
\text { output NO w.p. } \geq 1-\delta
$$

query complexity: $O(\log (1 / \delta) \log (n))$
works by approximating the number of violations (by sampling) within neighborhoods of increasing size

([$\varepsilon, 6 \varepsilon],[k, 6 k])$-tolerant test

```
count=0
repeat T=O(1/\varepsilon) times:
        pick i\in[n]
        if AT(i,1/T) = YES then count++
if (count/T >5.5\varepsilon)
```


REJECT

```
else
```


ACCEPT

query complexity: Õ $(\log (n) / \varepsilon)$

- if f is $(\varepsilon, \mathrm{k})$-nearly sorted
\rightarrow fraction of $(1 / 4, k)$-actives $\leq 5 \varepsilon$
$" \rightarrow$ " ACCEPT w.p. $\geq 2 / 3$
-if f is not $(6 \varepsilon, 6 \mathrm{k})$-nearly sorted
\rightarrow fraction of $(1 / 3, k)$-actives $\geq 6 \varepsilon$
$" \rightarrow$ " REJECT w.p. $\geq 2 / 3$

Sorting Nearly-Sorted relations

- Use the Replacement-Selection algorithm
- Thm: if f is $(\varepsilon, \mathrm{k})$-nearly-sorted, then RS with $M=\varepsilon n+k$, sorts f in two passes

Replacement-Selection

If \#marked $\leq M$, the data is sorted after two passes

Sorting Nearly-Sorted relations

Lemma: \#marked $\leq M(=\varepsilon n+k)$
Proof:
let $E_{1}, \ldots, E_{t} \subseteq[n]$ be "bad" subsets of size $\leq \varepsilon n$
let D be their intersection clearly $\mathrm{D} \leq \varepsilon n$

Claim: If i is marked, then $\mathrm{i} \in \mathrm{D} \rightarrow$ \#marked $\leq \varepsilon n$ Proof:
for $\mathrm{i} \leq \varepsilon \mathrm{n}+\mathrm{k}$, no index is marked let $i>\varepsilon n+k$ be marked, assume i not in $D \rightarrow i$ not in E_{h} for some h
\square
\square
$\rightarrow \mathrm{E}_{\mathrm{h}}>\varepsilon \mathrm{n}$ (contradiction)

Experiments

- monitoring the "sort" function of PostgreSQL
- data was $(1 / \sqrt{ } n, \sqrt{ } n)$-nearly sorted in most cases
- testing with parameters compatible with currently typical memory size is faster than making one pass
- in-memory sorting $(6 / \sqrt{ } n, 6 \sqrt{ } n])$-nearly sorted data with RS is >2 times faster than standard quicksort
- more elaborate tests pending...

Experiments

Thank you

