Tester for Nearly-Sortedness and its Applications in Databases

Arie Matsliah

Sagi Ben-Moshe Eldar Fischer Yaron Kanza

Outline

• New definition: "nearly-sorted"

 Tolerant tests for the property of being nearly-sorted

• Applications in Databases

Example (query)

select all apts. in NY, having size between 70 and 80 m², present sorted by monthly fee

Example (processor)

parse query

. . .

select apts. of right size

...

sort result according to fee

. . .

return result

Random access is expensive

Sequential pass is cheap

In-memory computation is cheapest

processor

Facts

- Some queries/operations can be processed more efficiently if the data is ordered (sorted acd. to some attribute)
- Additional examples: natural join, intersection, union, except, ...
- However, in many cases processor <u>cannot</u> assume the data is ordered

Observation (from experiments)

- Monitoring the "sort" function of a DB-management system (PostgreSQL)
- In many cases, even before sorting the data is "nearly sorted"
- Idea:
 - 1. test whether the data is "nearly sorted"
 - 2. if it is use sorting algorithm that is tailored for nearly-sorted data

Ingredients

1. property tester for the property of being nearly-sorted

* few queries = few random access to data
* must be tolerant

- 2. efficient sorting algorithm that works if the data is nearlysorted
 - * no random access, few sequential passes
 - * always correct (discovers failure)

Definition: Nearly-Sorted

- f:[n]→R
- R attribute values, total order (<,≤,>,≥)

- f is sorted if for all i<j, f(i)≤f(j)
- f is k-sorted if for all i,j: $i \le j k \rightarrow f(i) \le f(j)$
- 1-sorted $\leftarrow \rightarrow$ sorted
- f is ε-close to being sorted if for some E_⊆[n], |E|≤εn: f|_{[n]\E} is sorted
- f is (ε,k)-nearly-sorted if for some E_⊆[n], |E|≤εn: f|_{[n]\E} is k-sorted

Example 1

• 1/n-close ($\epsilon = 1/n$), n-sorted (k=n)

Example 2

1/2-close (ε=1/2),
 2-sorted (k=2)

Example 3

• (1/5,2)-nearly-sorted

• (Tolerant) Test for nearly-sortedness

 Algorithm for sorting nearly-sorted functions

• Experiments

Testing Nearly-Sortedness

$([\varepsilon_1, \varepsilon_2], [k_1, k_2])$ -test:

- ACCEPT w.p. 2/3 if (ε_1, k_1) -nearly sorted
- REJECT w.p. 2/3 if not (ε_2, k_2) -nearly sorted
- ([0,ε],[1,1])-test = tester for monotonicity #queries = O(log(n)/ε)
 [BRW, DGLRRS, EKKRRV, GGLRS, FLNRRS, HK]
- ([ε,cε],[1,1])-test = tolerant tester for monotonicity #queries = Õ(log(n)/ε)
 [PRR,ACCL]
- ([ε,cε],[k,ck])-test = tolerant test for nearly-sortedness #queries = Õ(log(n)/ε) [this work]

k-Violations and (δ,k) -Active Indices

• (i,j) is a k-violation if $i \le j-k$ and f(i) > f(j)

k-Violations and (δ,k) -Active Indices

- (i,j) is a k-violation if $i \le j-k$ and f(i) > f(j)
- i is (δ,k)-active if for ≥δ(j-i) indices h∈[i,j],
 (i,h) is a k-violation

k-Violations and (δ,k) -Active Indices

- (i,j) is a k-violation if $i \le j-k$ and f(i) > f(j)
- i is (δ,k)-active if for ≥δ(j-i) indices h∈[i,j],
 (i,h) is a k-violation
- j is (δ,k)-active if for ≥δ(j-i) indices h∈[i,j],
 (h,j) is a k-violation

k-Violations and (δ,k)-Active Indices

either i or j must be (½-k/(j-i),k)-active

→ if f is not (ε,k)-nearly sorted, # (1/2-k/(j-i),k)-actives ≥ εn

Towards tolerant testing based on [ACCL]

Lemma

- if f is (ε, k) -nearly sorted then # (1/4, k)-actives $\leq 5\varepsilon n$
- if f is <u>not</u> (6ε , 6k)-nearly sorted then # (1/3,k)-actives $\ge 6\varepsilon$ n

([ε,Cε],[k,ck])-test

```
counter=0
repeat T=O(1/\varepsilon) times:
pick i\in[n]
If i is 1/3-active then counter++
if (counter/T >5.5\varepsilon)
REJECT
else
ACCEPT
```

Problem: how to check if i is 1/3-active?

Activity-testing algorithm

input: i,δ

• if i is (1/3,k)-active,

output YES w.p. $\geq 1-\delta$

• if i is not (1/4,k)-active, output NO w.p. $\geq 1-\delta$

query complexity: $\tilde{O}(\log(1/\delta) \log(n))$

works by approximating the number of violations (by sampling) within neighborhoods of increasing size

([ε,6ε],[k,6k])-tolerant test

```
count=0

repeat T=O(1/ε) times:

    pick i∈[n]

    if AT(i,1/T) = YES then count++

if (count/T >5.5ε)

    REJECT

else

    ACCEPT
```

query complexity: $\tilde{O}(\log(n)/\epsilon)$

- if f is (ε,k)-nearly sorted
 → fraction of (1/4,k)-actives ≤5ε
 "→" ACCEPT w.p. ≥2/3
- •if f is <u>not</u> (6ε,6k)-nearly sorted
 → fraction of (1/3,k)-actives ≥6ε
 "→" REJECT w.p. ≥2/3

Sorting Nearly-Sorted relations

• Use the Replacement-Selection algorithm

 Thm: if f is (ε,k)-nearly-sorted, then RS with M=εn+k, sorts f in two passes

If **#marked** ≤ M, the data is sorted after two passes

Sorting Nearly-Sorted relations

```
Lemma: \#marked \leq M (=\epsilonn+k)
```

```
Proof:
let E_1,...,E_t \subseteq [n] be "bad" subsets of size \leq \epsilon n
let D be their intersection
clearly D \leq \epsilon n
```

Claim: If i is marked, then $i \in D \rightarrow #marked \le \varepsilon n$ Proof:

for $i \le \epsilon n + k$, no index is marked let $i > \epsilon n + k$ be marked, assume i not in $D \rightarrow i$ not in E_h for some h

Experiments

- monitoring the "sort" function of PostgreSQL
- data was $(1/\sqrt{n}, \sqrt{n})$ -nearly sorted in most cases
- testing with parameters compatible with currently typical memory size is faster than making one pass
- in-memory sorting $(6/\sqrt{n}, 6\sqrt{n}]$)-nearly sorted data with RS is >2 times faster than standard quicksort
- more elaborate tests pending...

Experiments

Thank you