Mathematical problems of

 very large networks
László Lovász

Eötvös Loránd University, Budapest

lovasz@cs.elte.hu

Issues on very large graphs

The following issues are closely related:

- property testing;
- parameter estimation;
- limit objects for convergent graph sequences;
- regularity lemmas;
- distance of graphs;
- duality of left and right convergence.

Issues on very large graphs

The following concepts are cryptomorphic:

- a consistent local finite random graph model;
- a consistent local countable random graph;
- a measurable, symmetric function $W:[0,1]^{2} \rightarrow[0,1]$;
- a multiplicative graph parameter with nonnegative Möbius transform;
- a multiplicative, reflection positive graph parameter;
- A point in the completion of the set of finite graphs with the cut-distance.

Cut distance of two graphs

(a) $V(G)=V\left(G^{\prime}\right)$

$$
d_{\square}\left(G, G^{\prime}\right)=\max _{S, T \subseteq V(G)} \frac{\left|e_{G}(S, T)-e_{G^{\prime}}(S, T)\right|}{n^{2}}
$$

(b) $|V(G)|=\left|V\left(G^{\prime}\right)\right|=n$

$$
\delta_{\square}^{*}\left(G, G^{\prime}\right)=\min _{G \leftrightarrow G^{\prime}} d_{\square}\left(G, G^{\prime}\right)
$$

Cut distance of two graphs

(c) $|V(G)|=n \neq n^{\prime}=\left|V\left(G^{\prime}\right)\right|$
blow up nodes, or fractional overlay

$$
\left(X_{i j}\right)_{i \in V(G), j \in V(G)} \geq 0 \quad \sum_{i \in V(G)} X_{i j}=\frac{1}{n^{\prime}}, \quad \sum_{j \in V(G)} X_{i j}=\frac{1}{n}
$$

$\delta_{\square}\left(G, G^{\prime}\right)=$
$=\min _{X} \max _{S, T \subseteq V(G) \times V\left(G^{\prime}\right)}\left|\sum_{(i, u) \in S} \sum_{(j, v) \in T} X_{i u} X_{j v}\left(a_{i j}-a^{\prime}{ }_{u v}\right)\right|$

Cut distance of two graphs

Examples: $\delta_{\square}\left(K_{n, n}, G\left(2 n, \frac{1}{2}\right)\right) \approx \frac{1}{8}$

$$
\begin{aligned}
& \delta_{\square}\left(G_{1}\left(n, \frac{1}{2}\right), G_{2}\left(n, \frac{1}{2}\right)\right)=o(1) \\
& \delta_{\square}\left(G_{1}\left(n, \frac{1}{2}\right), \frac{1 / 2}{\delta}\right)=\delta_{\square}\left(G_{1}\left(n, \frac{1}{2}\right), 1 / 2\right)=o(1)
\end{aligned}
$$

Sampling Lemmas

$G, G^{\prime}:$ graphs with $V(G)=V\left(G^{\prime}\right)$
$\mathbf{S}_{k} \subseteq V(G)$: random set of k nodes
With large probability,

$$
\left|d_{\square}\left(G\left[\mathbf{S}_{k}\right], G^{\prime}\left[\mathbf{S}_{k}\right]\right)-d_{\square}\left(G, G^{\prime}\right)\right|<\frac{10}{k^{1 / 4}}
$$

Alon-Fernandez de la Vega-Kannan-Karpinski+
With large probability,

$$
\delta_{\square}\left(G, G\left[\mathbf{S}_{k}\right]\right)<\frac{10}{\sqrt{\log k}}
$$

Borgs-Chayes-Lovász-Sós-Vesztergombi

Regularity Lemmas

Original Regularity Lemma

"Weak" Regularity Lemma
"Strong" Regularity Lemma

Szemerédi 1976

Frieze-Kannan 1999

Alon - Fischer

- Krivelevich
- M. Szegedy 2000

Regularity Lemmas

$\mathcal{P}=\left\{V_{1}, \ldots, V_{k}\right\}$ partition of $V(G)$:
$G_{\mathcal{P}}$ is the complete graph on $V(G)$ with edgeweights

$$
w_{u v}=\frac{e_{G}\left(V_{i}, V_{j}\right)}{\left|V_{i}\right| \cdot\left|V_{j}\right|} \quad\left(u \in V_{i}, v \in V_{j}\right)
$$

Regularity Lemmas

"Weak" Regularity Lemma (Frieze-Kannan):
For every graph G and $k \geq 1$
there is a partition \mathcal{P} of $V(G)$ with k classes such that
$\delta_{\square}\left(G, G_{\mathcal{P}}\right) \leq \frac{1}{\sqrt{\log k}}$.
For every graph G and $k \geq 1$
there is a graph H with k nodes such that
$\delta_{\square}(G, H) \leq \frac{2}{\sqrt{\log k}}$.

"Weak" Regularity Lemma: geometric form

$$
d_{2}(s, t):=\mathrm{E}_{v}\left|\mathrm{E}_{u}\left(a_{s u} a_{v u}\right)-\mathrm{E}_{w}\left(a_{t w} a_{w v}\right)\right|
$$

Fact 1 . This is a metric, computable by sampling
Fact 2.
Weak Szemerédi partition \leftrightarrow partition most nodes into sets with small diameter

"Weak" Regularity Lemma: geometric form

$S \subseteq[0,1]: \quad \bar{d}(S)=\mathrm{E}_{x} d(x, S)$
average ε-net
\mathcal{P} partition of $[0,1]: \quad r(\mathcal{P})=d_{\square}\left(G, G_{p}\right)$
regular partition
$\forall S \subseteq[0,1] \Rightarrow$ Voronoi cells of S form a partition with

$$
r(\mathcal{P})<8 \sqrt{\bar{d}(S)}
$$

\forall partition $\mathcal{P}=\left\{V_{1}, \ldots, V_{\mathrm{k}}\right\}$ of $[0,1] \exists v_{i} \in V_{i}$ with

$$
\bar{d}\left(\left\{v_{1}, \ldots, v_{k}\right\}\right)<12 r(\mathcal{P})
$$

LL - B. Szegedy

"Weak" Regularity Lemma: algorithm

Algorithm to construct representatives of classes:

- Begin with $U=\varnothing$.
- Select random nodes v_{1}, v_{2}, \ldots
- Put v_{i} in U iff $d_{2}\left(v_{\mathrm{i}}, u\right)>\varepsilon$ for all $u \in U$.
- Stop if for more than $1 / \varepsilon^{2}$ trials, U did not grow.
size bounded by O(min \# classes)

"Weak" Regularity Lemma: algorithm

Algorithm to decide in which class v belongs:

Let $U=\left\{u_{1}, \ldots, u_{k}\right\}$.

Put a node v in V_{i} iff u_{i} is the nearest node to v in U.

Max Cut in huge graphs

(Different algorithm implicit by Frieze-Kannan.)
Algorithm to construct representation of cut:

- Construct U as for the weak Szemerédi partition
- Compute $p_{i j}=$ density between classes V_{i} and V_{j} (use sampling)
- Compute max cut $\left(U_{1}, U_{2}\right)$ in complete graph on U with edge-weights $p_{i j}$

Max Cut in huge graphs

Algorithm to decide in which class does v belong:

- Put $v \in V$ into V_{1} if $d_{2}\left(v, U_{1}\right) \leq d_{2}\left(v, U_{2}\right)$

$$
V_{2} \text { if } d_{2}\left(v, U_{1}\right)>d_{2}\left(v, U_{2}\right)
$$

Convergent graph sequences

$\operatorname{hom}(G, H):=$ \# of homomorphisms of G into H
$t(F, G)=\frac{\operatorname{hom}(F, G)}{|V(G)|^{|V(F)|}} \longleftarrow \quad \begin{gathered}\text { Probability that random map } \\ V(F) \rightarrow V(G) \text { is a hom }\end{gathered}$
(i) $\left(G_{1}, G_{2}, \ldots\right)$ convergent: Cauchy in the δ_{\square}-metric.
(ii) $\left(G_{1}, G_{2}, \ldots\right)$ convergent: $\forall F t\left(F, G_{n}\right)$ is convergent
distribution of k-samples is convergent for all k
(i) and (ii) are equivalent.

Convergent graph sequences

Example: random graphs

$$
\begin{aligned}
& t\left(F, \mathbb{G}\left(n, \frac{1}{2}\right)\right) \rightarrow\left(\frac{1}{2}\right)^{|E(F)|} \quad \text { with probability } 1 \\
& \delta_{\square}\left(\mathbb{G}\left(n, \frac{1}{2}\right), \mathbb{G}\left(m, \frac{1}{2}\right)\right) \rightarrow 0 \quad(n, m \rightarrow \infty)
\end{aligned}
$$

Convergent graph sequences

(i) and (ii) are equivalent.
"Counting lemma": $|t(F, G)-t(F, H)| \leq|E(F)| \delta_{\square}(G, H)$
"Inverse counting lemma": if $|t(F, G)-t(F, H)| \leq \frac{1}{k}$ for all graphs F with k nodes, then $\delta_{\square}(G, H)<\frac{10}{\sqrt{\log k}}$

Limit objects

- a consistent local finite random graph model
$G\left[\mathbf{S}_{k}\right]$: probability distribution on k-point graphs

(a) $G\left[\mathbf{S}_{k}\right] \backslash\{v\}$ has same distribution as $G\left[\mathbf{S}_{k-1}\right]$
local
(b) for $S=S_{1} \dot{\cup} S_{2}, G\left[S_{1}\right]$ and $G\left[S_{2}\right]$ areindependent.

Every random graph model with (a) and (b) is the limit of models $G[S]$.

Limit objects

- a consistent local finite random graph model
- a consistent local countable random graph

Limit objects

- a consistent local finite random graph model
- a consistent local countable random graph
- a measurable, symmetric function $W:[0,1]^{2} \rightarrow[0,1]$

Limit objects

0	0	1	0	0	1	1	0	0	0	1	0	0	1
0	0	1	0	1	0	1	0	0	0	0	0	1	0
1	1	0	1	0	1	1	1	1	0	1	0	1	1
0	0	1	0	1	0	1	0	1	0	1	1	0	0
0	1	0	1	0	1	1	0	0	0	1	0	0	1
1	0	1	0	1	0	1	1	0	1	1	1	0	1
1	1	1	1	1	1	0	1	0	1	1	1	1	0
0	0	1	0	0	1	1	0	1	0	1	0	1	1
0	0	1	1	0	0	0	1	1	1	0	1	0	0
0	0	0	0	0	1	1	0	1	0	1	0	1	0
1	0	1	1	1	1	1	1	0	1	0	1	1	1
0	0	0	1	0	1	1	0	1	0	1	0	1	0
0	1	1	0	0	0	1	1	0	1	1	1	0	1
1	0	1	0	1	1	0	1	0	0	1	0	1	0

December 2008

Limit objects

A random graph

with 100 nodes and with 2500 edges
December 2008

Limit objects

Rearranging the rows and columns
December 2008

Limit objects

A random graph

1/2

with 100 nodes and with 2500 edges
(no matter how you reorder the nodes)
December 2008

Limit objects

A randomly grown
uniform attachment graph
with 200 nodes
December 2008

Limit objects

$W(x, y):=1-\max (x, y)$

$$
t\left(K_{3}, G_{n}\right) \rightarrow \iiint W(x, y) W(y, z) W(x, z) d x d y d z
$$

Limit objects

$$
\begin{aligned}
& \mathcal{W}_{0}=\left\{W:[0,1]^{2} \rightarrow[0,1] \text { symmetric, measurable }\right\} \\
& t(F, W)=\int_{[0,1]^{(F)}} \prod_{i \in E(F)} W\left(x_{i}, x_{j}\right) d x
\end{aligned}
$$

Adjacency matrix of graph G :

$$
\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)
$$

Associated function W_{G} :

$$
t(F, G)=t\left(F, W_{G}\right)
$$

Limit objects

Distance of functions

$$
\begin{array}{|l}
\begin{array}{|l|}
\hline \square \\
\\
\\
\\
\\
\\
\delta_{\square}\left(W, W^{\prime}\right)=\inf \sup _{S, T \subseteq[0,1]} \mid G_{S \times T}\left(W-W^{\prime}\right)=\delta_{\square}\left(W_{G}, W_{G^{\prime}}\right)
\end{array} \\
\left(W_{0}, \delta_{\square}\right) \text { is compact. }
\end{array}
$$

Equivalent to the Regularity Lemma

Limit objects

Converging to a function

$$
\begin{aligned}
G_{n} \rightarrow W: & \text { (i) } \delta\left(W_{G_{n}}, W\right) \rightarrow 0 \\
& \text { (ii) }(\forall F) t\left(F, G_{n}\right) \rightarrow t(F, W)
\end{aligned}
$$

(i) and (ii) are equivalent.

Limit objects

$$
\begin{array}{cl}
G_{n} & W(x, y) \\
\delta_{\square}\left(G_{n}, W\right) \rightarrow 0 & \\
\forall F t\left(F, G_{n}\right) \rightarrow t(F, W) &
\end{array}
$$

Limit objects

For every convergent graph sequence $\left(G_{n}\right)$
there is a $W \in \mathcal{W}_{0}$ such that $G_{n} \rightarrow W$.
Conversely, $\forall W \exists\left(G_{n}\right)$ such that $G_{n} \rightarrow W$
LL - B. Szegedy
W is essentially unique (up to measure-preserving transform).
Borgs - Chayes - LL

Limit objects

- a consistent local finite random graph model
- a consistent local countable random graph
- a measurable, symmetric function $W:[0,1]^{2} \rightarrow[0,1]$

Fix $W:[0,1]^{2} \rightarrow[0,1]$. Let $X_{1}, \ldots, X_{n} \in[0,1]$ ind uniform.
$V(\mathbb{G}(n, W))=\{1, \ldots, n\}$
$\mathrm{P}(i j \in E(\mathbb{G}(n, W)))=W\left(X_{i}, X_{j}\right)$

$$
W \equiv 1 / 2 \quad \Rightarrow \quad \mathbf{G}(n, 1 / 2)
$$

Limit objects

- a consistent local finite random graph model
- a consistent local countable random graph
- a measurable, symmetric function $W:[0,1]^{2} \rightarrow[0,1]$
- a multiplicative graph parameter with nonnegative

Möbius transform

$$
\begin{aligned}
& f^{\dagger}(F)=\sum_{F^{\prime} \supseteq F}(-1)^{\left|E\left(F^{\prime}\right) \backslash E(F)\right|} f\left(F^{\prime}\right) \\
& f(F)=\mathrm{P}\left(F \subseteq G\left[\mathbf{S}_{k}\right]\right) \quad f^{\dagger}(F)=\mathrm{P}\left(F=G\left[\mathbf{S}_{k}\right]\right) \\
& t(F, W)=\int_{[0,1]^{V(F)}} \prod_{i j \in E(F)} W\left(x_{i}, x_{j}\right) d x
\end{aligned}
$$

Limit objects

- a consistent local finite random graph model;
- a consistent local countable random graph;
- a measurable, symmetric function $W:[0,1]^{2} \rightarrow[0,1]$;
- a multiplicative graph parameter with nonnegative

Möbius transform;

- a multiplicative, reflection positive graph parameter; (connection matrices are positive semidefinite)

Many applications in extremal graph theory

Limit objects

- a consistent local finite random graph model;
- a consistent local countable random graph;
- a measurable, symmetric function $W:[0,1]^{2} \rightarrow[0,1]$;
- a multiplicative graph parameter with nonnegative Möbius transform;
- a multiplicative, reflection positive graph parameter;
- A point in the completion of the set of finite graphs with the cut-metric.

Parameter estimation

Graph parameter f is estimable:

$$
\forall \varepsilon>0 \quad \exists k \geq 1 \mathrm{P}\left(\left|f\left(G\left[\mathbf{S}_{k}\right]\right)-f(G)\right|>\varepsilon\right)<\varepsilon .
$$

```
f is estimable
    \Leftrightarrow
f(G}\mp@subsup{|}{n}{})\mathrm{ is convergent if (G}\mp@subsup{G}{n}{})\mathrm{ is convergent
```


Parameter estimation

f is estimable

$$
\Leftrightarrow
$$

(1) $\forall \varepsilon \exists \delta V(G)=V\left(G^{\prime}\right), d_{\square}\left(G, G^{\prime}\right)<\delta$

$$
\Rightarrow\left|f(G)-f\left(G^{\prime}\right)\right|<\varepsilon
$$

(2) if $G(m)$ is obtained from G by replacing each node by m copies, then $f(G(m))$ is convergent.
(3) $\forall \varepsilon \exists k|V(G)|>k \Rightarrow|f(G \backslash v)-f(G)|<\varepsilon$

Borgs, Chayes, LL, Sós, Vesztergombi

