Random matrices: Distribution of
the least singular value
(via Property Testing)
Van H. Vu
Department of Mathematics
Rutgers
vanvu@math.rutgers.edu
(joint work with T. Tao, UCLA)

Let ξ be a real or complex-valued random variable and $M_{n}(\xi)$ denote the random $n \times n$ matrix whose entries are i.i.d. copies of ξ :

- (R-normalization) ξ is real-valued with $\mathbf{E} \xi=0$ and $\mathbf{E} \xi^{2}=1$.
- (C-normalization) ξ is complex-valued with $\mathbf{E} \xi=0$, $\mathbf{E} \Re(\xi)^{2}=\mathbf{E} \Im(\xi)^{2}=\frac{1}{2}$, and $\mathbf{E} \Re(\xi) \Im(\xi)=0$.

In both cases ξ has mean zero and variance one.
Examples. real gaussian, complex gaussian, Bernoulli (± 1 with probability $1 / 2$).

2

Numerical Algebra.
von Neumann-Goldstine (1940s): What is the condition number and the least singular value of a random matrix ?

Prediction. With high probability, $\sigma_{n}=\Theta(\sqrt{n}), \kappa=\Theta(n)$.
Smale (1980s), Demmel (1980s): Typical complexity of a numerical problem.

Spielman-Teng (2000s): Smooth analysis.

3

Probability/Mathematical Physics. A basic problem
in Random Matrix Theory is to understand the
distributions of the eigenvalues and singular values.

- Limiting distribution of the whole spectrum (such as Wigner semi-circle law).
- Limiting distribution of extremal eigenvalues/singular values (such as Tracy-Widom law).

5

Bulk Distributions.
Circular Law. The limiting distribution of the eigenvalues of $\frac{1}{\sqrt{n}} M_{n}$ is uniform in the unit circle. (Proved for complex gaussian by Mehta 1960s, real gaussian by Edelman 1980s, Girko, Bai, Götze-Tykhomiro, Pan-Zhu, Tao-Vu (2000s). Full generality: Tao-Vu 2008.)

Marchenko-Patur Law. The limiting distribution of the eigenvalues of $\frac{1}{n} M_{n} M_{n}^{*}$ has density $\frac{1}{2 \pi} \int_{0}^{\min (t, 4)} \sqrt{\frac{4}{x}-1} d x$. (Marchenko-Pastur 1967).

The singular values of M_{n} are often viewed as the (square roots) of the eigenvalues of $M_{n} M_{n}^{*}$ (Wishart or sample covariance random matrices).

Wigner's trace method. For all even k

$$
\sigma_{1}(M)^{k}+\ldots+\sigma_{n}(M)^{k}=\operatorname{Trace}\left(M M^{*}\right)^{k / 2}
$$

Notice that if k is large, the left hand side is dominated by the largest term $\sigma_{1}(M)^{k}$. Thus, if one can estimate $\mathbf{E T r a c e} M^{k}$ for very large k, one could, in principle, get a good control on $\sigma_{1}(M)$.

$$
\operatorname{Trace}\left(M M^{*}\right)^{l}:=\sum_{i_{1}, \ldots, i_{l}} m_{i_{1} i_{2}} m_{i_{2} i_{3}}^{*} \ldots m_{i_{l-1} i_{l}} m_{i_{l} i_{1}}^{*}
$$

$$
\mathbf{E} m_{i_{1} i_{2}} m_{i_{2} i_{3}}^{*} \ldots m_{i_{l-1} i_{l}} m_{i_{l} i_{1}}^{*}=0
$$

unless $i_{1} \ldots i_{l} i_{1}$ forms a special closed walk in K_{n}, thanks to the independence of the entries. (Füredi-Komlós, Soshnikov, V., Soshnikov-Peche etc).

Distribution at the hard-edge of the spectrum. Distribution of the least singular value (or more generally the joint distribution of the k smallest singular values).

Edelman (1988) Gaussian case:
Real Gaussian

$$
\mathbf{P}\left(n \sigma_{n}\left(M_{n}\left(\mathbf{g}_{\mathbf{R}}\right)\right)^{2} \leq t\right)=1-e^{-t / 2-\sqrt{t}}+o(1)
$$

Complex Gaussian

$$
\mathbf{P}\left(n \sigma_{n}\left(M_{n}\left(\mathbf{g}_{\mathbf{C}}\right)\right)^{2} \leq t\right)=1-e^{-t}
$$

Forrester (1994) Joint distribution of the least k singular values.
Ben Arous-Peche (2007) Gaussian divisible random variables.

Sampling.

Assume, for simplicity, that $|\xi|$ is bounded and M_{n} is invertible with probability one.

$$
\mathbf{P}\left(n \sigma_{n}\left(M_{n}(\xi)\right)^{2} \leq t\right)=\mathbf{P}\left(\sigma_{1}\left(M_{n}(\xi)^{-1}\right)^{2} \geq n / t\right)
$$

Let $R_{1}(\xi), \ldots, R_{n}(\xi)$ denote the rows of $M_{n}(\xi)^{-1}$.
Lemma [Random sampling] Let $1 \leq s \leq n$ be integers. A be an $n \times n$ real or complex matrix with rows R_{1}, \ldots, R_{n}. Let $k_{1}, \ldots, k_{s} \in\{1, \ldots, n\}$ be selected independently and uniformly at random, and let B be the $s \times n$ matrix with rows $R_{k_{1}}, \ldots, R_{k_{s}}$. Then

$$
\mathbf{E}\left\|A^{*} A-\frac{n}{s} B^{*} B\right\|_{F}^{2} \leq \frac{n}{s} \sum_{k=1}^{n}\left|R_{k}\right|^{4} .
$$

(special case of Frieze-Kannan-Vempala.)

Summing over i, j, we conclude that

$$
\mathbf{E}\left\|A^{*} A-\frac{n}{s} B^{*} B\right\|_{F}^{2}=\frac{n^{2}}{s} \sum_{i=1}^{n} \sum_{j=1}^{n} V_{i j} .
$$

Discarding the second term in $V_{i j}$, we conclude

$$
\mathbf{E}\left\|A^{*} A-\frac{n}{s} B^{*} B\right\|_{F}^{2} \leq \frac{n}{s} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n}\left|a_{k i}\right|^{2}\left|a_{k j}\right|^{2} .
$$

Performing the i, j summations, we obtain the claim.

Inverting and Projecting, continue

High dimensional case.
Lemma. [Projection lemma] Let V be the s-dimensional subspace
formed as the orthogonal complement of the span of X_{s+1}, \ldots, X_{n}, which we identify with F^{s} (F is either real or complex) via an orthonormal basis, and let $\pi: F^{n} \rightarrow F^{s}$ be the orthogonal projection to $V \equiv F^{s}$. Let M be the $s \times s$ matrix with columns $\pi\left(X_{1}\right), \ldots, \pi\left(X_{s}\right)$.
Then M is invertible, and we have

$$
B B^{*}=M^{-1}\left(M^{-1}\right)^{*} .
$$

In particular, we have

$$
\sigma_{j}(B)=\sigma_{s-j+1}(M)^{-1}
$$

for all $1 \leq j \leq s$.

Most importantly, this means the largest singular value of B is the smallest singular value of M.

Together with the Sampling lemma and the Tail bound lemma, this reduces the study of the smallest singular value of an $n \times n$ matrix to that of an $s \times s$ matrix.

The key point of the argument is that the orthogonal projection onto a small dimensional subspace has an averaging effect that makes the image close to gaussian.

Similarity Dvoretzky theorem: A low dimensional random cross section of the n-dimensional unit cube looks like a ball with high probability.

One dimensional Berry-Esseen central limit theorem. Let $v_{1}, \ldots, v_{n} \in \mathbf{R}$ be real numbers with $v_{1}^{2}+\ldots+v_{n}^{2}=1$ and let ξ be a \mathbf{R}-normalized random variable with finite third moment $\mathbf{E}|\xi|^{3}<\infty$. Let $S \in \mathbf{R}$ denote the random variable

$$
S=v_{1} \xi_{1}+\ldots+v_{n} \xi_{n}
$$

where ξ_{1}, \ldots, ξ_{n} are iid copies of ξ. Then for any $t \in \mathbf{R}$ we have

$$
\mathbf{P}(S \leq t)=\mathbf{P}\left(\mathbf{g}_{\mathbf{R}} \leq t\right)+O\left(\sum_{j=1}^{n}\left|v_{j}\right|^{3}\right),
$$

where the implied constant depends on the third moment $\mathbf{E}|\xi|^{3}$ of ξ. In particular, we have

$$
\mathbf{P}(S \leq t)=\mathbf{P}\left(\mathbf{g}_{\mathbf{R}} \leq t\right)+O\left(\max _{1 \leq j \leq n}\left|v_{j}\right|\right)
$$

Morality. Sum of real iid random variables with non-degereated coefficients is asymptotically gaussian.
[Berry-Esséen-type central limit theorem for frames] Let $1 \leq N \leq n$, let F be the real or complex field, and let ξ be F-normalized and have finite third moment $\mathbf{E}|\xi|^{3}<\infty$. Let $v_{1}, \ldots, v_{n} \in F^{N}$ be a normalized tight frame for F^{N}, or in other words

$$
\begin{equation*}
v_{1} v_{1}^{*}+\ldots+v_{n} v_{n}^{*}=I_{N} \tag{7}
\end{equation*}
$$

where I_{N} is the identity matrix on F^{N}. Let $S \in F^{N}$ denote the random variable

$$
S=\xi_{1} v_{1}+\ldots+\xi_{n} v_{n}
$$

where ξ_{1}, \ldots, ξ_{n} are iid copies of ξ. Let G be the gaussian counterpart. Then for any measurable set $\Omega \subset F^{N}$ and any $\epsilon>0$, one has

$$
\mathbf{P}(S \in \Omega) \geq \mathbf{P}\left(G \in \Omega \backslash \partial_{\epsilon} \Omega\right)-O\left(N^{5 / 2} \epsilon^{-3}\left(\max _{1 \leq j \leq n}\left|v_{j}\right|\right)\right)
$$

and

$$
\mathbf{P}(S \in \Omega) \leq \mathbf{P}\left(G \in \Omega \cup \partial_{\epsilon} \Omega\right)+O\left(N^{5 / 2} \epsilon^{-3}\left(\max _{1 \leq j \leq n}\left|v_{j}\right|\right)\right)
$$

Morality. S behave like G on sets with nice boundary.
By Hoffman-Weilandt bound

$$
\sum_{i=1}^{s}\left|\sigma_{i}(A)-\sigma_{i}(B)\right|^{2} \leq\|A-B\|_{F}^{2}
$$

Thus, if one view the matrix as a point in $F^{s^{2}}$, the set $\left\{x \mid \sigma_{n}(M(x)) \leq t\right\}$ has nice boundary. So, with proper choice of parameters, $\mathbf{P}\left(G \in \Omega \backslash \partial_{\epsilon} \Omega\right)$ is approximately the same as $\mathbf{P}(\Omega)$. This means

$$
\mathbf{P}\left(n \sigma_{n}^{2}\left(M_{n}(\xi) \leq t\right) \approx \mathbf{P}\left(s^{2} \sigma_{s} M_{s}(\mathbf{g}) \leq t\right)\right.
$$

proving the Universality.

Theorem. [Universality for the least singular value](Tao-V. 09) Let ξ be R- or C-normalized, and suppose $\mathbf{E}|\xi|^{C_{0}}<\infty$ for some sufficiently large absolute constant C_{0}. Then for all $t>0$, we have

$$
\begin{equation*}
\mathbf{P}\left(n \sigma_{n}\left(M_{n}(\xi)\right)^{2} \leq t\right)=\int_{0}^{t} \frac{1+\sqrt{x}}{2 \sqrt{x}} e^{-(x / 2+\sqrt{x})} d x+O\left(n^{-c}\right) \tag{8}
\end{equation*}
$$

if ξ is \mathbf{R}-normalized, and

$$
\mathbf{P}\left(n \sigma_{n}\left(M_{n}(\xi)\right)^{2} \leq t\right)=\int_{0}^{t} e^{-x} d x+O\left(n^{-c}\right)
$$

if ξ is \mathbf{C}-normalized, where $c>0$ is an absolute constant. The implied constants in the $O($.$) notation depend on \mathbf{E}|\xi|^{C_{0}}$ but are uniform in t.

Conjecture (Spielman-Teng 2002) Let ξ be the Bernoulli random variable. Then there is a constant $0<b<1$ such that for all $t \geq 0$

$$
\begin{equation*}
\mathbf{P}\left(\sqrt{n} \sigma_{n}\left(M_{n}(\xi)\right) \leq t\right) \leq t+b^{n} \tag{9}
\end{equation*}
$$

As $\int_{0}^{t} \frac{1+\sqrt{x}}{2 \sqrt{x}} e^{-(x / 2+\sqrt{x})} d x \approx t-t^{3} / 3$, our result implies that this conjecture holds for $t \geq n^{-c}$.

For smaller t, it suggests a stronger bound must hold. (In other words, the term t in the conjectured bound is only the first order approximation of the truth.)

This theorem can be extended in several directions:

- joint distribution of the bottom k singular values of $M_{n}(\xi)$, for bounded k (and even when k is a small power of n).
- rectangular matrixes where the difference between the two dimensions is not too large.
- all results hold if we drop the condition that the entries have identical distribution. (It is important that they are all normalized, independent and their C_{0}-moments are uniformly bounded.)

The tail bound lemma.
Lemma. [Tail bound on $\left|R_{i}(\xi)\right|$] Let R_{1}, \ldots, R_{n} be the rows of $M_{n}(\xi)^{-1}$. Then

$$
\mathbf{P}\left(\max _{1 \leq i \leq n}\left|R_{i}(\xi)\right| \geq n^{100 / C_{0}}\right) \ll n^{-1 / C_{0}} .
$$

Recall that R_{1} is orthogonal to X_{2}, \ldots, X_{n} and $R_{1} \cdot X_{1}=1$, where X_{i} are the rows of $M_{n}(\xi)$. Thus, $\left|R_{1}\right|$ is the reciprocal of d_{1}, the distance from X_{1} onto the hyperplane spanned by X_{2}, \ldots, X_{n}. So basically we need to understand the d_{i}.

It is easy to see that the distance from a random gaussian vector to a random hyperplane has guassian distribution.

It has turned out that this extends to other distributions. (As a toy example, one can consider ± 1 case.)
Lemma. [Random distance is gaussian] Let X_{1}, \ldots, X_{n} be random vectors whose entries are iid copies of ξ. Then the distribution of the distance d_{1} from X_{1} to $\operatorname{Span}\left(X_{2}, \ldots, X_{n}\right)$ is approximately gaussian, in the sense that

$$
\mathbf{P}\left(d_{1} \leq t\right)=\mathbf{P}\left(\left|\mathbf{g}_{F}\right| \leq t\right)+O\left(n^{-c}\right),
$$

for some small constant c.
A naive application of the union bound is clearly insufficient, as it gives

$$
\mathbf{P}\left(\min _{1 \leq i \leq n} d_{i} \leq t\right) \ll n\left(t+n^{-c}\right) .
$$

The key fact that enables us to overcome the ineffectiveness of the union bound is that the distances d_{i} are correlated. They tend to be large or small at the same time. Quantitatively, we have

Lemma. [Correlation between distances] Let $n \geq 1$, let F be the real or complex field, let A be an $n \times n F$-valued invertible matrix with columns X_{1}, \ldots, X_{n}, and let $d_{i}:=\operatorname{dist}\left(X_{i}, V_{i}\right)$ denote the distance from X_{i} to the hyperplane V_{i} spanned by $X_{1}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{n}$. Let $1 \leq L<j \leq n$, let $V_{L, j}$ denote the orthogonal complement of the span of $X_{L+1}, \ldots, X_{j-1}, X_{j+1}, \ldots, X_{n}$, and let $\pi_{L, j}: F^{n} \rightarrow V_{L, j}$ denote the orthogonal projection onto $V_{L, j}$. Then

$$
d_{j} \geq \frac{\left|\pi_{L, j}\left(X_{j}\right)\right|}{1+\sum_{i=1}^{L} \frac{\left|\pi_{L, j}\left(X_{i}\right)\right|}{d_{i}}} .
$$

Consider

$$
\text { distance }:=|X \cdot v|
$$

where $X=\left(\xi_{1}, \ldots, \xi_{m}\right)$ is the random vector and $v=\left(a_{1}, \ldots, a_{n}\right)$ is the normal vector of the random hyperplane.
Claim. The normal vector of a random hyperplane, with high probability, looks normal (non-degenerate).

Tools: Sharp concentration inequalities.
Then use the one-dimensional Berry-Esseen theorem.

