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Let ξ be a real or complex-valued random variable and Mn(ξ) denote the

random n× n matrix whose entries are i.i.d. copies of ξ:

• (R-normalization) ξ is real-valued with Eξ = 0 and Eξ2 = 1.

• (C-normalization) ξ is complex-valued with Eξ = 0,

E<(ξ)2 = E=(ξ)2 = 1
2
, and E<(ξ)=(ξ) = 0.

In both cases ξ has mean zero and variance one.

Examples. real gaussian, complex gaussian, Bernoulli (±1 with

probability 1/2).
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Numerical Algebra.

von Neumann-Goldstine (1940s): What is the condition number and the

least singular value of a random matrix ?

Prediction. With high probability, σn = Θ(
√
n), κ = Θ(n).

Smale (1980s), Demmel (1980s): Typical complexity of a numerical

problem.

Spielman-Teng (2000s): Smooth analysis.
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Probability/Mathematical Physics. A basic problem

in Random Matrix Theory is to understand the

distributions of the eigenvalues and singular values.

• Limiting distribution of the whole spectrum (such as Wigner

semi-circle law).

• Limiting distribution of extremal eigenvalues/singular values (such

as Tracy-Widom law).
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A special case: Gaussian models. Explicit formulae for the joint

distributions of the eigenvalues of 1√
n
Mn

(Real Gaussian) c1(n)
∏

1≤i<j≤n

|λi − λj | exp(−
n∑
i=1

λ2
i /2). (1)

(Complex Gaussian) c2(n)
∏

1≤i<j≤n

|λi − λj |2 exp(−
n∑
i=1

λ2
i /2). (2)
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Explicit formulae for the joint distributions of the eigenvalues of
1
n
MnM

∗
n (or the singular values of 1√

n
Mn)

(Real Gaussian) c3(n)
∏

1≤i<j≤n

(λi − λj)
n∏
i=1

λ
−1/2
i exp(−

n∑
i=1

λi/2). (3)

(Complex Gaussian) c4(n)
∏

1≤i<j≤n

|λi − λj |2 exp(−
n∑
i=1

λi/2). (4)

The limiting distributions for Gaussian matrices can be computed

directly from these explicit formulae.
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Universality Principle. The same results must hold

for general normalized random variables.

Informally: The limiting distributions of the spectrum should not

depend too much on the distribution of the entries.

Same spirit: Central limit theorem.
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Bulk Distributions.

Circular Law. The limiting distribution of the eigenvalues of 1√
n
Mn is

uniform in the unit circle. (Proved for complex gaussian by Mehta 1960s,

real gaussian by Edelman 1980s, Girko, Bai, Götze-Tykhomiro, Pan-Zhu,

Tao-Vu (2000s). Full generality: Tao-Vu 2008.)

Marchenko-Patur Law. The limiting distribution of the eigenvalues of
1
n
MnM

∗
n has density 1

2π

∫ min(t,4)

0

√
4
x
− 1 dx. (Marchenko-Pastur 1967).

The singular values of Mn are often viewed as the (square roots) of the

eigenvalues of MnM
∗
n (Wishart or sample covariance random matrices).
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Distributions of the extremal singular values.

Distribution at the soft-edge of the spectrum. Distribution of the largest

singular value (or more generally the joint distribution of the k largest

singular values).

Johansson (2000), Johnstone (2000) Gaussian case:

σ2
n − 4

24/3n−2/3
→ TW.

Soshnikov (2008): The result holds for all ξ with exponential tail.
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Wigner’s trace method. For all even k

σ1(M)k + . . .+ σn(M)k = Trace (MM∗)k/2.

Notice that if k is large, the left hand side is dominated by the largest

term σ1(M)k. Thus, if one can estimate ETrace Mk for very large k, one

could, in principle, get a good control on σ1(M).

Trace (MM∗)l :=
∑
i1,...,il

mi1i2m
∗
i2i3 . . .mil−1ilm

∗
ili1 .

Emi1i2m
∗
i2i3 . . .mil−1ilm

∗
ili1 = 0

unless i1 . . . ili1 forms a special closed walk in Kn, thanks to the

independence of the entries. (Füredi-Komlós, Soshnikov, V.,

Soshnikov-Peche etc).
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Distribution at the hard-edge of the spectrum. Distribution of the least

singular value (or more generally the joint distribution of the k smallest

singular values).

Edelman (1988) Gaussian case:

Real Gaussian

P(nσn(Mn(gR))2 ≤ t) = 1− e−t/2−
√
t + o(1).

Complex Gaussian

P(nσn(Mn(gC))2 ≤ t) = 1− e−t.

Forrester (1994) Joint distribution of the least k singular values.

Ben Arous-Peche (2007) Gaussian divisible random variables.
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What about general entries ?

The proofs for Gaussian cases relied on special properties of the

Gaussian distribution and cannot be extended.

One can view σn(M) as the largest singular value of M−1. However,

the trace method does apply as the entries of M−1 are not independent.
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Property testing

Given a large, complex, structure S, we would like to study some

parameter P of S. It has been observed that quite often one can obtain

some good estimates about P by just looking at the small substructure

of S, sampled randomly.

In our case, the large structure is our matrix S := M−1
n , and the

parameter in question is its largest singular value. It has turned out that

this largest singular value can be estimated quite precisely (and with

high probability) by sampling a few rows (say s) from S and considering

the submatrix S′ formed by these rows.
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Sampling.

Assume, for simplicity, that |ξ| is bounded and Mn is invertible with

probability one.

P(nσn(Mn(ξ))2 ≤ t) = P(σ1(Mn(ξ)−1)2 ≥ n/t).

Let R1(ξ), . . . , Rn(ξ) denote the rows of Mn(ξ)−1.

Lemma [Random sampling] Let 1 ≤ s ≤ n be integers. A be an n× n
real or complex matrix with rows R1, . . . , Rn. Let k1, . . . , ks ∈ {1, . . . , n}
be selected independently and uniformly at random, and let B be the

s× n matrix with rows Rk1 , . . . , Rks . Then

E‖A∗A− n

s
B∗B‖2F ≤

n

s

n∑
k=1

|Rk|4.

(special case of Frieze-Kannan-Vempala.)

14



Ri = (ai1, . . . , ain). For 1 ≤ i ≤ j, the ij entry of A∗A− n
s
B∗B is given

by

n∑
k=1

akiakj −
n

s

s∑
l=1

akliaklj . (5)

For l = 1, . . . , s, the random variables akliaklj are iid with mean
1
n

∑n

k=1
akiakj and variance

Vij :=
1

n

n∑
k=1

|aki|2|akj |2 − |
1

n

n∑
k=1

akiakj |2, (6)

and so the random variable (5) has mean zero and variance n2

s
Vij .
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Summing over i, j, we conclude that

E‖A∗A− n

s
B∗B‖2F =

n2

s

n∑
i=1

n∑
j=1

Vij .

Discarding the second term in Vij , we conclude

E‖A∗A− n

s
B∗B‖2F ≤

n

s

n∑
i=1

n∑
j=1

n∑
k=1

|aki|2|akj |2.

Performing the i, j summations, we obtain the claim.
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Bounding the error term

The expectation E|Ri(ξ)| is infinity. However, we have the following tail

bound

Lemma. [Tail bound on |Ri(ξ)|] Let R1, . . . , Rn be the rows of

Mn(ξ)−1. Then

P( max
1≤i≤n

|Ri(ξ)| ≥ n100/C0)� n−1/C0 .

17



Inverting and Projecting

One dimensional case. Let A be an invertible matrix with columns

X1, . . . , Xn. Let Ri be the rows of A−1.

Fact. R1 is the reciprocal of the projection of X1 onto the normal

direction of the hyperplane spanned by X2, . . . , Xn.

Proof. Consider the identity A−1A = I. So R1 is orthogonal with

X2, . . . , Xn and R1 ·X1 = 1.
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Inverting and Projecting, continue

High dimensional case.

Lemma. [Projection lemma] Let V be the s-dimensional subspace

formed as the orthogonal complement of the span of Xs+1, . . . , Xn,

which we identify with F s (F is either real or complex) via an

orthonormal basis, and let π : Fn → F s be the orthogonal projection to

V ≡ F s. Let M be the s× s matrix with columns π(X1), . . . , π(Xs).

Then M is invertible, and we have

BB∗ = M−1(M−1)∗.

In particular, we have

σj(B) = σs−j+1(M)−1

for all 1 ≤ j ≤ s.
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Most importantly, this means the largest singular value of B is the

smallest singular value of M .

Together with the Sampling lemma and the Tail bound lemma, this

reduces the study of the smallest singular value of an n× n matrix to

that of an s× s matrix.

The key point of the argument is that the orthogonal projection onto a

small dimensional subspace has an averaging effect that makes the image

close to gaussian.

Similarity Dvoretzky theorem: A low dimensional random cross section

of the n-dimensional unit cube looks like a ball with high probability.
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One dimensional Berry-Esseen central limit theorem. Let v1, . . . , vn ∈ R

be real numbers with v2
1 + . . .+ v2

n = 1 and let ξ be a R-normalized

random variable with finite third moment E|ξ|3 <∞. Let S ∈ R denote

the random variable

S = v1ξ1 + . . .+ vnξn

where ξ1, . . . , ξn are iid copies of ξ. Then for any t ∈ R we have

P(S ≤ t) = P(gR ≤ t) +O(

n∑
j=1

|vj |3),

where the implied constant depends on the third moment E|ξ|3 of ξ. In

particular, we have

P(S ≤ t) = P(gR ≤ t) +O( max
1≤j≤n

|vj |).

Morality. Sum of real iid random variables with non-degereated

coefficients is asymptotically gaussian.
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[Berry-Esséen-type central limit theorem for frames] Let 1 ≤ N ≤ n, let

F be the real or complex field, and let ξ be F -normalized and have finite

third moment E|ξ|3 <∞. Let v1, . . . , vn ∈ FN be a normalized tight

frame for FN , or in other words

v1v
∗
1 + . . .+ vnv

∗
n = IN , (7)

where IN is the identity matrix on FN . Let S ∈ FN denote the random

variable

S = ξ1v1 + . . .+ ξnvn,

where ξ1, . . . , ξn are iid copies of ξ. Let G be the gaussian counterpart.

Then for any measurable set Ω ⊂ FN and any ε > 0, one has

P(S ∈ Ω) ≥ P(G ∈ Ω\∂εΩ)−O(N5/2ε−3( max
1≤j≤n

|vj |))

and

P(S ∈ Ω) ≤ P(G ∈ Ω ∪ ∂εΩ) +O(N5/2ε−3( max
1≤j≤n

|vj |)).
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Morality. S behave like G on sets with nice boundary.

By Hoffman-Weilandt bound

s∑
i=1

|σi(A)− σi(B)|2 ≤ ‖A−B‖2F .

Thus, if one view the matrix as a point in F s
2
, the set {x|σn(M(x)) ≤ t}

has nice boundary. So, with proper choice of parameters, P(G ∈ Ω\∂εΩ)

is approximately the same as P(Ω). This means

P(nσ2
n(Mn(ξ) ≤ t) ≈ P(s2σsMs(g) ≤ t)

proving the Universality.
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Theorem. [Universality for the least singular value](Tao-V. 09) Let ξ be

R- or C-normalized, and suppose E|ξ|C0 <∞ for some sufficiently large

absolute constant C0. Then for all t > 0, we have

P(nσn(Mn(ξ))2 ≤ t) =

∫ t

0

1 +
√
x

2
√
x

e−(x/2+
√
x) dx+O(n−c) (8)

if ξ is R-normalized, and

P(nσn(Mn(ξ))2 ≤ t) =

∫ t

0

e−x dx+O(n−c)

if ξ is C-normalized, where c > 0 is an absolute constant. The implied

constants in the O(.) notation depend on E|ξ|C0 but are uniform in t.
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Conjecture (Spielman-Teng 2002) Let ξ be the Bernoulli random

variable. Then there is a constant 0 < b < 1 such that for all t ≥ 0

P(
√
nσn(Mn(ξ)) ≤ t) ≤ t+ bn. (9)

As
∫ t
0

1+
√
x

2
√
x
e−(x/2+

√
x) dx ≈ t− t3/3, our result implies that this

conjecture holds for t ≥ n−c.

For smaller t, it suggests a stronger bound must hold. (In other words,

the term t in the conjectured bound is only the first order approximation

of the truth.)
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This theorem can be extended in several directions:

• joint distribution of the bottom k singular values of Mn(ξ), for

bounded k (and even when k is a small power of n).

• rectangular matrixes where the difference between the two

dimensions is not too large.

• all results hold if we drop the condition that the entries have

identical distribution. (It is important that they are all normalized,

independent and their C0-moments are uniformly bounded.)
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The main technical steps

Tail bound lemma.

Non-degeneracy of normal vectors of a large dimension random subspace.

Berry-Esseen theorem for frames.
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The tail bound lemma.

Lemma. [Tail bound on |Ri(ξ)|] Let R1, . . . , Rn be the rows of

Mn(ξ)−1. Then

P( max
1≤i≤n

|Ri(ξ)| ≥ n100/C0)� n−1/C0 .

Recall that R1 is orthogonal to X2, . . . , Xn and R1 ·X1 = 1, where Xi

are the rows of Mn(ξ). Thus, |R1| is the reciprocal of d1, the distance

from X1 onto the hyperplane spanned by X2, . . . , Xn. So basically we

need to understand the di.
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It is easy to see that the distance from a random gaussian vector to a

random hyperplane has guassian distribution.

It has turned out that this extends to other distributions. (As a toy

example, one can consider ±1 case.)

Lemma. [Random distance is gaussian] Let X1, . . . , Xn be random

vectors whose entries are iid copies of ξ. Then the distribution of the

distance d1 from X1 to Span(X2, . . . , Xn) is approximately gaussian, in

the sense that

P(d1 ≤ t) = P(|gF | ≤ t) +O(n−c),

for some small constant c.

A naive application of the union bound is clearly insufficient, as it gives

P( min
1≤i≤n

di ≤ t)� n(t+ n−c).
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The key fact that enables us to overcome the ineffectiveness of the union

bound is that the distances di are correlated. They tend to be large or

small at the same time. Quantitatively, we have

Lemma. [Correlation between distances] Let n ≥ 1, let F be the real or

complex field, let A be an n× n F -valued invertible matrix with columns

X1, . . . , Xn, and let di := dist(Xi, Vi) denote the distance from Xi to the

hyperplane Vi spanned by X1, . . . , Xi−1, Xi+1, . . . , Xn. Let

1 ≤ L < j ≤ n, let VL,j denote the orthogonal complement of the span of

XL+1, . . . , Xj−1, Xj+1, . . . , Xn, and let πL,j : Fn → VL,j denote the

orthogonal projection onto VL,j . Then

dj ≥
|πL,j(Xj)|

1 +
∑L

i=1

|πL,j(Xi)|
di

.
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Consider

distance := |X · v|

where X = (ξ1, . . . , ξm) is the random vector and v = (a1, . . . , an) is the

normal vector of the random hyperplane.

Claim. The normal vector of a random hyperplane, with high

probability, looks normal (non-degenerate).

Tools: Sharp concentration inequalities.

Then use the one-dimensional Berry-Esseen theorem.
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