
Testing by Implicit Learning

Ilias Diakonikolas

Columbia University

March 2009

1

What this talk is about

Recent results on testing some natural types of functions:

– Decision trees

– DNF formulas, more general
Boolean formulas

– Sparse polynomials over finite fields

Exploiting learning techniques to do testing.

0 1 0 1 0 1

1
OR

AND AND AND

2

Based on joint works with:

Homin Lee (Columbia) Kevin Matulef (MIT)

Rocco Servedio (Columbia) Krzysztof Onak (MIT)

Andrew Wan (Columbia) Ronitt Rubinfeld (MIT and TAU)

3

Take-home message

Seems natural…

– Goal of learning is to produce an approximation to the function

– Goal of testing is to determine whether function “approximately” has
some property

there are close connections between
these topics

learning

te
st

in
g

approxim
ation

4

Overview of talk

0. Basics of learning, testing, approximation

a little learning theory

a little approximation

testing ideas from [FKRSS04]

2. A specific class of functions: sparse polynomials

+

+

new testing results for many

classes of functions

[DLMORSW07]

approximation

learning

testing

1. A technique: “testing by implicit learning”

a little learning theory

a little approximation

testing ideas from [FKRSS04]

+

+

new testing results for many

classes of functions

[DLMORSW07]

5

I. Approximation

Given a function goal is to obtain a “simpler”

function such that

• Measure distance between functions under uniform distribution.

6

Approximation – example

Let be any -term DNF formula:

There is an -approximating DNF with terms where each term
contains variables [V88]

• Any term with variables is satisfied with probability

• Delete all (at most) such terms from to get

7

Approximation – example

Let be any -term DNF formula:

There is an -approximating DNF with terms where each term
contains variables [V88]

• Any term with variables is satisfied with probability

• Delete all (at most) such terms from to get

8

II. Learning a concept class

Setup: Learner is given a sample of
labeled examples

• Target function is

unknown to learner

• Each example in sample is

independent, uniform over

Goal: For every , with probability learner should output a
hypothesis such that

“PAC learning concept class under the uniform distribution”

9

Learning via “Occam’s Razor”

A learning algorithm for is proper if it outputs hypotheses from .

Generic proper learning algorithm for any (finite) class :

• Draw labeled examples

• Output any that is consistent with all examples.

error

finding such an may be

computationally hard…

Why it works:
• Suppose true error rate of is
• Then Pr[consistent with random examples]

So Pr[any “bad” is output] <

10

III. Property testing
Goal: infer “global” property of function via few “local” inspections

Tester makes black-box queries to arbitrary

Tester must output

• “yes” whp if

• “no” whp if is -far from

every

distance

Usual focus: information-theoretic

queries required

oracle for

11

Testing via proper learning
[GGR98]: properly learnable ���� testable with same # queries.

• Run algorithm to learn to high accuracy; hypothesis obtained is

• Draw random examples, use them to estimate to high accuracy

Why it works:

• � estimated error of is small

• is far from � estimated error

of is large since is far from

Great! But...

Even for very simple classes of functions over variables (like literals),
any learning algorithm must use examples…

and in testing, we want query complexity independent of

distance

12

Some known property testing results

Question: [PRS02] what about non-monotone -term DNF?

parity functions [BLR93]

deg- polynomials [AKK+03]

literals [PRS02]

conjunctions [PRS02]

-juntas [FKRSS04]

-term monotone DNF [PRS02]

Class of functions over # of queries

Different algorithm tailored for each of these classes.

13

New property testing results

Theorem: [DLMORSW07]

The class of over is testable with poly(s/) queries.

s-leaf decision trees

size-s branching programs

size-s Boolean formulas (AND/OR/NOT gates)

size-s Boolean circuits (AND/OR/NOT gates)

s-sparse polynomials over GF(2)

s-sparse algebraic circuits over GF(2)

s-sparse algebraic computation trees over GF(2)

s-term DNF

All results follow from “testing by implicit learning” approach.

14

Overview of talk
0. Some basics

a little learning theory

a little approximation

testing ideas from [FKRSS04]

+

+

new testing results for many

classes of functions

[DLMORSW07]

1. A technique: “testing by implicit learning”

a little learning theory

a little approximation

testing ideas from [FKRSS04]

+

+

new testing results for many

classes of functions

[DLMORSW07]

Running example: testing whether

is an -term DNF

versus

-far from every -term DNF

15

Straight-up testing by learning?

• [GGR98]: properly learnable � testable with same # queries

Recall

• Occam’s Razor: can properly learn any from examples

But for = {all -term DNF over }, this is examples…

We want a -query algorithm.

16

Approximation to the rescue?

• Given any -term DNF , there is a -approximating DNF with
terms where each term contains variables.

We also have approximation:

Now Occam requires

examples…better, but still depends on

So can try to learn = {all -term -DNF over }

Take : makes

so close to that we can

pretend

17

Getting rid of ?
Each approximating DNF depends only on variables.

Suppose we knew those variables.

Then we’d have = {all -term -DNF over

so Occam would need only examples,
independent of !

But, can’t explicitly identify even one variable with examples...

18

The fix: implicit learning

High-level idea: Learn the “structure” of
without explicitly identifying the relevant variables

where is an unknown mapping.

Algorithm tries to find an approximator

19

Implicit learning

Need to generate many correctly labeled random
examples of :

each string is bits

the -term -DNF
approximator for

How can we learn “structure” of without knowing relevant variables?

Then can do Occam (brute-force search for consistent DNF).

20

Implicit learning cont

Vars of are the variables that have
high influence in f : flipping the
bit is likely to change value of f

• setting of other variables

almost always doesn’t matter

bits

Given random -bit labeled
example , want
to construct -bit
example

1 0 0 1 1 0 1 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 0 0 1 1 0 1 1 10 1 0 1 1 1 0 1

0 1 1 1 1 0 0 0

Do this using techniques of [FKRSS02] “Testing Juntas”

21

Use independence test of [FKRSS02]

Let be a subset of variables.

• Fix a random assignment to variables not in

“Independence test” [FKRSS02]:

Intuition:

– if has all low-influence variables, see same value whp

– if has a high-influence variable, see different value sometimes

1 0 0 1 1 0 1 1 1 0 0 1 1 0 0 0 0 1 0 1 0 1 1 0 0 1 0 0 1 0 1 1

1 0 0 1 1 0 1 1 1 0 0 1 1 0 0 0 0 1 0 1 0 1 1 0 0 1 0 0 1 0 1 1

1 0 0 1 1 0 1 1 1 0 0 1 1 0 0 0 0 1 0 1 0 1 1 0 0 1 0 0 1 0 1 1

1

01 1 0 1 0 1 1 1 1 0

0 1 0 0 1 0 1 0 0 1

• Draw two independent settings of variables in , query on these 2 points

Constructing our examples

Follow [FKRSS02]:

– Randomly partition variables into blocks; run independence test on each block

– Can determine which blocks have high-influence variables

– Each block should have at most one high-influence variable (birthday paradox)

Given random -bit labeled
example , want
to construct -bit
example

1 0 0 1 1 0 1 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 0 0 1 1 0 1 1 10 1 0 1 1 1 0 1

0 1 1 1 1 0 0 0

? ? ? ? ? ? ? ? ?

Constructing our examples

We know which blocks have high-influence variables; need to determine how the

high-influence variable in the block is set.

Consider a fixed high-influence block String partitions into :

Given random -bit labeled
example , want
to construct -bit
example

1 0 0 1 1 0 1 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 0 0 1 1 0 1 1 10 1 0 1 1 1 0 1

0 1 1 1 1 0 0 0

bits set to 0 in bits set to 1 in

Run independence test on each of to see which one has the

high-influence variable.

Repeat for all high-influence blocks to get all bits of

Sketch of completeness

of overall test
Suppose is an -term DNF.

• Then is close to -term -DNF

• Test constructs sample of random -bit examples
that are all correctly labeled according to whp

• Test checks all -term -DNFs over
for consistency with sample, outputs “yes” if any
consistent DNF found.

– is consistent, so test outputs “yes”

25

Sketch of soundness of test

Suppose is far from every -term DNF

• If far from every -junta, [FKRSS02] catches it (too
many high-influence variables)

• So suppose close to an -junta and algorithm
constructs sample of -bit examples labeled by .

• Then whp there exists no -term -DNF consistent with
sample, so test outputs “no”

– If there were such a DNF consistent with sample, would have

close to close to

Occam by assumption

so close to -- contradiction

END OF

SKETCH

26

Testing by Implicit Learning

s-leaf decision trees

size-s branching programs

size-s Boolean formulas (AND/OR/NOT gates)

size-s Boolean circuits (AND/OR/NOT gates)

s-sparse polynomials over GF(2) (of ANDs)

s-term DNF

Can use this approach for any class with the following property:

All these classes are testable with poly() queries.

s-sparse algebraic circuits over GF(2)

s-sparse algebraic computation trees over GF(2)

Many classes have this property…

• is an -approximator for

• depends on few variables

such that

27

Road map

0. Some basics

a little learning theory

a little approximation

testing ideas from [FKRSS04]

2. A specific class of functions: sparse polynomials

Testing Efficiently

+

+

new testing results for many

classes of functions

[DLMORSW07]

approximation

learning

testing

1. A technique: “testing by implicit learning”

a little learning theory

a little approximation

testing ideas from [FKRSS04]

+

+

new testing results for many

classes of functions

[DLMORSW07]

28

Polynomials
GF (2) polynomial p : {0,1}n

→ {0,1}

parity (sum) of monotone conjunctions (monomials)

e.g. p (x) = 1 + x1⋅x3 + x2 ⋅ x3 + x1 ⋅ x4 ⋅ x5 ⋅ x6 ⋅ x8 + x2 ⋅ x7 ⋅ x8 ⋅ x9 ⋅ x10

• “ sparsity ” = number of monomials

• Polynomial is s-sparse if it has at most s monomials

Csp (s , n) : class of s-sparse GF(2) polynomials over {0,1}n

Extensively studied from various perspectives:

[BS’90, FS’92, SS’96, Bsh’97, BM’02] (learning)

[Kar’89, GKS’90, RB’91; EK’89, KL’93, LVW’93] (approximation)

Efficiently Testing sparse poly’s

Theorem [DLMSW08]: There is an ε-testing algorithm for the property of

being an s-sparse GF(2) polynomial that uses poly (s, 1/ε) queries and

runs in time n· poly (s, 1/ε).

Ingredients:

• Main Technique:

“Testing by Implicit Learning” Framework [DLM+07]

• Efficient Proper Learning Algorithm [Schapire-Sellie’96]

• New Structural Theorem:

“s-sparse polynomials simplify nicely under certain -

carefully chosen - random restrictions”

Efficient Proper Learning of

s-sparse GF (2) Polynomials

Theorem [SS’96]: There is a uniform distribution query algorithm that

properly PAC learns s-sparse polynomials over {0,1}r in time

(and query complexity) poly (r, s, 1/ ε).

Great! But…

Learning Algorithm uses black-box queries.

Cannot “implicitly simulate” the learning algorithm

using random examples as before..

Random Examples vs Queries
Let f: {0,1}n

→ {0,1} be a sparse polynomial and f '

be some τ-approximator to f.

• Assume 1/ τ� number of random examples required for Occam

learning f '. Then, random examples for f are ok.

• A black-box algorithm may cluster its queries on the few inputs

where f and f ' disagree.

Difficulties

• Need to simulate queries to f ' having query access to f.

And need to do this in a query efficient way.

• To make this work, need appropriate definition of the
approximating function f '.

Roughly speaking, f ' is obtained as follows:

1. Randomly partition variables in r = poly (s /τ) subsets.

2. f ' = restriction obtained from f by setting all variables

on “low influence” subsets to 0.

Intuition: “kill” all “long” monomials.

Let f: {0,1}n
→ {0,1} be a sparse polynomial and f '

be some τ-approximator to f.

Illustration (I)
Suppose

p (x) = 1 + x1⋅x3 + x2 ⋅ x3 + x1 ⋅ x4 ⋅ x5 ⋅ x6 ⋅ x8 + x2 ⋅ x7 ⋅ x8 ⋅ x9 ⋅ x10

and r = 5.

Illustration (II)
Suppose

p (x) = 1 + x1⋅x3 + x2 ⋅ x3 + x1 ⋅ x4 ⋅ x5 ⋅ x6 ⋅ x8 + x2 ⋅ x7 ⋅ x8 ⋅ x9 ⋅ x10

and r = 5.

Illustration (III)
Suppose

p (x) = 1 + x1⋅x3 + x2 ⋅ x3 + x1 ⋅ x4 ⋅ x5 ⋅ x6 ⋅ x8 + x2 ⋅ x7 ⋅ x8 ⋅ x9 ⋅ x10

and r = 5.

Illustration (IV)
Suppose

p (x) = 1 + x1⋅x3 + x2 ⋅ x3 + x1 ⋅ x4 ⋅ x5 ⋅ x6 ⋅ x8 + x2 ⋅ x7 ⋅ x8 ⋅ x9 ⋅ x10

and r = 5.

p' (x1 , x2 , x3) = 1 + x1⋅x3 + x2 ⋅ x3

Algorithm Description

1. Partition the coordinates into [n] into r = poly (s / τ) random subsets.

2. Distinguish subsets that contain a “high-influence” variable from
subsets that do not.

3. Consider restriction f ' obtained from f by “zeroing out” all the

variables in “low-influence” subsets.

4. Run [SS’96] using the “simulated” membership query oracle

for the junta f '.

Open Problems

• What are the right lower bounds for testing classes like
-term DNF, size- decision trees?

– Can get following [CG04], but feels like

right bound is ?

• Can “testing by implicit learning”approach be modified to get testers
that are more computationally efficient?

– Ideally shoot for runtime to match query complexity…

– Computationally efficient proper learning algorithms would yield these,

but these seem hard to come by

• Better understanding of testability of boolean functions?

39

Big-picture question

Whole talk – uniform distribution.

What about distribution-independent {learning, testing, approximating}?

– Rich theory of distribution-independent (PAC) learning

– Less fully developed theory of distribution-independent testing

[HK03,HK04,HK05,AC06]

– Things are much harder…what is doable?

• [GS07] Any distribution-independent algorithm for testing whether

is a halfspace requires queries.

40

Thank you for your attention

41

