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What this talk is about

Recent results on testing some natural types of functions:

– Decision trees

– DNF formulas, more general 
Boolean formulas

– Sparse polynomials over finite fields

Exploiting learning techniques to do testing.
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Based on joint works with:

Homin Lee (Columbia)                         Kevin Matulef (MIT)

Rocco Servedio (Columbia)                 Krzysztof Onak (MIT)

Andrew Wan (Columbia)                      Ronitt Rubinfeld (MIT and TAU) 
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Take-home message

Seems natural…

– Goal of learning is to produce an approximation to the function

– Goal of testing is to determine whether function “approximately” has 
some property

there are close connections between
these topics

learning

te
st

in
g

approxim
ation

4



Overview of talk

0. Basics of learning, testing, approximation

a little learning theory

a little approximation                     

testing ideas from [FKRSS04]   

2.  A specific class of functions: sparse polynomials

+

+

new testing results for many

classes of functions

[DLMORSW07]

approximation

learning

testing

1. A technique:  “testing by implicit learning”

a little learning theory

a little approximation                     

testing ideas from [FKRSS04]   

+

+

new testing results for many

classes of functions

[DLMORSW07]
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I.  Approximation

Given a function                                      goal is to obtain a “simpler”

function                                      such that

• Measure distance between functions under uniform distribution.
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Approximation – example

Let      be any     -term DNF formula:

There is an   -approximating DNF      with         terms where each term 
contains                     variables  [V88]

• Any term with                      variables is satisfied with probability  

• Delete all (at most    ) such terms from      to get     
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Approximation – example

Let      be any     -term DNF formula:

There is an   -approximating DNF      with         terms where each term 
contains                     variables  [V88]

• Any term with                      variables is satisfied with probability  

• Delete all (at most    ) such terms from      to get     
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II.  Learning a concept class   

Setup: Learner is given a sample of 
labeled examples

• Target function is 

unknown to learner

• Each example      in sample is 

independent, uniform over 

Goal: For every          , with probability             learner should output a 
hypothesis                                     such that

“PAC learning concept class      under the uniform distribution”
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Learning via “Occam’s Razor”

A learning algorithm for     is proper if it outputs hypotheses from    .

Generic proper learning algorithm for any (finite) class      : 

• Draw                               labeled examples

• Output any             that is consistent with all      examples.

error

finding such an      may be 

computationally hard…

Why it works:
• Suppose true error rate of              is
• Then Pr[     consistent with      random examples]

So Pr[any “bad”            is output] <   
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III.  Property testing
Goal: infer “global” property of function via few “local” inspections

Tester makes black-box queries to arbitrary

Tester must output 

• “yes” whp if 

• “no” whp if      is    -far from

every 

distance

Usual focus:  information-theoretic 

# queries required

oracle for
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Testing via proper learning
[GGR98]:      properly learnable ���� testable with same # queries.

• Run algorithm to learn to high accuracy; hypothesis obtained is 

• Draw random examples, use them to estimate                  to high accuracy

Why it works:

• � estimated error of      is small 

• is far from      � estimated error

of      is large since             is  far from       

Great!  But...

Even for very simple classes of functions over      variables (like literals), 
any learning algorithm must use                   examples…

and in testing, we want query complexity independent of    

distance 
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Some known property testing results

Question: [PRS02] what about non-monotone -term DNF?

parity functions [BLR93]

deg- polynomials  [AKK+03]

literals [PRS02]

conjunctions [PRS02]

-juntas [FKRSS04]

-term monotone DNF [PRS02]

Class of functions over # of queries

Different algorithm tailored for each of these classes.
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New property testing results

Theorem: [DLMORSW07]

The class of                     over               is testable with poly(s/  ) queries.

s-leaf decision trees

size-s branching programs

size-s Boolean formulas (AND/OR/NOT gates)

size-s Boolean circuits (AND/OR/NOT gates)

s-sparse polynomials over GF(2)

s-sparse algebraic circuits over GF(2)

s-sparse algebraic computation trees over GF(2)

s-term DNF

All results follow from “testing by implicit learning” approach.
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Overview of talk
0. Some basics

a little learning theory

a little approximation                     

testing ideas from [FKRSS04]   

+

+

new testing results for many

classes of functions

[DLMORSW07]

1. A technique:  “testing by implicit learning”

a little learning theory

a little approximation                     

testing ideas from [FKRSS04]   

+

+

new testing results for many

classes of functions

[DLMORSW07]

Running example:      testing whether 

is an    -term DNF

versus

-far from every    -term DNF 
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Straight-up testing by learning?

• [GGR98]:      properly learnable � testable with same # queries

Recall 

• Occam’s Razor:  can properly learn any     from                 examples

But for      = {all   -term DNF over              }, this is                  examples…

We want  a                   -query algorithm.
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Approximation to the rescue?

• Given any    -term DNF    ,  there is a   -approximating DNF       with
terms where each term contains                     variables.  

We also have approximation:

Now Occam requires 

examples…better, but still depends on       

So can try to learn = {all   -term                -DNF over              } 

Take               :    makes

so close to      that we can 

pretend             
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Getting rid of    ?
Each approximating DNF      depends only on                    variables.

Suppose we knew those variables.

Then we’d have = {all   -term                -DNF over                                

so Occam would need only                                        examples,
independent of    !

But, can’t explicitly identify even one variable with                 examples...
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The fix:  implicit learning

High-level idea:  Learn the “structure” of      
without explicitly identifying the relevant variables

where                                         is an unknown mapping.

Algorithm tries to find an approximator
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Implicit learning

Need to generate                   many correctly labeled random
examples of     :

each string      is                        bits 

the    -term                 -DNF 
approximator for   

How can we learn “structure” of      without knowing relevant variables?

Then can do Occam (brute-force search for consistent DNF).
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Implicit learning cont

Vars of      are the variables that have 
high influence in  f : flipping the 
bit is likely to change value of f

• setting of other variables

almost always doesn’t matter

bits 

Given random     -bit labeled 
example                , want 
to construct                   -bit 
example

1 0 0 1 1 0 1 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 0 0 1 1 0 1 1 10 1 0 1 1 1 0 1

0 1 1 1 1 0 0 0

Do this using techniques of [FKRSS02] “Testing Juntas”
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Use independence test of [FKRSS02]

Let       be a subset of variables.

• Fix a random assignment to variables not in 

“Independence test” [FKRSS02]:

Intuition:  

– if       has all low-influence variables, see same value whp

– if       has a high-influence variable, see different value sometimes

1 0 0 1 1 0 1 1 1 0 0 1 1 0 0                                   0 0 1 0 1 0 1 1 0 0 1 0 0 1 0 1 1

1 0 0 1 1 0 1 1 1 0 0 1 1 0 0  0 0 1 0 1 0 1 1 0 0 1 0 0 1 0 1 1

1 0 0 1 1 0 1 1 1 0 0 1 1 0 0  0 0 1 0 1 0 1 1 0 0 1 0 0 1 0 1 1

1

01 1 0 1 0 1 1 1 1 0

0 1 0 0 1 0 1 0 0 1

• Draw two independent settings of variables in    , query     on these 2 points



Constructing our examples

Follow [FKRSS02]:

– Randomly partition variables into blocks; run independence test on each block

– Can determine which blocks have high-influence variables

– Each block should have at most one high-influence variable (birthday paradox)

Given random     -bit labeled 
example                , want 
to construct                   -bit 
example

1 0 0 1 1 0 1 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 0 0 1 1 0 1 1 10 1 0 1 1 1 0 1

0 1 1 1 1 0 0 0

? ? ? ? ? ? ? ? ?



Constructing our examples

We know which blocks have high-influence variables; need to determine how the 

high-influence variable in the block is set.

Consider a fixed high-influence block         String      partitions       into       :  

Given random     -bit labeled 
example                , want 
to construct                   -bit 
example

1 0 0 1 1 0 1 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 0 0 1 1 0 1 1 10 1 0 1 1 1 0 1

0 1 1 1 1 0 0 0

bits set to 0 in   bits set to 1 in   

Run independence test on each of to see which one has the 

high-influence variable.

Repeat for all high-influence blocks to get all bits of   



Sketch of completeness 

of overall test
Suppose      is an    -term DNF. 

• Then      is close to    -term                 -DNF   

• Test constructs sample of random                   -bit examples 
that are all correctly labeled according to       whp

• Test checks all -term                 -DNFs over
for consistency with sample, outputs “yes” if any 
consistent DNF found.

– is consistent, so test outputs “yes”
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Sketch of soundness of test

Suppose      is far from every    -term DNF

• If      far from every                    -junta, [FKRSS02] catches it (too 
many high-influence variables)

• So suppose        close to an                   -junta       and algorithm 
constructs sample of                    -bit examples labeled by     .

• Then whp there exists no     -term                 -DNF consistent with 
sample, so test outputs “no”

– If there were such a DNF     consistent with sample, would have

close to close to

Occam by assumption

so       close to          -- contradiction

END OF 

SKETCH
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Testing by Implicit Learning

s-leaf decision trees

size-s branching programs

size-s Boolean formulas (AND/OR/NOT gates)

size-s Boolean circuits (AND/OR/NOT gates)

s-sparse polynomials over GF(2)   (      of ANDs)

s-term DNF

Can use this approach for any class      with the following property:

All these classes are  testable with poly(     ) queries.

s-sparse algebraic circuits over GF(2)

s-sparse algebraic computation trees over GF(2)

Many classes have this property…

• is an    -approximator for 

• depends on few variables  

such that
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Road map

0. Some basics

a little learning theory

a little approximation                     

testing ideas from [FKRSS04]   

2. A specific class of functions: sparse polynomials

Testing Efficiently

+

+

new testing results for many

classes of functions

[DLMORSW07]

approximation

learning

testing

1. A technique:  “testing by implicit learning”

a little learning theory

a little approximation                     

testing ideas from [FKRSS04]   

+

+

new testing results for many

classes of functions

[DLMORSW07]
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Polynomials
GF (2) polynomial p : {0,1}n

→ {0,1}

parity (sum) of monotone conjunctions (monomials)

e.g.   p (x) = 1 + x1⋅x3 + x2 ⋅ x3 + x1 ⋅ x4 ⋅ x5 ⋅ x6 ⋅ x8 + x2 ⋅ x7 ⋅ x8 ⋅ x9 ⋅ x10 

• “ sparsity ” = number of monomials

• Polynomial is s-sparse if it has at most s monomials

Csp (s , n) : class of s-sparse GF(2) polynomials over {0,1}n

Extensively studied from various perspectives:        

[BS’90, FS’92, SS’96, Bsh’97, BM’02] (learning) 

[Kar’89, GKS’90, RB’91; EK’89, KL’93, LVW’93] (approximation)



Efficiently Testing sparse poly’s

Theorem [DLMSW08]: There is an ε-testing algorithm for the property of 

being an s-sparse GF(2) polynomial that uses poly (s, 1/ε)  queries and 

runs in time n· poly (s, 1/ε).

Ingredients:

• Main Technique:

“Testing by Implicit Learning” Framework [DLM+07]

• Efficient Proper Learning Algorithm [Schapire-Sellie’96]

• New Structural Theorem:

“s-sparse polynomials simplify nicely under certain -

carefully chosen - random restrictions”



Efficient Proper Learning of 

s-sparse GF (2) Polynomials

Theorem [SS’96]: There is a uniform distribution query algorithm that 

properly PAC learns s-sparse polynomials over {0,1}r in time 

(and query complexity) poly (r, s, 1/ ε).

Great! But… 

Learning Algorithm uses black-box queries.

Cannot “implicitly simulate” the learning algorithm 

using random examples as before..



Random Examples vs Queries
Let f: {0,1}n

→ {0,1} be a sparse polynomial and f '

be some τ-approximator to f.

• Assume 1/ τ� number of random examples required for Occam 

learning f '. Then, random examples for f are ok.

• A black-box algorithm may cluster its queries on the few inputs 

where f and f ' disagree.



Difficulties

• Need to simulate queries to f ' having query access to f.

And need to do this in a query efficient way.

• To make this work, need appropriate definition of the 
approximating function f '.

Roughly speaking, f ' is obtained as follows:

1. Randomly partition variables in r = poly (s /τ) subsets.

2. f ' = restriction obtained from f by setting all variables 

on “low influence” subsets to 0.

Intuition: “kill” all “long” monomials.

Let f: {0,1}n
→ {0,1} be a sparse polynomial and f '

be some τ-approximator to f.



Illustration (I)
Suppose 

p (x) = 1 + x1⋅x3 + x2 ⋅ x3 + x1 ⋅ x4 ⋅ x5 ⋅ x6 ⋅ x8 + x2 ⋅ x7 ⋅ x8 ⋅ x9 ⋅ x10

and r = 5.



Illustration (II)
Suppose 

p (x) = 1 + x1⋅x3 + x2 ⋅ x3 + x1 ⋅ x4 ⋅ x5 ⋅ x6 ⋅ x8 + x2 ⋅ x7 ⋅ x8 ⋅ x9 ⋅ x10

and r = 5.



Illustration (III)
Suppose 

p (x) = 1 + x1⋅x3 + x2 ⋅ x3 + x1 ⋅ x4 ⋅ x5 ⋅ x6 ⋅ x8 + x2 ⋅ x7 ⋅ x8 ⋅ x9 ⋅ x10

and r = 5.



Illustration (IV)
Suppose 

p (x) = 1 + x1⋅x3 + x2 ⋅ x3 + x1 ⋅ x4 ⋅ x5 ⋅ x6 ⋅ x8 + x2 ⋅ x7 ⋅ x8 ⋅ x9 ⋅ x10

and r = 5.

p' (x1 , x2 , x3 ) = 1 + x1⋅x3 + x2 ⋅ x3



Algorithm Description

1. Partition the coordinates into [n] into r = poly (s / τ) random subsets.

2. Distinguish subsets that contain a “high-influence” variable from 
subsets that do not.

3. Consider restriction f ' obtained from f by “zeroing out” all the 

variables in “low-influence” subsets.

4. Run [SS’96] using the “simulated” membership query oracle

for the junta f '.



Open Problems

• What are the right lower bounds for testing classes like    
-term DNF, size- decision trees?

– Can get                         following [CG04], but feels like 

right bound is                        ?

• Can “testing by implicit learning”approach be modified to get testers 
that are more computationally efficient? 

– Ideally shoot for                     runtime to match query complexity… 

– Computationally efficient proper learning algorithms would yield these, 

but these seem hard to come by

• Better understanding of testability of boolean functions?
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Big-picture question

Whole talk – uniform distribution. 

What about distribution-independent {learning, testing, approximating}?

– Rich theory of distribution-independent (PAC) learning

– Less fully developed theory of distribution-independent testing 

[HK03,HK04,HK05,AC06]

– Things are much harder…what is doable?

• [GS07]  Any distribution-independent algorithm for testing whether   

is a halfspace requires                  queries. 
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Thank you for your attention
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