Testing by Implicit Learning

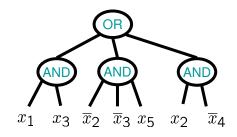
Ilias Diakonikolas Columbia University

March 2009

What this talk is about

Recent results on **testing** some natural types of functions:

- Decision trees x_{3} 1 x_{2} x_{4} 0 1 0 1 0 1
- DNF formulas, more general Boolean formulas



- Sparse polynomials over finite fields $3x^2y - 5xz + 4y^{20}z^{15}$

Exploiting learning techniques to do testing.

Based on joint works with:

Homin Lee (Columbia)

Rocco Servedio (Columbia)

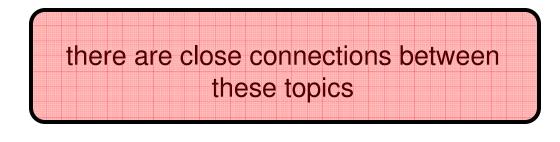
Andrew Wan (Columbia)

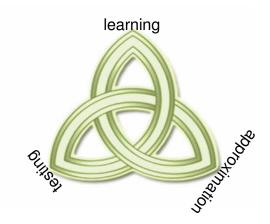
Kevin Matulef (MIT)

Krzysztof Onak (MIT)

Ronitt Rubinfeld (MIT and TAU)

Take-home message





Seems natural...

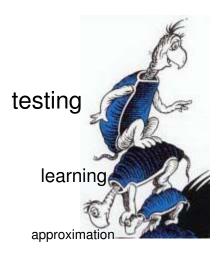
- Goal of learning is to produce an approximation to the function
- Goal of testing is to determine whether function "approximately" has some property

Overview of talk

0. Basics of learning, testing, approximation

1. A technique: "testing by implicit learning"

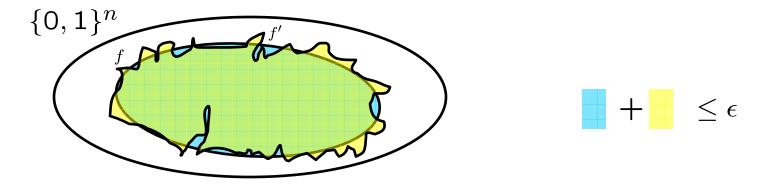
2. A specific class of functions: sparse polynomials



I. Approximation

Given a function $f : \{0, 1\}^n \to \{0, 1\}$, goal is to obtain a "simpler" function $f' : \{0, 1\}^n \to \{0, 1\}$ such that

 $\Pr[f(x) \neq f'(x)] \le \epsilon.$



• Measure distance between functions under uniform distribution.

Approximation – example

Let f be any s-term DNF formula:

 $f = (x_2 x_4 x_6 x_8 \dots x_n) \lor (x_2 \overline{x}_4) \lor (x_1 x_2 x_3 x_4 \dots x_{\sqrt{n}}) \lor (x_3 x_7) \lor (\overline{x}_1 \overline{x}_4) \lor (x_5 x_6)$

There is an ϵ -approximating DNF f' with $\leq s$ terms where each term contains $\leq \log(s/\epsilon)$ variables [V88]

- Any term with $> \log(s/\epsilon)$ variables is satisfied with probability $< \frac{\epsilon}{s}$
- Delete all (at most s) such terms from f to get f'

Approximation – example

Let f be any s-term DNF formula:

 $\begin{array}{lll} f = (x_2 x_4 x_6 x_8 \dots x_n) & \lor & (x_2 \overline{x}_4) & \lor & (x_1 x_2 x_3 x_4 \dots x_{\sqrt{n}}) & \lor & (x_3 x_7) & \lor & (\overline{x}_1 \overline{x}_4) & \lor & (x_5 x_6) \\ f' = & & & (x_2 \overline{x}_4) & & \lor & (x_3 x_7) & \lor & (\overline{x}_1 \overline{x}_4) & \lor & (x_5 x_6) \end{array}$

There is an ϵ -approximating DNF f' with $\leq s$ terms where each term contains $\leq \log(s/\epsilon)$ variables [V88]

- Any term with $> \log(s/\epsilon)$ variables is satisfied with probability $< \frac{\epsilon}{s}$
- Delete all (at most s) such terms from f to get f'

II. Learning a concept class ${\mathcal C}$

"PAC learning concept class C under the uniform distribution"

Setup: Learner is given a sample of labeled examples

- Target function $f \in \mathcal{C}$ is unknown to learner
- Each example x in sample is independent, uniform over $\{0, 1\}^n$

x	f(x)
001001001001	1
100111011001	0
101011011101	0
011100010110	<u>L</u>
011100110110	•••
011100110110	U

Goal: For every $f \in C$, with probability $\geq \frac{9}{10}$, learner should output a hypothesis $h : \{0, 1\}^n \to \{0, 1\}$ such that $\Pr[f(x) \neq h(x)] \leq \epsilon$.

Learning via "Occam's Razor"

A learning algorithm for C is **proper** if it outputs hypotheses from C.

Generic proper learning algorithm for any (finite) class $\ \mathcal{C}$:

- Draw $m = \frac{1}{\epsilon} \ln(10|\mathcal{C}|)$ labeled examples
- Output any $h \in C$ that is consistent with all m examples.

 \sim finding such an h may be

computationally hard...

Why it works:

- Suppose true error rate of $h' \in C$ is $> \epsilon$.
- Then Pr[h' consistent with m random examples] $\leq (1 \epsilon)^m \leq \frac{1}{10|C|}$

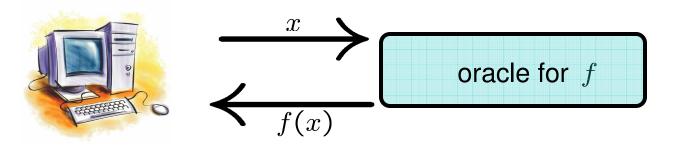
So
$$\Pr[any "bad" h \in C \text{ is output}] < |C| \cdot \frac{1}{10|C|}.$$

 $error > \epsilon$

III. Property testing

Goal: infer "global" property of function via few "local" inspections

Tester makes black-box queries to arbitrary $f : \{0, 1\}^n \rightarrow \{0, 1\}$

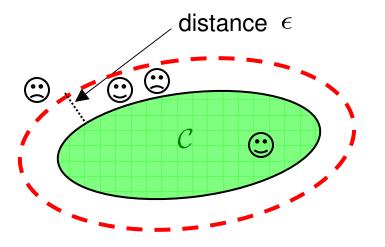


Tester must output

- "yes" whp if $f \in \mathcal{C}$
- "no" whp if f is ϵ -far from every $g \in \mathcal{C}$

Usual focus: information-theoretic

queries required



Testing via proper learning

[GGR98]: C properly learnable $\rightarrow C$ testable with same # queries.

- Run algorithm to learn to high accuracy; hypothesis obtained is h
- Draw random examples, use them to estimate error(h) to high accuracy

Why it works:

- $f \in \mathcal{C} \rightarrow$ estimated error of h is small
- f is far from $\mathcal{C} \rightarrow$ estimated error of h is large since $h \in \mathcal{C}$ is far from f

distance ϵ

Great! But...

Even for very simple classes of functions over n variables (like literals), any learning algorithm must use $\Omega(\log n)$ examples...

and in testing, we want query complexity **independent of** n

Some known property testing results

Class of functions over $\{0,1\}^n$	# of queries		
parity functions [BLR93]	$O(1/\epsilon)$		
deg- d GF(2) polynomials [AKK+03]	$O(4^d/\epsilon)$		
literals [PRS02]	$O(1/\epsilon)$		
conjunctions [PRS02]	$O(1/\epsilon)$		
J-juntas [FKRSS04]	$ ilde{O}(J^2/\epsilon)$		
s-term monotone DNF [PRS02]	$ ilde{O}(s^2/\epsilon)$		

Different algorithm tailored for each of these classes.

Question: [PRS02] what about non-monotone *s*-term DNF?

New property testing results

Theorem: [DLMORSW07]

The class of s-term DNF over $\{0, 1\}^n$ is testable with poly(s/ ϵ) queries.

s-leaf decision trees

size-s branching programs

size-s Boolean formulas (AND/OR/NOT gates)

size-s Boolean circuits (AND/OR/NOT gates)

s-sparse polynomials over GF(2)

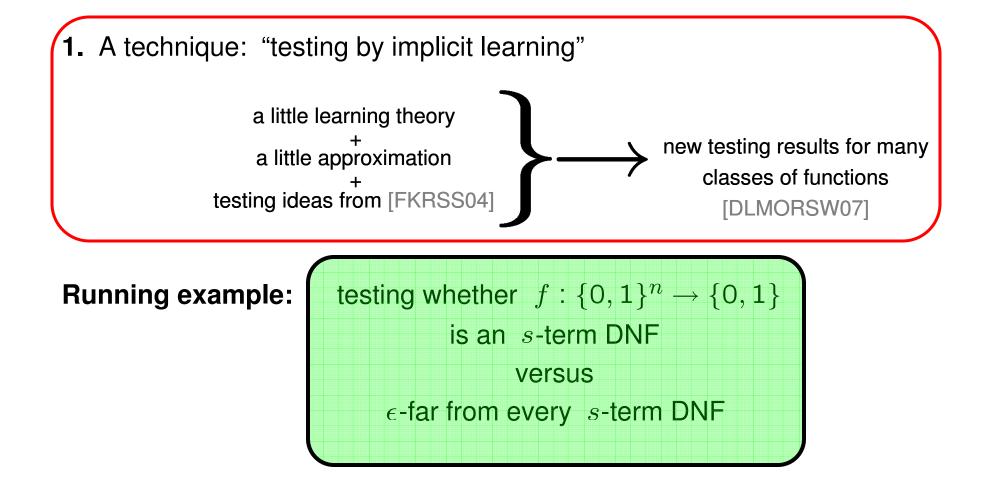
s-sparse algebraic circuits over GF(2)

s-sparse algebraic computation trees over GF(2)

All results follow from "testing by implicit learning" approach.

Overview of talk

0. Some basics



Straight-up testing by learning?

Recall

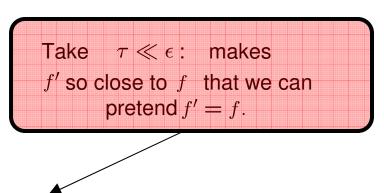
- [GGR98]: C properly learnable $\rightarrow C$ testable with same # queries
- Occam's Razor: can properly learn any C from $\approx \frac{1}{\epsilon} \ln |C|$ examples

But for $C = \{all \ s\text{-term DNF over } \{0, 1\}^n\}, \text{ this is } O(ns/\epsilon) \text{ examples...}$

We want a $poly(s/\epsilon)$ -query algorithm.

Approximation to the rescue?

We also have approximation:



• Given any s-term DNF f, there is a τ -approximating DNF f' with $\leq s$ terms where each term contains $\leq \log(s/\tau)$ variables.

So can try to learn
$$\mathcal{C}' = \{ \text{all } s \text{-term } \log(s/\tau) \text{-} \text{DNF over } \{0, 1\}^n \}$$
Now Occam requires
$$\frac{\ln |\mathcal{C}'|}{\epsilon} \approx \frac{\ln(n^{s \log(s/\tau)})}{\epsilon} = \frac{s \log(s/\tau) \log n}{\epsilon}$$

examples...better, but still depends on n.

Getting rid of n?

Each approximating DNF f' depends only on $s \log(s/\tau)$ variables.

Suppose we knew those variables.

Then we'd have

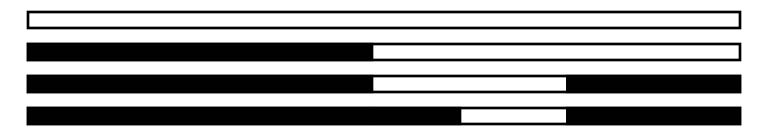
$$C'' = \{ all \ s \text{-term } \log(s/\tau) \text{-} DNF \text{ over } \{0,1\}^{s \log(s/\tau)} \}$$

so Occam would need only independent of n!

$$\frac{\ln |\mathcal{C}''|}{\epsilon} \approx \frac{s^2 \log(s/\tau)}{\epsilon} \qquad \text{e}$$

examples,

But, can't explicitly identify even **one** variable with $o(\log n)$ examples...



The fix: implicit learning

High-level idea: Learn the "structure" of f'without explicitly identifying the relevant variables

Algorithm tries to find an approximator

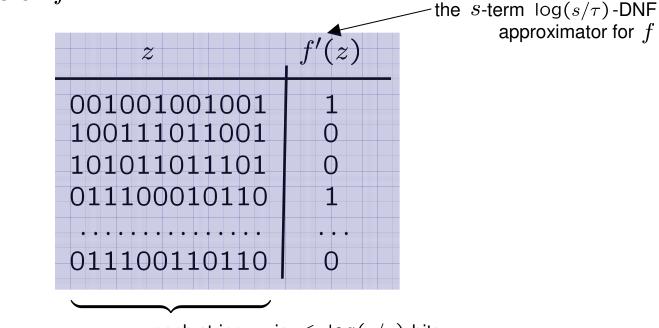
$$h = (x_{\sigma(1)}x_{\sigma(2)}) \lor (\overline{x}_{\sigma(2)}x_{\sigma(3)}x_{\sigma(4)}) \lor \cdots$$

where $\sigma : [s \log(s/\tau)] \rightarrow [n]$ is an unknown mapping.

Implicit learning

How can we learn "structure" of f' without knowing relevant variables?

Need to generate $poly(s/\epsilon)$ many correctly labeled random examples of f':



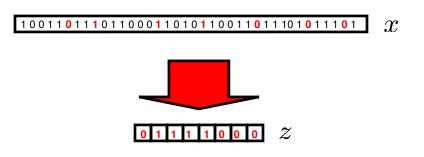
each string z is $\leq s \log(s/\tau)$ bits

Then can do Occam (brute-force search for consistent DNF).

Implicit learning cont

- Vars of z are the variables that have high influence in f: flipping the bit is likely to change value of f
- setting of other variables almost always doesn't matter

Given random *n*-bit labeled example (x, f(x)), want to construct $s \log(s/\tau)$ -bit example (z, f'(z)) $\begin{array}{c|c} z & f'(z) \\ \hline 001001001001 & 1 \\ 100111011001 & 0 \\ \hline 011100110110 & 0 \\ \hline < s \log(s/\tau) \text{ bits} \end{array}$



Do this using techniques of [FKRSS02] "Testing Juntas"

Use independence test of [FKRSS02]

Let S be a subset of variables. x_1 S x_n "Independence test" [FKRSS02]:

• Fix a random assignment to variables not in S

100110111001100 00101011001001011

• Draw two independent settings of variables in S, query f on these 2 points

Intuition:

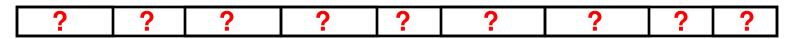
- if S has all low-influence variables, see same value whp
- if S has a high-influence variable, see different value sometimes

Constructing our examples

Given random <i>n</i> -bit labeled	x 1001101110110001101011011011011011101011101
example $(x, f(x))$, want	
to construct $s \log(s/\tau)$ -bit	
example $(z, f'(z))$	2 01111000

Follow [FKRSS02]:

Randomly partition variables into blocks; run independence test on each block



- Can determine which blocks have high-influence variables



- Each block should have **at most one** high-influence variable (birthday paradox)

Constructing our examples

Given random n -bit labeled example $(x, f(x))$, want	x 10011011101100011010110011011101011101
to construct $s \log(s/\tau)$ -bit example $(z, f'(z))$	2 01111000

We know which blocks have high-influence variables; need to determine how the high-influence variable in the block is set.

Consider a fixed high-influence block *B*. String *x* partitions *B* into $B_0 \cup B_1$:

 $\begin{array}{c} B_0 & B_1 \\ \hline B_0 & B_1 \\ \hline B_1 & B_1$

Run independence test on each of B_0, B_1 to see which one has the high-influence variable.

Repeat for all high-influence blocks to get all bits of z.

Sketch of completeness of overall test

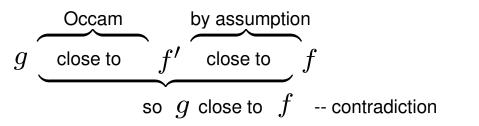
Suppose f is an s-term DNF.

- Then f is close to s-term $\log(s/\tau)$ -DNF f'
- Test constructs sample of random $s \log(s/\tau)$ -bit examples that are all correctly labeled according to f' whp
- Test checks all *s*-term $\log(s/\tau)$ -DNFs over $\{0,1\}^{s \log(s/\tau)}$ for consistency with sample, outputs "yes" if any consistent DNF found.
 - f' is consistent, so test outputs "yes"

Sketch of soundness of test

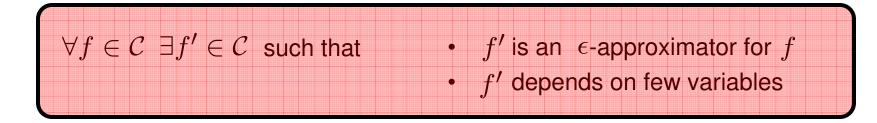
Suppose f is far from every s-term DNF

- If f ar from every $s \log(s/\tau)$ -junta, [FKRSS02] catches it (too many high-influence variables)
- So suppose f close to an $s \log(s/\tau)$ -junta f' and algorithm constructs sample of $s \log(s/\tau)$ -bit examples labeled by f'.
- Then whp there exists no s-term $\log(s/\tau)$ -DNF consistent with sample, so test outputs "no"
 - If there were such a DNF g consistent with sample, would have



Testing by Implicit Learning

Can use this approach for any class C with the following property:



Many classes have this property...

s-term DNF
 size-s Boolean formulas (AND/OR/NOT gates)
 size-s Boolean circuits (AND/OR/NOT gates)
 s-sparse polynomials over GF(2) (

 of ANDs)
 s-leaf decision trees
 size-s branching programs
 s-sparse algebraic circuits over GF(2)
 s-sparse algebraic computation trees over GF(2)

All these classes are testable with $poly(s/\epsilon)$ queries.

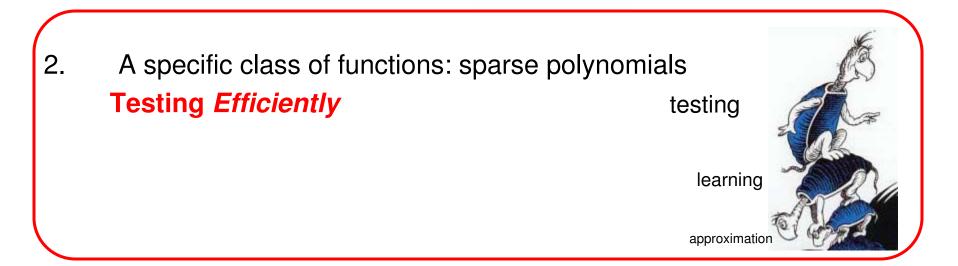
Road map

0. Some basics

1. A technique: "testing by implicit learning"

a little learning theory + a little approximation + testing ideas from [FKRSS04]

new testing results for many classes of functions [DLMORSW07]



Polynomials

GF (2) polynomial $p: \{0,1\}^n \to \{0,1\}$

parity (sum) of monotone conjunctions (monomials)

e.g. $p(x) = 1 + x_1 \cdot x_3 + x_2 \cdot x_3 + x_1 \cdot x_4 \cdot x_5 \cdot x_6 \cdot x_8 + x_2 \cdot x_7 \cdot x_8 \cdot x_9 \cdot x_{10}$

- *"sparsity* " = number of monomials
- Polynomial is *s*-sparse if it has at most *s* monomials

 $C_{sp}(s, n)$: class of s-sparse GF(2) polynomials over $\{0,1\}^n$

Extensively studied from various perspectives:

[BS'90, FS'92, SS'96, Bsh'97, BM'02] (learning)

[Kar'89, GKS'90, RB'91; EK'89, KL'93, LVW'93] (approximation)

Efficiently Testing sparse poly's

Theorem [DLMSW08]: There is an ϵ -testing algorithm for the property of being an *s*-sparse GF(2) polynomial that uses poly $(s, 1/\epsilon)$ queries and *runs in time n* poly $(s, 1/\epsilon)$.

Ingredients:

• Main Technique:

"Testing by Implicit Learning" Framework [DLM+07]

- Efficient *Proper* Learning Algorithm [Schapire-Sellie'96]
- New Structural Theorem:

***s-sparse polynomials simplify nicely under certain - carefully chosen - random restrictions"*

Efficient Proper Learning of *s*-sparse *GF* (2) Polynomials

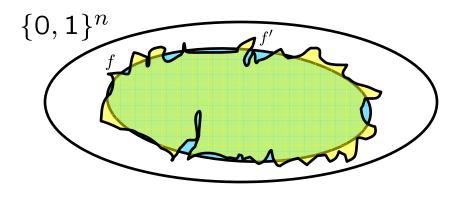
Theorem [SS'96]: There is a uniform distribution query algorithm that properly PAC learns *s*-sparse polynomials over $\{0,1\}^r$ in time (and query complexity) poly $(r, s, 1/\epsilon)$.

Great! But... Learning Algorithm uses *black-box queries*.

Cannot "implicitly simulate" the learning algorithm using random examples as before..

Random Examples vs Queries

Let $f: \{0,1\}^n \to \{0,1\}$ be a sparse polynomial and f' be *some* τ -approximator to f.



- Assume 1/ τ ≫ number of random examples required for Occam learning f'. Then, random examples for f are ok.
- A black-box algorithm may cluster its queries on the few inputs where *f* and *f* ' disagree.

Difficulties

Let $f: \{0,1\}^n \to \{0,1\}$ be a sparse polynomial and f' be *some* τ -approximator to f.

- Need to simulate queries to *f* ' having query access to *f*. And need to do this in a *query efficient* way.
- To make this work, need appropriate definition of the approximating function f'.

Roughly speaking, f' is obtained as follows:

- 1. Randomly partition variables in $r = poly (s / \tau)$ subsets.
- 2. f' = restriction obtained from f by setting all variables on "low influence" subsets to 0.

Intuition: "kill" all "long" monomials.

Illustration (I)

Suppose

 $p(x) = 1 + x_1 \cdot x_3 + x_2 \cdot x_3 + x_1 \cdot x_4 \cdot x_5 \cdot x_6 \cdot x_8 + x_2 \cdot x_7 \cdot x_8 \cdot x_9 \cdot x_{10}$ and r = 5.

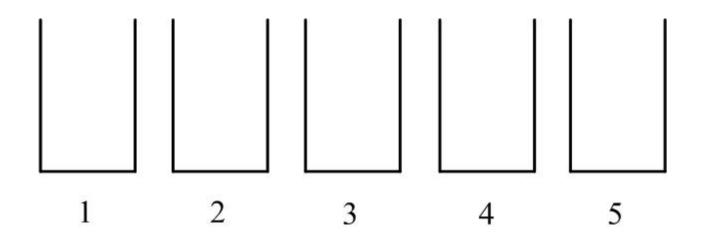


Illustration (II)

Suppose

 $p(x) = 1 + x_1 \cdot x_3 + x_2 \cdot x_3 + x_1 \cdot x_4 \cdot x_5 \cdot x_6 \cdot x_8 + x_2 \cdot x_7 \cdot x_8 \cdot x_9 \cdot x_{10}$ and r = 5.

<i>x</i> ₃	x_8	x_1	x_{10}	<i>x</i> ₂
<i>x</i> ₄	<i>x</i> 9	x_7	<i>x</i> ₆	<i>x</i> ₅
1	2	3	4	5

Illustration (III)

Suppose

 $p(x) = 1 + x_1 \cdot x_3 + x_2 \cdot x_3 + x_1 \cdot x_4 \cdot x_5 \cdot x_6 \cdot x_8 + x_2 \cdot x_7 \cdot x_8 \cdot x_9 \cdot x_{10}$ and r = 5.

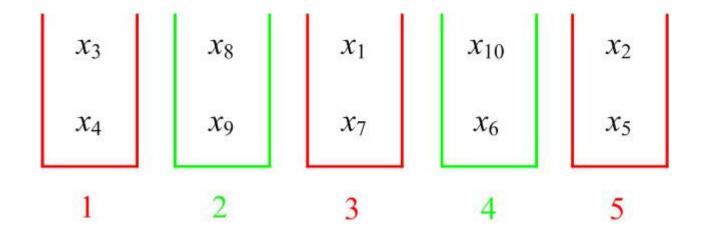
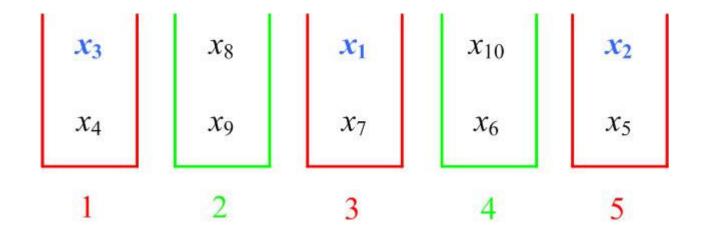


Illustration (IV)

Suppose

 $p(x) = 1 + x_1 \cdot x_3 + x_2 \cdot x_3 + x_1 \cdot x_4 \cdot x_5 \cdot x_6 \cdot x_8 + x_2 \cdot x_7 \cdot x_8 \cdot x_9 \cdot x_{10}$ and r = 5.



 $p'(x_1, x_2, x_3) = 1 + x_1 \cdot x_3 + x_2 \cdot x_3$

Algorithm Description

- 1. Partition the coordinates into [*n*] into $r = poly (s / \tau)$ random subsets.
- 2. Distinguish subsets that contain a "high-influence" variable from subsets that do not.
- 3. Consider restriction f' obtained from f by "zeroing out" all the variables in "low-influence" subsets.
- 4. Run [SS'96] using the "simulated" membership query oracle for the junta *f* ′.

Open Problems

- What are the right lower bounds for testing classes like *s*-term DNF, size-*s* decision trees?
 - Can get $\approx \Omega(\log s)$ following [CG04], but feels like right bound is $\Omega(\operatorname{poly}(s))$?
- Can "testing by implicit learning" approach be modified to get testers that are more computationally efficient?
 - Ideally shoot for $poly(s/\epsilon)$ runtime to match query complexity...
 - Computationally efficient proper learning algorithms would yield these, but these seem hard to come by
- Better understanding of testability of boolean functions?

Big-picture question

Whole talk – uniform distribution.

What about distribution-independent {learning, testing, approximating}?

- Rich theory of distribution-independent (PAC) learning
- Less fully developed theory of distribution-independent testing [HK03,HK04,HK05,AC06]
- Things are much harder...what is doable?
 - [GS07] Any distribution-independent algorithm for testing whether f is a halfspace requires $\Omega(n^{1/5})$ queries.

Thank you for your attention