Testing by Implicit Learning

Ilias Diakonikolas
Columbia University

March 2009

What this talk is about

Recent results on testing some natural types of functions:

- DNF formulas, more general Boolean formulas

- Sparse polynomials over finite fields $3 x^{2} y-5 x z+4 y^{20} z^{15}$

Exploiting learning techniques to do testing.

Based on joint works with:

Homin Lee (Columbia)

Rocco Servedio (Columbia)

Andrew Wan (Columbia)

Kevin Matulef (MIT)

Krzysztof Onak (MIT)

Ronitt Rubinfeld (MIT and TAU)

Take-home message

Seems natural...

- Goal of learning is to produce an approximation to the function
- Goal of testing is to determine whether function "approximately" has some property

Overview of talk

0. Basics of learning, testing, approximation
1. A technique: "testing by implicit learning"

2. A specific class of functions: sparse polynomials

I. Approximation

Given a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$, goal is to obtain a "simpler" function $f^{\prime}:\{0,1\}^{n} \rightarrow\{0,1\}$ such that

$$
\operatorname{Pr}\left[f(x) \neq f^{\prime}(x)\right] \leq \epsilon
$$

$\square+\quad \leq \epsilon$

- Measure distance between functions under uniform distribution.

Approximation - example

Let f be any s-term DNF formula:
$f=\left(x_{2} x_{4} x_{6} x_{8} \ldots x_{n}\right) \vee\left(x_{2} \bar{x}_{4}\right) \vee\left(x_{1} x_{2} x_{3} x_{4} \ldots x_{\sqrt{n}}\right) \vee\left(x_{3} x_{7}\right) \vee\left(\bar{x}_{1} \bar{x}_{4}\right) \vee\left(x_{5} x_{6}\right)$

There is an ϵ-approximating DNF f^{\prime} with $\leq s$ terms where each term contains $\leq \log (s / \epsilon)$ variables [V88]

- Any term with $>\log (s / \epsilon)$ variables is satisfied with probability $<\frac{\epsilon}{s}$
- Delete all (at most s) such terms from f to get f^{\prime}

Approximation - example

Let f be any s-term DNF formula:
$\begin{array}{cccccccccc}f=\left(x_{2} x_{4} x_{6} x_{8} \ldots x_{n}\right) \vee\left(x_{2} \bar{x}_{4}\right) \vee\left(x_{1} x_{2} x_{3} x_{4} \ldots x_{\sqrt{n}}\right) & \vee\left(x_{3} x_{7}\right) \vee\left(\bar{x}_{1} \bar{x}_{4}\right) \vee\left(x_{5} x_{6}\right) \\ f^{\prime}= & \left(x_{2} \bar{x}_{4}\right) & \vee\left(x_{3} x_{7}\right) \vee\left(\bar{x}_{1} \bar{x}_{4}\right) \vee\left(x_{5} x_{6}\right)\end{array}$

There is an ϵ-approximating DNF f^{\prime} with $\leq s$ terms where each term contains $\leq \log (s / \epsilon)$ variables [V88]

- Any term with $>\log (s / \epsilon)$ variables is satisfied with probability $<\frac{\epsilon}{s}$
- Delete all (at most s) such terms from f to get f^{\prime}

II. Learning a concept class \mathcal{C}

"PAC learning concept class \mathcal{C} under the uniform distribution"

Setup: Learner is given a sample of labeled examples

- Target function $f \in \mathcal{C}$ is unknown to learner
- Each example x in sample is independent, uniform over $\{0,1\}^{n}$

x	$f(x)$
001001001001	1
100111011001	0
101011011101	0
011100010110	1
$\ldots \ldots \ldots \ldots . \ldots$	\ldots
011100110110	0

Goal: For every $f \in \mathcal{C}$, with probability $\geq \frac{9}{10}$, learner should output a hypothesis $h:\{0,1\}^{n} \rightarrow\{0,1\}$ such that $\operatorname{Pr}[f(x) \neq h(x)] \leq \epsilon$.

Learning via "Occam’s Razor"

A learning algorithm for \mathcal{C} is proper if it outputs hypotheses from \mathcal{C}.
Generic proper learning algorithm for any (finite) class \mathcal{C} :

- Draw $m=\frac{1}{\epsilon} \ln (10|\mathcal{C}|)$ labeled examples
- Output any $h \in \mathcal{C}$ that is consistent with all m examples.

Why it works:

- \quad Suppose true error rate of $h^{\prime} \in \mathcal{C}$ is $>\epsilon$.
- Then $\operatorname{Pr}\left[h^{\prime}\right.$ consistent with m random examples $] \leq(1-\epsilon)^{m} \leq \frac{1}{10|C|}$ error > ϵ

So Pr[any "bad" $h \in \mathcal{C}$ is output $]<|\mathcal{C}| \cdot \frac{1}{10|\mathcal{C}|}$.

III. Property testing

Goal: infer "global" property of function via few "local" inspections
Tester makes black-box queries to arbitrary $f:\{0,1\}^{n} \rightarrow\{0,1\}$

Tester must output

- "yes" whp if $f \in \mathcal{C}$
- "no" whp if f is ϵ-far from every $g \in \mathcal{C}$

Usual focus: information-theoretic
\# queries required

Testing via proper learning

[GGR98]: \mathcal{C} properly learnable $\rightarrow \mathcal{C}$ testable with same \# queries.

- Run algorithm to learn to high accuracy; hypothesis obtained is h
- Draw random examples, use them to estimate $\operatorname{error}(h)$ to high accuracy

Why it works:

- $\quad f \in \mathcal{C} \rightarrow$ estimated error of h is small
- $\quad f$ is far from $\mathcal{C} \rightarrow$ estimated error of h is large since $h \in \mathcal{C}$ is far from f

Great! But...

Even for very simple classes of functions over n variables (like literals), any learning algorithm must use $\Omega(\log n)$ examples...
and in testing, we want query complexity independent of n

Some known property testing results

Class of functions over $\{0,1\}^{n}$	\# of queries
parity functions [BLR93]	$O(1 / \epsilon)$
deg- $d G F(2)$ polynomials [AKK+03]	$O\left(4^{d} / \epsilon\right)$
literals [PRSO2]	$O(1 / \epsilon)$
conjunctions [PRS02]	$O(1 / \epsilon)$
J-juntas [FKRSS04]	$\widetilde{O}\left(J^{2} / \epsilon\right)$
s-term monotone DNF [PRS02]	$\tilde{O}\left(s^{2} / \epsilon\right)$

Different algorithm tailored for each of these classes.

Question: [PRS02] what about non-monotone s-term DNF?

New property testing results

Theorem: [DLMORSW07]

The class of s-term DNF over $\{0,1\}^{n}$ is testable with poly (s / ϵ) queries.
s-leaf decision trees
size-s branching programs
size-s Boolean formulas (AND/OR/NOT gates)
size-s Boolean circuits (AND/OR/NOT gates)
s-sparse polynomials over GF(2)
s-sparse algebraic circuits over GF(2)
s-sparse algebraic computation trees over GF(2)

All results follow from "testing by implicit learning" approach.

Overview of talk

0. Some basics
1. A technique: "testing by implicit learning"

Running example:
testing whether $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is an s-term DNF
versus
ϵ-far from every s-term DNF

Straight-up testing by learning?

Recall

- [GGR98]: \mathcal{C} properly learnable $\rightarrow \mathcal{C}$ testable with same \# queries
- Occam's Razor: can properly learn any \mathcal{C} from $\approx \frac{1}{\epsilon} \ln |\mathcal{C}|$ examples

But for $\mathcal{C}=\left\{\right.$ all s-term DNF over $\left.\{0,1\}^{n}\right\}$, this is $O(n s / \epsilon)$ examples...
We want a $\operatorname{poly}(s / \epsilon)$-query algorithm.

Approximation to the rescue?

We also have approximation:

```
Take }\tau<<\epsilon\mathrm{ : makes
f}\mathrm{ so close to }f\mathrm{ that we can
    pretend f}\mp@subsup{f}{}{\prime}=
```

- Given any s-term DNF f, there is a τ-approximating DNF f^{\prime} with $\leq s$ terms where each term contains $\leq \log (s / \tau)$ variables.

So can try to learn

$$
\mathcal{C}^{\prime}=\left\{\text { all } s \text {-term } \log (s / \tau) \text {-DNF over }\{0,1\}^{n}\right\}
$$

Now Occam requires $\frac{\ln \left|\mathcal{C}^{\prime}\right|}{\epsilon} \approx \frac{\ln \left(n^{s \log (s / \tau)}\right)}{\epsilon}=\frac{s \log (s / \tau) \log n}{\epsilon}$
examples...better, but still depends on n.

Getting rid of n ?

Each approximating DNF f^{\prime} depends only on $s \log (s / \tau)$ variables.

Suppose we knew those variables.
Then we'd have $\mathcal{C}^{\prime \prime}=\left\{\right.$ all s-term $\log (s / \tau)$-DNF over $\{0,1\}^{s \log (s / \tau)}$
so Occam would need only $\frac{\ln \left|\mathcal{C}^{\prime \prime}\right|}{\epsilon} \approx \frac{s^{2} \log (s / \tau)}{\epsilon}$ examples,
independent of $n!$

But, can't explicitly identify even one variable with $o(\log n)$ examples...

The fix: implicit learning

High-level idea: Learn the "structure" of f^{\prime} without explicitly identifying the relevant variables

Algorithm tries to find an approximator

$$
h=\left(x_{\sigma(1)} x_{\sigma(2)}\right) \vee\left(\bar{x}_{\sigma(2)} x_{\sigma(3)} x_{\sigma(4)}\right) \vee
$$

where $\sigma:[s \log (s / \tau)] \rightarrow[n]$ is an unknown mapping.

Inolicitiearning

How can we learn "structure" of f^{\prime} without knowing relevant variables?

Need to generate poly (s / ϵ) many correctly labeled random examples of f^{\prime} :

Then can do Occam (brute-force search for consistent DNF).

Implicit learning cont

Vars of z are the variables that have high influence in f : flipping the bit is likely to change value of f

- setting of other variables almost always doesn't matter

Given random n-bit labeled example ($x, f(x)$), want to construct $s \log (s / \tau)$-bit example ($z, f^{\prime}(z)$)

Do this using techniques of [FKRSS02] "Testing Juntas"

Use independence test of [FKRSS02]

Let S be a subset of variables.

"Independence test" [FKRSS02]:

- Fix a random assignment to variables not in S

| 100110111001100 | 00101011001001011 |
| :--- | :--- | :--- |

- Draw two independent settings of variables in S, query f on these 2 points

1001101110011000100101001	00101011001001011	$\boxed{1}$
1001101110011001101011110	00101011001001011	0

Intuition:

- if S has all low-influence variables, see same value whp
- if S has a high-influence variable, see different value sometimes

Constructing our examples

Given random n-bit labeled example ($x, f(x)$), want to construct $s \log (s / \tau)$-bit example $\left(z, f^{\prime}(z)\right)$
$\mathscr{C} \quad 10011011101100011010110011011101011101$

Follow [FKRSS02]:

- Randomly partition variables into blocks; run independence test on each block

$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$

- Can determine which blocks have high-influence variables

- Each block should have at most one high-influence variable (birthday paradox)

Constructing our examples

```
Given random n-bit labeled
    example ( }x,f(x)\mathrm{ ), want
    to construct }s\operatorname{log}(s/\tau)\mathrm{ -bit
    example (z, f'(z))
```

x 10011011101100011010110011011101011101

z 0.

We know which blocks have high-influence variables; need to determine how the high-influence variable in the block is set.

Consider a fixed high-influence block B. String x partitions B into $B_{0} \cup B_{1}$:

Run independence test on each of B_{0}, B_{1} to see which one has the high-influence variable.

Repeat for all high-influence blocks to get all bits of z.

Sketch of completeness of overall test

Suppose f is an s-term DNF.

- Then f is close to s-term $\log (s / \tau)$-DNF f^{\prime}
- Test constructs sample of random $s \log (s / \tau)$-bit examples that are all correctly labeled according to f^{\prime} whp
- Test checks all s-term $\log (s / \tau)$-DNFs over $\{0,1\}^{s \log (s / \tau)}$ for consistency with sample, outputs "yes" if any consistent DNF found.
- f^{\prime} is consistent, so test outputs "yes"

Sketch of soundness of test

Suppose f is far from every s-term DNF

- If f far from every $s \log (s / \tau)$-junta, [FKRSSO2] catches it (too many high-influence variables)
- So suppose f close to an $s \log (s / \tau)$-junta f^{\prime} and algorithm constructs sample of $s \log (s / \tau)$-bit examples labeled by f^{\prime}.
- Then whp there exists no s-term $\log (s / \tau)$-DNF consistent with sample, so test outputs "no"
- If there were such a DNF g consistent with sample, would have

Testing by impilcit

Can use this approach for any class \mathcal{C} with the following property:
$\forall f \in \mathcal{C} \exists f^{\prime} \in \mathcal{C}$ such that $\quad f^{\prime}$ is an ϵ-approximator for f - f^{\prime} depends on few variables

Many classes have this property...

```
s-term DNF
size-s Boolean formulas (AND/OR/NOT gates) size-s Boolean circuits (AND/OR/NOT gates)
\(s\)-sparse polynomials over GF(2) ( \(\oplus\) of ANDs)
\(s\)-leaf decision trees
size-s branching programs
\(s\)-sparse algebraic circuits over GF(2)
s -sparse algebraic computation trees over GF(2)
```

All these classes are testable with poly (s / ϵ) queries.

Road map

0. Some basics
1. A technique: "testing by implicit learning"
a little learning theory
a little approximation
$+$
testing ideas from [FKRSS04]
new testing results for many classes of functions [DLMORSW07]
2. A specific class of functions: sparse polynomials Testing Efficiently testing

Polynomials

GF (2) polynomial $p:\{0,1\}^{n} \rightarrow\{0,1\}$ parity (sum) of monotone conjunctions (monomials)
e.g. $p(x)=1+x_{1} \cdot x_{3}+x_{2} \cdot x_{3}+x_{1} \cdot x_{4} \cdot x_{5} \cdot x_{6} \cdot x_{8}+x_{2} \cdot x_{7} \cdot x_{8} \cdot x_{9} \cdot x_{10}$

- " sparsity" = number of monomials
- Polynomial is s-sparse if it has at most s monomials
$\mathcal{C}_{s p}(s, n)$: class of s-sparse $G F(2)$ polynomials over $\{0,1\}^{n}$
Extensively studied from various perspectives:
[BS'90, FS'92, SS'96, Bsh'97, BM'02] (learning)
[Kar'89, GKS'90, RB'91; EK'89, KL'93, LVW'93] (approximation)

Efficiently Testing sparse poly's

Theorem [DLMSW08]: There is an ϵ-testing algorithm for the property of being an s-sparse $G F(2)$ polynomial that uses poly $(s, 1 / \epsilon)$ queries and runs in time n poly ($s, 1 / \epsilon$).

Ingredients:

- Main Technique:
"Testing by Implicit Learning" Framework [DLM+07]
- Efficient Proper Learning Algorithm [Schapire-Sellie'96]
- New Structural Theorem:
"s-sparse polynomials simplify nicely under certain carefully chosen - random restrictions"

Efficient Proper Learning of s-sparse GF (2) Polynomials

Theorem [SS'96]: There is a uniform distribution query algorithm that properly PAC learns s-sparse polynomials over $\{0,1\}^{r}$ in time (and query complexity) poly ($r, s, 1 / \epsilon$).

Great! But...
Learning Algorithm uses black-box queries.

Cannot "implicitly simulate" the learning algorithm using random examples as before..

Random Examples vs Queries

Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be a sparse polynomial and f^{\prime} be some τ-approximator to f.

- Assume $1 / \tau \gg$ number of random examples required for Occam learning f^{\prime}. Then, random examples for f are $o k$.
- A black-box algorithm may cluster its queries on the few inputs where f and f^{\prime} disagree.

Difficulties

Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be a sparse polynomial and f^{\prime} be some τ-approximator to f.

- Need to simulate queries to f^{\prime} having query access to f. And need to do this in a query efficient way.
- To make this work, need appropriate definition of the approximating function f^{\prime}.

Roughly speaking, f^{\prime} is obtained as follows:

1. Randomly partition variables in $r=$ poly (s / τ) subsets.
2. $\quad f^{\prime}=$ restriction obtained from f by setting all variables on "low influence" subsets to 0 .

Intuition: "kill" all "long" monomials.

Illustration (I)

Suppose

$$
p(x)=1+x_{1} \cdot x_{3}+x_{2} \cdot x_{3}+x_{1} \cdot x_{4} \cdot x_{5} \cdot x_{6} \cdot x_{8}+x_{2} \cdot x_{7} \cdot x_{8} \cdot x_{9} \cdot x_{10}
$$

and $r=5$.

Illustration (II)

Suppose

$$
p(x)=1+x_{1} \cdot x_{3}+x_{2} \cdot x_{3}+x_{1} \cdot x_{4} \cdot x_{5} \cdot x_{6} \cdot x_{8}+x_{2} \cdot x_{7} \cdot x_{8} \cdot x_{9} \cdot x_{10}
$$

and $r=5$.
\(\underbrace{\left|$$
\begin{array}{l}x_{3} \\
x_{4}\end{array}
$$\right|}_{1} \underbrace{\left|$$
\begin{array}{l}x_{8} \\
x_{9}\end{array}
$$\right|}_{2} \underbrace{\left|$$
\begin{array}{l}x_{1} \\
x_{7}\end{array}
$$\right|}_{3} \underbrace{\left|\begin{array}{l}x_{10}

x_{6}\end{array}\right|}_{4} \underbrace{|\)| x_{2} |
| :--- |
| x_{5} |}$_{5}$

Illustration (III)

Suppose

$$
p(x)=1+x_{1} \cdot x_{3}+x_{2} \cdot x_{3}+x_{1} \cdot x_{4} \cdot x_{5} \cdot x_{6} \cdot x_{8}+x_{2} \cdot x_{7} \cdot x_{8} \cdot x_{9} \cdot x_{10}
$$

and $r=5$.
\(\underbrace{\left|$$
\begin{array}{l}x_{3} \\
x_{4}\end{array}
$$\right|}_{1} \underbrace{\left|$$
\begin{array}{l}x_{8} \\
x_{9}\end{array}
$$\right|}_{2} \underbrace{\left|$$
\begin{array}{l}x_{1} \\
x_{7}\end{array}
$$\right|}_{3} \underbrace{\left|\begin{array}{l}x_{10}

x_{6}\end{array}\right|}_{4} \underbrace{|\)| x_{2} |
| :--- |
| x_{5} |}$_{5}$

Illustration (IV)

Suppose

$$
p(x)=1+x_{1} \cdot x_{3}+x_{2} \cdot x_{3}+x_{1} \cdot x_{4} \cdot x_{5} \cdot x_{6} \cdot x_{8}+x_{2} \cdot x_{7} \cdot x_{8} \cdot x_{9} \cdot x_{10}
$$

and $r=5$.
\(\underbrace{\left|$$
\begin{array}{l}x_{3} \\
x_{4}\end{array}
$$\right|}_{1} \underbrace{\left|$$
\begin{array}{l}x_{8} \\
x_{9}\end{array}
$$\right|}_{2} \underbrace{\left|$$
\begin{array}{l}x_{1} \\
x_{7}\end{array}
$$\right|}_{3} \underbrace{\left|\begin{array}{c}x_{10}

x_{6}\end{array}\right|}_{4} \underbrace{|\)| x_{2} |
| :---: |
| x_{5} |}$_{5}$

$$
\boldsymbol{p}^{\prime}\left(x_{1}, x_{2}, x_{3}\right)=1+x_{1} \cdot x_{3}+x_{2} \cdot x_{3}
$$

Algorithm Description

1. Partition the coordinates into $[n]$ into $r=$ poly (s / τ) random subsets.
2. Distinguish subsets that contain a "high-influence" variable from subsets that do not.
3. Consider restriction f ' obtained from f by "zeroing out" all the variables in "low-influence" subsets.
4. Run [SS'96] using the "simulated" membership query oracle for the junta f^{\prime}.

Open Problems

- What are the right lower bounds for testing classes like s-term DNF, size- s decision trees?
- Can get $\approx \Omega(\log s)$ following [CG04], but feels like right bound is $\Omega(\operatorname{poly}(s))$?
- Can "testing by implicit learning"approach be modified to get testers that are more computationally efficient?
- Ideally shoot for $\operatorname{poly}(s / \epsilon)$ runtime to match query complexity...
- Computationally efficient proper learning algorithms would yield these, but these seem hard to come by
- Better understanding of testability of boolean functions?

Big-picture question

Whole talk - uniform distribution.

What about distribution-independent \{learning, testing, approximating\}?

- Rich theory of distribution-independent (PAC) learning
- Less fully developed theory of distribution-independent testing [HK03,HK04,HK05,AC06]
- Things are much harder...what is doable?
- [GS07] Any distribution-independent algorithm for testing whether f is a halfspace requires $\Omega\left(n^{1 / 5}\right)$ queries.

Thank you for your attention

