### **Testing by Implicit Learning**

Ilias Diakonikolas Columbia University

March 2009

### What this talk is about

Recent results on **testing** some natural types of functions:

- Decision trees  $x_{3}$  1  $x_{2}$   $x_{4}$  0 1 0 1 0 1
- DNF formulas, more general Boolean formulas



- Sparse polynomials over finite fields  $3x^2y - 5xz + 4y^{20}z^{15}$ 

Exploiting learning techniques to do testing.

Based on joint works with:

Homin Lee (Columbia)

Rocco Servedio (Columbia)

Andrew Wan (Columbia)

Kevin Matulef (MIT)

Krzysztof Onak (MIT)

Ronitt Rubinfeld (MIT and TAU)

### Take-home message





Seems natural...

- Goal of learning is to produce an approximation to the function
- Goal of testing is to determine whether function "approximately" has some property

### Overview of talk

0. Basics of learning, testing, approximation

1. A technique: "testing by implicit learning"

2. A specific class of functions: sparse polynomials



# I. Approximation

Given a function  $f : \{0, 1\}^n \to \{0, 1\}$ , goal is to obtain a "simpler" function  $f' : \{0, 1\}^n \to \{0, 1\}$  such that

 $\Pr[f(x) \neq f'(x)] \le \epsilon.$ 



• Measure distance between functions under uniform distribution.

### Approximation – example

Let f be any s-term DNF formula:

 $f = (x_2 x_4 x_6 x_8 \dots x_n) \lor (x_2 \overline{x}_4) \lor (x_1 x_2 x_3 x_4 \dots x_{\sqrt{n}}) \lor (x_3 x_7) \lor (\overline{x}_1 \overline{x}_4) \lor (x_5 x_6)$ 

There is an  $\epsilon$ -approximating DNF f' with  $\leq s$  terms where each term contains  $\leq \log(s/\epsilon)$  variables [V88]

- Any term with  $> \log(s/\epsilon)$  variables is satisfied with probability  $< \frac{\epsilon}{s}$
- Delete all (at most s) such terms from f to get f'

### Approximation – example

#### Let f be any s-term DNF formula:

 $\begin{array}{lll} f = (x_2 x_4 x_6 x_8 \dots x_n) & \lor & (x_2 \overline{x}_4) & \lor & (x_1 x_2 x_3 x_4 \dots x_{\sqrt{n}}) & \lor & (x_3 x_7) & \lor & (\overline{x}_1 \overline{x}_4) & \lor & (x_5 x_6) \\ f' = & & & (x_2 \overline{x}_4) & & \lor & (x_3 x_7) & \lor & (\overline{x}_1 \overline{x}_4) & \lor & (x_5 x_6) \end{array}$ 

There is an  $\epsilon$ -approximating DNF f' with  $\leq s$  terms where each term contains  $\leq \log(s/\epsilon)$  variables [V88]

- Any term with  $> \log(s/\epsilon)$  variables is satisfied with probability  $< \frac{\epsilon}{s}$
- Delete all (at most s) such terms from f to get f'

# II. Learning a concept class ${\mathcal C}$

"PAC learning concept class C under the uniform distribution"

# Setup: Learner is given a sample of labeled examples

- Target function  $f \in \mathcal{C}$  is unknown to learner
- Each example x in sample is independent, uniform over  $\{0, 1\}^n$

| x            | f(x)     |
|--------------|----------|
| 001001001001 | 1        |
| 100111011001 | 0        |
| 101011011101 | 0        |
| 011100010110 | <u>L</u> |
| 011100110110 | •••      |
| 011100110110 | U        |

**Goal:** For every  $f \in C$ , with probability  $\geq \frac{9}{10}$ , learner should output a hypothesis  $h : \{0, 1\}^n \to \{0, 1\}$  such that  $\Pr[f(x) \neq h(x)] \leq \epsilon$ .

# Learning via "Occam's Razor"

A learning algorithm for C is **proper** if it outputs hypotheses from C.

#### Generic proper learning algorithm for any (finite) class $\ \mathcal{C}$ :

- Draw  $m = \frac{1}{\epsilon} \ln(10|\mathcal{C}|)$  labeled examples
- Output any  $h \in C$  that is consistent with all m examples.

 $\sim$  finding such an h may be

computationally hard...

#### Why it works:

- Suppose true error rate of  $h' \in C$  is  $> \epsilon$ .
- Then Pr[ h' consistent with m random examples]  $\leq (1 \epsilon)^m \leq \frac{1}{10|C|}$

So 
$$\Pr[any "bad" h \in C \text{ is output}] < |C| \cdot \frac{1}{10|C|}.$$

 $error > \epsilon$ 

# III. Property testing

Goal: infer "global" property of function via few "local" inspections

Tester makes black-box queries to arbitrary  $f : \{0, 1\}^n \rightarrow \{0, 1\}$ 



Tester must output

- "yes" whp if  $f \in \mathcal{C}$
- "no" whp if f is  $\epsilon$ -far from every  $g \in \mathcal{C}$

Usual focus: information-theoretic

# queries required



# Testing via proper learning

#### [GGR98]: C properly learnable $\rightarrow C$ testable with same # queries.

- Run algorithm to learn to high accuracy; hypothesis obtained is h
- Draw random examples, use them to estimate error(h) to high accuracy

Why it works:

- $f \in \mathcal{C} \rightarrow$  estimated error of h is small
- f is far from  $\mathcal{C} \rightarrow$  estimated error of h is large since  $h \in \mathcal{C}$  is far from f

distance  $\epsilon$ 

Great! But...

Even for very simple classes of functions over n variables (like literals), any learning algorithm must use  $\Omega(\log n)$  examples...

and in testing, we want query complexity **independent of** n

# Some known property testing results

| Class of functions over $\{0,1\}^n$ | # of queries             |  |  |
|-------------------------------------|--------------------------|--|--|
| parity functions [BLR93]            | $O(1/\epsilon)$          |  |  |
| deg- $d$ GF(2) polynomials [AKK+03] | $O(4^d/\epsilon)$        |  |  |
| literals [PRS02]                    | $O(1/\epsilon)$          |  |  |
| conjunctions [PRS02]                | $O(1/\epsilon)$          |  |  |
| J-juntas [FKRSS04]                  | $	ilde{O}(J^2/\epsilon)$ |  |  |
| s-term monotone DNF [PRS02]         | $	ilde{O}(s^2/\epsilon)$ |  |  |
|                                     |                          |  |  |

Different algorithm tailored for each of these classes.

Question: [PRS02] what about non-monotone *s*-term DNF?

## New property testing results

Theorem: [DLMORSW07]

The class of s-term DNF over  $\{0, 1\}^n$  is testable with poly(s/ $\epsilon$ ) queries.

s-leaf decision trees

size-s branching programs

size-s Boolean formulas (AND/OR/NOT gates)

size-s Boolean circuits (AND/OR/NOT gates)

s-sparse polynomials over GF(2)

s-sparse algebraic circuits over GF(2)

s-sparse algebraic computation trees over GF(2)

All results follow from "testing by implicit learning" approach.

#### Overview of talk

0. Some basics



# Straight-up testing by learning?

Recall

- [GGR98]: C properly learnable  $\rightarrow C$  testable with same # queries
- Occam's Razor: can properly learn any C from  $\approx \frac{1}{\epsilon} \ln |C|$  examples

But for  $C = \{all \ s\text{-term DNF over } \{0, 1\}^n\}, \text{ this is } O(ns/\epsilon) \text{ examples...}$ 

We want a  $poly(s/\epsilon)$  -query algorithm.

# Approximation to the rescue?

We also have approximation:



• Given any s-term DNF f, there is a  $\tau$ -approximating DNF f' with  $\leq s$  terms where each term contains  $\leq \log(s/\tau)$  variables.

So can try to learn
$$\mathcal{C}' = \{ \text{all } s \text{-term } \log(s/\tau) \text{-} \text{DNF over } \{0, 1\}^n \}$$
Now Occam requires
$$\frac{\ln |\mathcal{C}'|}{\epsilon} \approx \frac{\ln(n^{s \log(s/\tau)})}{\epsilon} = \frac{s \log(s/\tau) \log n}{\epsilon}$$

examples...better, but still depends on n.

# Getting rid of n?

Each approximating DNF f' depends only on  $s \log(s/\tau)$  variables.

#### Suppose we knew those variables.

Then we'd have

$$C'' = \{ all \ s \text{-term } \log(s/\tau) \text{-} DNF \text{ over } \{0,1\}^{s \log(s/\tau)} \}$$

so Occam would need only independent of n!

$$\frac{\ln |\mathcal{C}''|}{\epsilon} \approx \frac{s^2 \log(s/\tau)}{\epsilon} \qquad \text{e}$$

examples,

But, can't explicitly identify even **one** variable with  $o(\log n)$  examples...



# The fix: implicit learning

High-level idea: Learn the "structure" of f'without explicitly identifying the relevant variables

Algorithm tries to find an approximator

$$h = (x_{\sigma(1)}x_{\sigma(2)}) \lor (\overline{x}_{\sigma(2)}x_{\sigma(3)}x_{\sigma(4)}) \lor \cdots$$

where  $\sigma : [s \log(s/\tau)] \rightarrow [n]$  is an unknown mapping.

# Implicit learning

How can we learn "structure" of f' without knowing relevant variables?

Need to generate  $poly(s/\epsilon)$  many correctly labeled random examples of f':



each string z is  $\leq s \log(s/\tau)$  bits

Then can do Occam (brute-force search for consistent DNF).

# Implicit learning cont

- Vars of z are the variables that have high influence in f: flipping the bit is likely to change value of f
- setting of other variables almost always doesn't matter

Given random *n*-bit labeled example (x, f(x)), want to construct  $s \log(s/\tau)$ -bit example (z, f'(z))  $\begin{array}{c|c} z & f'(z) \\ \hline 001001001001 & 1 \\ 100111011001 & 0 \\ \hline 011100110110 & 0 \\ \hline < s \log(s/\tau) \text{ bits} \end{array}$ 



Do this using techniques of [FKRSS02] "Testing Juntas"

### Use independence test of [FKRSS02]

Let S be a subset of variables.  $x_1$  S  $x_n$ "Independence test" [FKRSS02]:

• Fix a random assignment to variables not in S

100110111001100 00101011001001011

• Draw two independent settings of variables in S, query f on these 2 points



Intuition:

- if S has all low-influence variables, see same value whp
- if S has a high-influence variable, see different value sometimes

#### Constructing our examples

| Given random <i>n</i> -bit labeled | x 1001101110110001101011011011011011101011101 |
|------------------------------------|-----------------------------------------------|
| example $(x, f(x))$ , want         |                                               |
| to construct $s \log(s/\tau)$ -bit |                                               |
| example $(z, f'(z))$               | 2 01111000                                    |

Follow [FKRSS02]:

Randomly partition variables into blocks; run independence test on each block



- Can determine which blocks have high-influence variables



- Each block should have **at most one** high-influence variable (birthday paradox)

#### **Constructing our examples**

| Given random $n$ -bit labeled<br>example $(x, f(x))$ , want | x 10011011101100011010110011011101011101 |
|-------------------------------------------------------------|------------------------------------------|
| to construct $s \log(s/\tau)$ -bit<br>example $(z, f'(z))$  | 2 01111000                               |

We know which blocks have high-influence variables; need to determine how the high-influence variable in the block is set.

Consider a fixed high-influence block *B*. String *x* partitions *B* into  $B_0 \cup B_1$ :

 $\begin{array}{c} B_0 & B_1 \\ \hline B_0 & B_1 \\ \hline B_1 & B_1$ 

Run independence test on each of  $B_0, B_1$  to see which one has the high-influence variable.

Repeat for all high-influence blocks to get all bits of z.

# Sketch of completeness of overall test

Suppose f is an s-term DNF.

- Then f is close to s-term  $\log(s/\tau)$ -DNF f'
- Test constructs sample of random  $s \log(s/\tau)$ -bit examples that are all correctly labeled according to f' whp
- Test checks all *s*-term  $\log(s/\tau)$ -DNFs over  $\{0,1\}^{s \log(s/\tau)}$ for consistency with sample, outputs "yes" if any consistent DNF found.
  - f' is consistent, so test outputs "yes"

# Sketch of soundness of test

Suppose f is far from every s-term DNF

- If f ar from every  $s \log(s/\tau)$ -junta, [FKRSS02] catches it (too many high-influence variables)
- So suppose f close to an  $s \log(s/\tau)$ -junta f' and algorithm constructs sample of  $s \log(s/\tau)$ -bit examples labeled by f'.
- Then whp there exists no s-term  $\log(s/\tau)$ -DNF consistent with sample, so test outputs "no"
  - If there were such a DNF g consistent with sample, would have





# **Testing by Implicit Learning**

Can use this approach for any class C with the following property:



Many classes have this property...

s-term DNF
 size-s Boolean formulas (AND/OR/NOT gates)
 size-s Boolean circuits (AND/OR/NOT gates)
 s-sparse polynomials over GF(2) (

 of ANDs)
 s-leaf decision trees
 size-s branching programs
 s-sparse algebraic circuits over GF(2)
 s-sparse algebraic computation trees over GF(2)

All these classes are testable with  $poly(s/\epsilon)$  queries.

# Road map

0. Some basics

**1.** A technique: "testing by implicit learning"

a little learning theory + a little approximation + testing ideas from [FKRSS04]

new testing results for many classes of functions [DLMORSW07]



# Polynomials

*GF* (2) polynomial  $p: \{0,1\}^n \to \{0,1\}$ 

parity (sum) of monotone conjunctions (monomials)

*e.g.*  $p(x) = 1 + x_1 \cdot x_3 + x_2 \cdot x_3 + x_1 \cdot x_4 \cdot x_5 \cdot x_6 \cdot x_8 + x_2 \cdot x_7 \cdot x_8 \cdot x_9 \cdot x_{10}$ 

- *"sparsity* " = number of monomials
- Polynomial is *s*-sparse if it has at most *s* monomials

 $C_{sp}(s, n)$  : class of s-sparse GF(2) polynomials over  $\{0,1\}^n$ 

Extensively studied from various perspectives:

[BS'90, FS'92, SS'96, Bsh'97, BM'02] (learning)

[Kar'89, GKS'90, RB'91; EK'89, KL'93, LVW'93] (approximation)

# Efficiently Testing sparse poly's

**Theorem [DLMSW08]:** There is an  $\epsilon$ -testing algorithm for the property of being an *s*-sparse GF(2) polynomial that uses poly  $(s, 1/\epsilon)$  queries and *runs in time n* poly  $(s, 1/\epsilon)$ .

#### **Ingredients:**

• Main Technique:

"Testing by Implicit Learning" Framework [DLM+07]

- Efficient *Proper* Learning Algorithm [Schapire-Sellie'96]
- New Structural Theorem:

*\*\*s-sparse polynomials simplify nicely under certain - carefully chosen - random restrictions"* 

# *Efficient* Proper Learning of *s*-sparse *GF* (2) Polynomials

**Theorem** [SS'96]: There is a uniform distribution query algorithm that properly PAC learns *s*-sparse polynomials over  $\{0,1\}^r$  in time (and query complexity) poly  $(r, s, 1/\epsilon)$ .

Great! But... Learning Algorithm uses *black-box queries*.

Cannot "implicitly simulate" the learning algorithm using random examples as before..

# **Random Examples vs Queries**

Let  $f: \{0,1\}^n \to \{0,1\}$  be a sparse polynomial and f' be *some*  $\tau$ -approximator to f.



- Assume 1/ τ ≫ number of random examples required for Occam learning f'. Then, random examples for f are ok.
- A black-box algorithm may cluster its queries on the few inputs where *f* and *f* ' disagree.

# Difficulties

Let  $f: \{0,1\}^n \to \{0,1\}$  be a sparse polynomial and f' be *some*  $\tau$ -approximator to f.

- Need to simulate queries to *f* ' having query access to *f*. And need to do this in a *query efficient* way.
- To make this work, need appropriate definition of the approximating function f'.

Roughly speaking, f' is obtained as follows:

- 1. Randomly partition variables in  $r = poly (s / \tau)$  subsets.
- 2. f' = restriction obtained from f by setting all variables on "low influence" subsets to 0.

Intuition: "kill" all "long" monomials.

# Illustration (I)

Suppose

 $p(x) = 1 + x_1 \cdot x_3 + x_2 \cdot x_3 + x_1 \cdot x_4 \cdot x_5 \cdot x_6 \cdot x_8 + x_2 \cdot x_7 \cdot x_8 \cdot x_9 \cdot x_{10}$ and r = 5.



# Illustration (II)

Suppose

 $p(x) = 1 + x_1 \cdot x_3 + x_2 \cdot x_3 + x_1 \cdot x_4 \cdot x_5 \cdot x_6 \cdot x_8 + x_2 \cdot x_7 \cdot x_8 \cdot x_9 \cdot x_{10}$ and r = 5.

| <i>x</i> <sub>3</sub> | $x_8$      | $x_1$ | $x_{10}$              | <i>x</i> <sub>2</sub> |
|-----------------------|------------|-------|-----------------------|-----------------------|
| <i>x</i> <sub>4</sub> | <i>x</i> 9 | $x_7$ | <i>x</i> <sub>6</sub> | <i>x</i> <sub>5</sub> |
| 1                     | 2          | 3     | 4                     | 5                     |

# Illustration (III)

Suppose

 $p(x) = 1 + x_1 \cdot x_3 + x_2 \cdot x_3 + x_1 \cdot x_4 \cdot x_5 \cdot x_6 \cdot x_8 + x_2 \cdot x_7 \cdot x_8 \cdot x_9 \cdot x_{10}$ and r = 5.



# Illustration (IV)

Suppose

 $p(x) = 1 + x_1 \cdot x_3 + x_2 \cdot x_3 + x_1 \cdot x_4 \cdot x_5 \cdot x_6 \cdot x_8 + x_2 \cdot x_7 \cdot x_8 \cdot x_9 \cdot x_{10}$ and r = 5.



 $p'(x_1, x_2, x_3) = 1 + x_1 \cdot x_3 + x_2 \cdot x_3$ 

# **Algorithm Description**

- 1. Partition the coordinates into [*n*] into  $r = poly (s / \tau)$  random subsets.
- 2. Distinguish subsets that contain a "high-influence" variable from subsets that do not.
- 3. Consider restriction f' obtained from f by "zeroing out" all the variables in "low-influence" subsets.
- 4. Run [SS'96] using the "simulated" membership query oracle for the junta *f* ′.

#### **Open Problems**

- What are the right lower bounds for testing classes like *s*-term DNF, size-*s* decision trees?
  - Can get  $\approx \Omega(\log s)$  following [CG04], but feels like right bound is  $\Omega(\operatorname{poly}(s))$ ?
- Can "testing by implicit learning" approach be modified to get testers that are more computationally efficient?
  - Ideally shoot for  $poly(s/\epsilon)$  runtime to match query complexity...
  - Computationally efficient proper learning algorithms would yield these, but these seem hard to come by
- Better understanding of testability of boolean functions?

#### **Big-picture question**

Whole talk – uniform distribution.

What about distribution-independent {learning, testing, approximating}?

- Rich theory of distribution-independent (PAC) learning
- Less fully developed theory of distribution-independent testing [HK03,HK04,HK05,AC06]
- Things are much harder...what is doable?
  - [GS07] Any distribution-independent algorithm for testing whether f is a halfspace requires  $\Omega(n^{1/5})$  queries.

#### Thank you for your attention