Testing Continuous Distributions

Artur Czumaj

DIMAP (Centre for Discrete Maths and it Applications) \& Department of Computer Science University of Warwick

Joint work with A. Adamaszek \& C. Sohler

Testing probability distributions

- General question:
- Test a given property of a given probability distribution
- distribution is available by accessing only samples drawn from the distribution

Examples:

- is given probability uniform?
- are two prob. distributions independent?

Testing probability distributions

For more details/introduction: see R. Rubinfeld's talk on Wednesday

- Typical result:
- Given a probability distribution on n points, we can test if it's uniform after seeing $\sim \sqrt{n}$ random samples
[Batu et al '01]
Testing = distinguish between uniform distribution and distributions which are ϵ-far from uniform
ϵ-far from uniform:

$$
\sum_{x \in \Omega}\left|\operatorname{Pr}[x]-\frac{1}{n}\right| \geq \epsilon
$$

Testing probability distributions

For more details/ìntroduction: see R. Rubinfeld's talk on Wednesday

- Typical result:
- Given a probability distribution on n points, we can test if it's uniform after seeing $\sim \sqrt{n}$ random samples
[Batu et al '01]
- What if distribution has infinite support?
- Continuous probability distributions?
- Typical result:
- Given a probability distribution on n points, we can test if it's uniform after seeing $\sim \sqrt{n}$ random samples
$-\sim \sqrt{n}$ random samples are necessary
- Given a continuous probability distribution on [0,1], can we test if it's uniform?
- Impossible
- Follows from the lower bound for discrete case with $n \rightarrow \infty$
- More direct proof:
- Suppose tester A distinguishes in at most \dagger steps between uniform distribution and ϵ-far from uniform
- D_{1} - uniform distribution
- D_{2} is $\frac{1}{2}$-far from uniform and is defined as follows:
- Partition $[0,1]$ into \dagger^{3} interval of identical length
- Split each interval into two halves
- Randomly choose one half:
- the chosen half gets uniform distribution
- the other half has zero probability
- In \dagger steps, no interval will be chosen more than once in D_{2}

A cannot distinguish between D_{1} and D_{2}

Testing continuous probability distributions AP

- What can be tested?
- First question:
test if the distribution is indeed continuous

Testing continuous probability distributions A AP

- Test if a probability distribution is discrete
- Prob. distribution D on Ω is discrete on N points if there is a set $X \subseteq \Omega,|X| \leq N$, st. $\operatorname{Pr}_{D}[X]=1$
- D is ϵ-far from discrete on N points if

$$
\begin{array}{r}
\forall X \subseteq \Omega,|X| \leq N \\
\operatorname{Pr}[X]<1-\epsilon
\end{array}
$$

Testing if distribution is discrete on N points $\mathrm{s}^{A \mathrm{P}}$

- We repeatedly draw random points from D
- All what can we see:
- Count frequency of each point
- Count number of points drawn

For some D (eg, uniform or close):

- we need $\Omega(\sqrt{N})$ to see first multiple occurrence

Gives a hope that can be solved in sublinear-time

Testing if distribution is discrete on N points ${ }^{A P}$
Raskhodnikova et al '07 (Valiant'08):
Distinct Elements Problem:

- D discrete with each element with prob. $\geq 1 / \mathrm{N}$
- Estimate the support size
$\Omega\left(\mathrm{N}^{1-0(1)}\right)$ queries are needed to distinguish instances with $\leq N / 100$ and $\geq N / 11$ support size

Key step: two distributions that have identical first $\log ^{\ominus(1)} \mathrm{N}$ moments

- their expected frequencies up to $\log ^{\Theta(1)} \mathrm{N}$ are identical

Testing if distribution is discrete on N points ${ }^{A P}$
Raskhodnikova et al '07 (Valiant'08):
Distinct Elements Problem:

- D discrete with each element with prob. $\geq 1 / \mathrm{N}$
- Estimate the support size
$\Omega\left(\mathrm{N}^{1-0(1)}\right)$ queries are needed to distinguish instances with $\leq N / 100$ and $\geq N / 11$ support size

Corollary:
Testing if a distribution is discrete on N points requires $\Omega\left(\mathrm{N}^{1-\text {-o(1) }}\right)$ samples

- We repeatedly draw random points from D
- All what can we see:
- Count frequency of each point
- Count number of points drawn
- Can we get $O(N)$ time?

Testing if distribution is discrete on N points s^{AP}

- Testing if a distribution is discrete on N points:

```
-Draw a sample \(S=\left(s_{1}, \ldots, s_{\dagger}\right)\) with \(\dagger=\mathrm{CN} / \epsilon\)
-If \(S\) has more than \(N\) distinct elements then REJECT else ACCEPT
```

- If D is discrete on N points then we will accept D
- We only have to prove that
- if D is ϵ-far from discrete on N points, then we will reject with probability >2/3

Testing if distribution is discrete on N points ${ }^{A \mathrm{P}}$

- Testing if a distribution is discrete on N points:

-Draw a sample $S=\left(s_{1}, \ldots, s_{+}\right)$with $t=c N / \epsilon$
 -If S has more than N distinct elements then REJECT else ACCEPT

Can we do better (if we only count distinct elements)?
D: has 1 point with prob. 1-4 ϵ
2 N points with prob. $2 \epsilon / \mathrm{N}$
D is ϵ-far from discrete on N points
We need $\Omega(N / \epsilon)$ samples to see at least N points

Testing if distribution is discrete on N points ${ }^{A P}$

Assume D is ϵ-far from discrete on N points
Order points in Ω so that $\operatorname{Pr}\left[X_{i}\right]=p_{i}$ and $p_{i} \geq p_{i+1}$
$A=\left\{X_{1}, \ldots, X_{N}\right\}, B=$ other points from the support
$p_{1}+p_{2}+\ldots+p_{N}<1-\epsilon$
$\alpha=\#$ points from A drawn by the algorithm
$\beta=\#$ points from B drawn by the algorithm

We consider 3 cases (all bounds are with prob. > 0.99):

1) $\mathrm{P}_{\mathrm{N}}\langle\epsilon / 2 \mathrm{~N} \rightarrow \beta>\mathrm{N}$

- all points in B have small prob. \rightarrow not too many repetitions

2) $\mathrm{p}_{N} \geq c N / \epsilon \rightarrow \beta \geq \epsilon / 2 \mathbf{p}_{N}$

- points in B have small prob. \rightarrow bound for \#distinct points

3) $\mathrm{p}_{\mathrm{N}} \geq \epsilon / 2 \mathrm{~N} \rightarrow \alpha \geq \mathrm{N}-\epsilon / 2 \mathrm{p}_{\mathrm{N}}$

- either many distinct points from A or p_{N} is very small (then β will be large)

Testing if distribution is discrete on N points ${ }^{A P}$

Assume D is ϵ-far from discrete on N points Order points in Ω so that $\operatorname{Pr}\left[X_{i}\right]=p_{i}$ and $p_{i} \geq p_{i+1}$ $A=\left\{X_{1}, \ldots, X_{N}\right\}, B=$ other points from the support $\alpha=\#$ points from A drawn by the algorithm $\beta=\#$ points from B drawn by the algorithm

Main ideas:
Case 2) $\mathbf{p}_{N} \geq c N / \epsilon \rightarrow \beta \geq \epsilon / 2 \mathbf{p}_{N}$

- Worst case: all points in B have uniform and maximum distrib. $=\mathrm{p}_{\mathrm{N}}$
- $Z_{i}=$ random variable: number of steps to get ith new point from B
- We have to prove that with prob. >0.99: $\sum_{i=1}^{\epsilon / 2 p_{N}} Z_{i}<t$
- $\mathbf{Z}_{1}, \mathbf{Z}_{2}, \ldots$ - geometric distribution: $E\left[Z_{i}\right]=\frac{1}{(r-i) p_{N}}, r=$ number of points in B

$$
\sum_{i=1}^{\epsilon / 2 p_{N}} E\left[Z_{i}\right] \leq \frac{2}{p_{N}}
$$

\rightarrow Markov gives with prob. $\geq 0.99: \sum_{i=1}^{\epsilon / 2 p_{N}} Z_{i}<t$

Testing if distribution is discrete on N points ${ }^{A P}$

- We repeatedly draw random points from D
- All what can we see:
- Count frequency of each point
- Count number of points drawn

By sampling $O(N / \epsilon)$ points one can distinguish between

- distributions discrete on N points and
- those ϵ-far from discrete on N points

The algorithm may fail with prob. $<1 / 3$

- What can we test efficiently?
- Complexity for discrete distributions should be "independent" on the support size
- Uniform distribution ... under some conditions
- Rubinfeld \& Servedio'05:
- testing monotone distributions for uniformity

Testing uniform distributions (discrete)
Rubinfeld \& Servedio'05:

- Testing monotone distributions for uniformity

D: distribution on n-dimensional cube; $\mathrm{D}:\{0,1\}^{\mathrm{n}} \rightarrow \mathbf{R}$ $x, y \in\{0,1\}^{n}, x \leqslant y$ iff $\forall i: x_{i} \leq y_{i}$
D is monotone if $x \leqslant y \rightarrow \operatorname{Pr}[x] \leq \operatorname{Pr}[y]$
Goal: test if a monotone distribution is uniform

```
Rubinfeld \& Servedio'05:
Testing if a monotone distribution on \(n\)-dimensional binary cube is uniform:
-Can be done with \(O\left(n \log (1 / \epsilon) / \epsilon^{2}\right)\) samples
- Requires \(\Omega\left(n / \log ^{2} n\right.\) ) samples
```

Testing continuous probability distributions
Rubinfeld \& Servedio'05:

- Testing monotone distributions for uniformity

D: distribution on n-dimensional cube; $\mathrm{D}:\{0,1\}^{\mathrm{n}} \rightarrow \mathbf{R}$
$x, y \in\{0,1\}^{n}, x \leqslant y$ iff $\forall i: x_{i} \leq y_{i}$
D is monotone if $x \leqslant y \rightarrow \operatorname{Pr}[x] \leq \operatorname{Pr}[y]$
Goal: test if a monotone distribution is uniform
D: distribution on n-dimensional cube; density function $\mathrm{f}:[0,1]^{\mathrm{n}} \rightarrow \mathbf{R}$
$x, y \in[0,1]^{n}, x \leqslant y$ iff $\forall i: x_{i} \leq y_{i}$
D is monotone if $x \leqslant y \rightarrow f(x) \leq f(y)$

Testing continuous probability distributions A AP

Lower bounds holds for continuous cubes
Upper bound: ???
-is it a function of the dimension or the support?
Rubinfeld \& Servedio'05:
Testing if a monotone distribution on n-dimensional binary cube is uniform:
-Can be done with $O\left(n \log (1 / \epsilon) / \epsilon^{2}\right)$ samples

- Requires $\Omega\left(n / \log ^{2} n\right)$ samples
D is ϵ-far from uniform if $\frac{1}{2} \int_{x \in \Omega}|f(x)-1| d x \geq \epsilon$
To test uniformity, we need to characterize monotone distributions that are ϵ-far from uniform

On the high level:

- we follow approach of Rubinfeld \& Servedio'05;
- details are quite different

Testing monotone distributions for uniformity ${ }^{\text {AP }}$
D is ϵ-far from uniform if $\frac{1}{2} \int_{x \in \Omega}|f(x)-1| d x \geq \epsilon$

Key Technical Lemma:

Let $\mathrm{g}:[0,1]^{\mathrm{n}}$ be a monotone function with $\int_{\mathrm{x}} \mathrm{g}(\mathrm{x}) \mathrm{dx}=0$ then

$$
\int_{x}\|x\|_{1} g(x) d x \geq \frac{1}{4} \int_{x}|g(x)| d x
$$

Key Lemma follows from Key Technical Lemma with $g(x)=f(x)-1$

Key Lemma:

If D is a monotone distribution on $[0,1]^{\mathrm{n}}$ with density function f and which is ϵ-far from uniform then

$$
E_{f}\left[\|x\|_{1}\right]=\int_{x}\|x\|_{1} f(x) d x \geq \frac{n}{2}+\frac{\epsilon}{2}
$$

Testing monotone distributions for uniformity ${ }^{\text {AP }}$

Key Lemma:

If D is a monotone distribution on $[0,1]^{n}$ with density function f and which is ϵ-far from uniform then

$$
E_{f}\left[\|x\|_{1}\right]=\int_{x}\|x\|_{1} f(x) d x \geq \frac{n}{2}+\frac{\epsilon}{2}
$$

```
s=cn/\epsilon}\mp@subsup{\epsilon}{}{2
Repeat }20\mathrm{ times
    Draw a sample S=( }\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{s}{})\mathrm{ from [0,1]
    If }\mp@subsup{\sum}{i}{}||\mp@subsup{x}{i}{}|\mp@subsup{|}{1}{}\geqs(n/2+\epsilon/4) then REJECT and exit
ACCEPT
```

Testing monotone distributions for uniformity ${ }^{\text {AP }}$

Theorem:
 The algorithm below tests if D is uniform.
 It's complexity is $O\left(n / \epsilon^{2}\right)$.

Slightly better bound than the one by RS'05

```
s=cn/\epsilon}\mp@subsup{\epsilon}{}{2
Repeat 20 times
    Draw a sample S=( }\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{s}{})\mathrm{ from [0,1]
    If }\mp@subsup{\sum}{1}{}||\mp@subsup{x}{i}{}\mp@subsup{|}{1}{}\geqs(n/2+\epsilon/4) then REJECT and exit
ACCEPT
```

```
s=cn/\epsilon}\mp@subsup{\epsilon}{}{2
Repeat 20 times
```

Draw a sample $S=\left(x_{1}, \ldots, x_{s}\right)$ from $[0,1]^{n}$ If $\sum_{i}\left\|x_{i}\right\|_{1} \geq s(n / 2+\epsilon / 4)$ then REJECT and exit ACCEPT

Lemma 1: If D is uniform then

$$
\operatorname{Pr}\left[\sum_{i}\left\|x_{i}\right\|_{1} \geq \mathrm{s}(\mathrm{n} / 2+\epsilon / 4)\right] \leq 0.01
$$

Easy application of Chernoff bound
Lemma 2: If D is ϵ-far from uniform then

$$
\operatorname{Pr}\left[\sum_{i}\left\|x_{i}\right\|_{1}<\mathrm{s}(\mathrm{n} / 2+\epsilon / 4)\right] \leq 12 / 13
$$

```
s=cn/\epsilon}\mp@subsup{\epsilon}{}{2
Repeat 20 times
```

 Draw a sample \(S=\left(x_{1}, \ldots, x_{s}\right)\) from \([0,1]^{n}\)
 If \(\sum_{i}\left\|x_{i}\right\|_{1} \geq s(n / 2+\epsilon / 4)\) then REJECT and exit ACCEPT
 Lemma 2: If D is ϵ-far from uniform then

$$
\operatorname{Pr}\left[\sum_{i}\left\|x_{i}\right\|_{1}<\mathrm{s}(\mathrm{n} / 2+\epsilon / 4)\right] \leq 12 / 13
$$

Proof:

D is ϵ-far from uniform $\rightarrow \mathrm{E}\left[\sum_{\mathrm{i}}\left\|x_{\mathrm{i}}\right\|_{1}\right] \geq \mathrm{s}(\mathrm{n}+\epsilon) / 2$
Feige's lemma: Y_{1}, \ldots, Y_{s} independent r.v., $Y_{i} \geq 0, E\left[Y_{i} \leq 1\right] \rightarrow$

$$
\operatorname{Pr}\left[\sum_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}<\mathrm{s}+1 / 12\right] \geq 1 / 13
$$

Choose $\mathrm{Y}_{\mathrm{i}}=2-2\left\|\mathrm{x}_{\mathrm{i}}\right\|_{1} /(\mathrm{n}+\epsilon)$
Then, Feige's lemma yields the desired claim

Testing monotone distributions for uniformity ${ }^{\text {AP }}$

Key Lemma:

If D is a monotone distribution on $[0,1]^{n}$ with density function f and which is ϵ-far from uniform then

$$
E_{f}\left[\|x\|_{1}\right]=\int_{x}\|x\|_{1} f(x) d x \geq \frac{n}{2}+\frac{\epsilon}{2}
$$

```
s=cn/\epsilon}\mp@subsup{\epsilon}{}{2
Repeat }20\mathrm{ times
    Draw a sample S=( }\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{s}{})\mathrm{ from [0,1]
    If }\mp@subsup{\sum}{i}{}||\mp@subsup{x}{i}{}|\mp@subsup{|}{1}{}\geqs(n/2+\epsilon/4) then REJECT and exit
ACCEPT
```

Testing monotone distributions for uniformity ${ }^{\text {AP }}$

Key Lemma:

If D is a monotone distribution on $[0,1]^{n}$ with density function f and which is ϵ-far from uniform then

$$
E_{f}\left[\|x\|_{1}\right]=\int_{x}\|x\|_{1} f(x) d x \geq \frac{n}{2}+\frac{\epsilon}{2}
$$

Key Technical Lemma:

Let $\mathrm{g}:[0,1]^{\mathrm{n}}$ be a monotone function with $\int_{\mathrm{x}} \mathrm{g}(\mathrm{x}) \mathrm{dx}=0$ then

$$
\int_{x}\|x\|_{1} g(x) d x \geq \frac{1}{4} \int_{x}|g(x)| d x
$$

Testing monotone distributions for uniformity ${ }^{\text {AP }}$

Key Technical Lemma:

Let $g:[0,1]^{n}$ be a monotone function with $\int_{x} g(x) d x=0$ then

$$
\int_{x}\|x\|_{1} g(x) d x \geq \frac{1}{4} \int_{x}|g(x)| d x
$$

Why such a bound:
Tight for $\mathrm{g}(\mathrm{x})=\operatorname{sgn}\left(\mathrm{X}_{1}-1 / 2\right)$

$$
\int_{x: x_{1}>\frac{1}{2}}\|x\|_{1} g(x)=\frac{1}{2} \int_{x: x_{1}>\frac{1}{2}}\left(x_{1}+\ldots+x_{n}\right)=\frac{1}{2}\left(\frac{3}{4}+\frac{1}{2}+\ldots+\frac{1}{2}\right)=\frac{n}{4}+\frac{1}{8} .
$$

Similarly,

$$
\int_{x: x_{1}<\frac{1}{2}}\|x\|_{1} g(x)=\frac{1}{2}\left(\frac{1}{4}+\frac{1}{2}+\ldots+\frac{1}{2}\right)=\frac{n}{4}-\frac{1}{8}
$$

and hence,

$$
\int_{x}\|x\|_{1} g(x)=\int_{x: x_{1}>\frac{1}{2}}\|x\|_{1} g(x)-\int_{x: x_{1}<\frac{1}{2}}\|x\|_{1} g(x)=\frac{1}{4}=\frac{1}{4} \cdot \int_{x}|g(x)| .
$$

Testing monotone continuous distributions

Rubinfeld \& Servedio'05:
Testing if a monotone distribution on n-dimensional binary cube is uniform:

- Can be done with $O\left(n \log (1 / \epsilon) / \epsilon^{2}\right)$ samples
- Requires $\Omega\left(n / \log ^{2} n\right)$ samples

```
Here:
Testing if a monotone distribution on n-dimensional
    continuous cube is uniform :
-Can be done with O(n/\epsilon}\mp@subsup{\epsilon}{}{2})\mathrm{ samples
Can be easily extended to {0,1,..,k}n}\mathrm{ cubes
```


Conclusions

- Testing continuous distributions is different from testing discrete distributions
- Continuous distributions are harder
- More examples when it's possible to test
- Usually some additional conditions are to be imposed
- Tight(er) bounds?

