
Extending Oblivious Transfers
Efficiently

Yuval Ishai
Technion

Joe Kilian Kobbi Nissim Erez Petrank

 NEC Microsoft Technion

Motivation

x y

f(x,y)

• How (in)efficient is generic secure computation?

myth THIS WORK

sftp f.txt

don’ t even
think

about it

garbled circuit
method

O(|x|) pub.
O(|f|) sym.

 k pub.
O(|f|+|x|) sym.

Motivation

x y

f1(x,y) f2(x,y)

db1

 db2

client-db server-fn

client-fn server-db

Efficiency of Secure Computation

• Sometimes can use special structure of given functionality.
• Otherwise need to resort to generic techniques.
• How (in)efficient is generic secure computation?

myth THIS WORK

sftp f.txt

don’ t even
think

about it

garbled circuit
method

O(|x|) pub.
O(|f|) sym.

 k pub.
O(|f|+|x|) sym.

Road Map

Cryptographic
primitives

Reductions

Extending
primitives

Extending
OT’ s

A Taxonomy of Primitives

Symmetric encryption

Commitment

PRG

Collision resistant
hashing

Public-key encryption

Key agreement

Oblivious transfer

Secure function evaluation

here you

gor u

kidding?check this

out nice try…

 crack this!!!
 hmmm…

here you

gor u

kidding?check this

out

crack this!!!

r u

kidding?

r u

kidding?

…

Symmetric encryption

Commitment

PRG

Collision resistant
hashing

Public-key encryption

Key agreement

Oblivious transfer

Secure function evaluation

easy to implement heuristically
(numerous candidates, may rely
on “ structureless” functions)

very cheap in practice

hard to implement
heuristically

(few candidates, rely on
specific algebraic structures)

more expensive
by orders of magnitude

Major challenge: bridge efficiency gap

 Reductions in Cryptography

• Motivated by
– minimizing assumptions
– gaining efficiency

• Reduction from Y to X: a mapping f such that if A
implements X then f(A) implements Y.
– Cannot be ruled out when Y is believed to exist.

• Black-box reduction:
– f(A) makes a black-box use of A;
– Black-box proof of security: Adversary breaking f(A) can

be used as a black box to break A.

• Almost all known reductions are black-box.
– Non-black-box reductions are inefficient in practice.

 Can be reduced to ?

• Impagliazzo-Rudich [IR89]:
No black-box reduction exists.
– In fact, even a random oracle unlikely to yield

Extending Primitives

≤
 [IR]

≤ +
?

Extending Y using X:
Realizing n instances of Y by making
• k (black-box) calls to Y, k<n
• arbitrary use of X

Want:

• k << n
• black-box use of X.

The Case of Encryption

≤ +

m1 m2

mn

m1 m2

mn

• Extending PKE is easy…

• Huge impact on our everyday use of encryption.

This work: Establish a similar result for remaining tasks.

Public-key encryption

Key agreement

Symmetric encryption

Commitment

PRG

Collision resistant hashing

Oblivious transfer

Secure function evaluation

Oblivious transfer

Secure function evaluation

efficient,
black-box

Oblivious Transfer (OT)

• Several equivalent flavors [Rab81,EGL86,BCR87]

• -OT:

• Formally defined as an instance of secure 2-party
computation:
– OT(r, <x0,x1>) = (xr , ⊥)

• Extensively used in
– general secure computation protocols [Yao86,GV87,Kil88,GMW88]

• Yao’ s protocol: # of OT’ s = # of input bits

– special-purpose protocols

• Auctions [NPS99], shared RSA [BF97,Gil99], information retrieval
[NP99], data mining [LP00,CIKRRW01],…

1

2

Receiver

r ∈ {0,1}

Sender

x0,x1 ∈ {0,1}l

xr ???

Cost of OT

• OT is at least as expensive as key-agreement.
– OT’ s form the efficiency bottleneck in many protocols.

– “ OT count” has become a common efficiency measure.

– Some amortization was obtained in [NP01].

• Cost of OT is pretty much insensitive to l
– Most direct OT implementations give l = security parameter “ for free”

– Handle larger l via use of a PRG

r ≤ +x0

x1

s0

s1

G(s0)⊕ x0

G(s1)⊕ x1

r

efficient,
black-box

Extending Oblivious Transfers

• Beaver ‘ 96: OT can be extended using a PRG!!
– Thm. If PRG exists, then k OT’ s can be extended to n=kc OT’ s.

• However:
– Extension makes a non-black-box use of underlying PRG.
– Numerous PRG invocations
– Huge communication complexity
– Unlikely to be better than direct OT implementations

• Can OT be extended via a black-box reduction?

≤ +
?OT

OT

OT

OT

OT OT OT
OT

OT

OT

OT

OT

OTOTOT
OTOTOT

OT OT OT OT
OT

OT

OT

OT
OT

OTOT
OT

OT OT
OT OT

OT
OTOT

OT OT OT

OTOT

Our Result

efficient,
black-box

= random oracle

= new type of hash
 function

or

≤ +
OT

OT

OT

OT

OT OT OT
OT

OT

OT

OT

OT

OTOTOT
OTOTOT

OT OT OT OT
OT

OT

OT

OT
OT

OTOT
OT

OT OT
OT OT

OT
OTOT

OT OT OT

OTOT

Strategy

x1,0r1
x1,1

x2,0

x2,1

r2

....

x3,0

x3,1

r3

xn,0

xn,1

rn

≤ ...n

s1
s2 sk

+ O(n)×H

≤
...

s1 s2 sk

+ O(n)×H

Already saw

Notation

M

mi

mj
n

k

yi,0 = xi,0 ⊕ qi
yi,1 = xi,1 ⊕ qi⊕ s

izi= yi,r ⊕ ti i

The Basic Protocol

t1

t1

⊕

r
...

s1 s2 sk

t2

t2

⊕

r
tk

tk

⊕

r

Receiver picks T ∈R {0,1}n×k

Sender picks s ∈R {0,1}k

t1

⊕

r
t2 ...

tk

⊕

r

Sender obtains Q ∈ {0,1}n×k

 qi= ti
1 1 0 0ri=0 1 1

 qi= ti⊕ s1 0 0 1ri=1 1 0

• For 1≤ i ≤n, Sender sends yi,0 = xi,0 ⊕ H(i, qi)
yi,1 = xi,1 ⊕ H(i, qi⊕ s)

• For 1≤ i ≤n, Receiver outputs izi= yi,r ⊕ H(i, ti)i

yi,0 = xi,0 ⊕ H(i, qi)
yi,1 = xi,1 ⊕ H(i, qi⊕ s)

izi= yi,r ⊕ H(i, ti)i

Security

Receiver picks T ∈R {0,1}n×k

Sender picks s ∈R {0,1}k

 qi= ti
ri=0

 qi= ti⊕ sri=1

• For 1≤ i ≤n, Sender sends

• For 1≤ i ≤n, Receiver outputs

Sender obtains Q ∈ {0,1}n×k

Sender learns nothing
• Q is uniformly
random

Receiver learns no
additional info except w/neg
prob.
• Must query H on (i, ti ⊕ s)

Attack by a Malicious Receiver

0
0
0
0
0
0
0

1
0
0
0
0
0
0

...

s1 s2 sk

0
0
0
0
0
0
0

0
1
0
0
0
0
0

0
0
0
0
0
0
0

0
0
0
1
0
0
0

• qi = {
• Receiver can easily learn si given a-priori knowledge of xi,0

– Recover mask H(i,qi) = yi,0 ⊕xi,0

– Find si by querying H

ei, si=1
0 , si=0

Handling Malicious Receivers

• Call Receiver well-behaved if each pair of rows are
either identical or complementary.

• Security proof goes through as long as Receiver is
well-behaved.

• Good behavior can be easily enforced via a cut-and-
choose technique:
– Run σ copies of the protocol using random inputs

– Sender challenges Receiver to reveal the pairs it used in
σ/2 of the executions. Aborts if inconsistency is found.

– Remaining executions are combined.

Efficiency

• Basic protocol is extremely efficient
– Seed of k OT’ s

– Very few invocations of H per OT.

• Cut-and-choose procedure multiplies costs by ≈ σ
– Receiver gets away with cheating w/prob ≈ 2-σ/2

– very small σ suffices if some penalty is associated with cheating

• Optimizations
– Different cut-and-choose approach eliminates factor σ overhead to

seed.

– “ Online” version, where the number n of OT’ s is not known in
advance.

Eliminating the Random Oracle

• h:{0,1}k→{0,1}l is correlation robust if
fs(t) := h(s ⊕ t) is a weak PRF.

– (t1, … ,tn, h(s ⊕ t1), … , h(s ⊕ tn)) is pseudorandom.

• Correlation robust h can be used to instantiate H.

• Is this a reasonable primitive?
– simple definition
– satisfied by a random function
– many efficient candidates (SHA1, MD5, AES, …)

s
s

s

s

s
s

s s

s
s

h

h

h

h

h

h

h h

h

h

Conclusions

• OT’ s can be efficiently extended by making an efficient
black-box use of a “ symmetric” primitive.
– Theoretical significance

• Advances our understanding of relations between primitives

– Practical significance
• Amortized cost of OT can be made much lower than previously

thought.

• Significant even if OT did not exist: Initial seed of OT’ s can be
implemented by physical means, or using multi-party computation.

• Big potential impact on efficiency of secure computations

Further Research

• Assumptions
– Can OT be extended using OWF as a black-box?
– Study correlation robustness

• Efficiency
– Improve efficiency in malicious case

• Scope
– Obtain similar results for primitives which do not efficiently

reduce to OT

• Practical implications
– Has generic secure computation come to term?

