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Efficiency of Secure Computation

• Sometimes can use special structure of given functionality.
• Otherwise need to resort to generic techniques.
• How (in)efficient is generic secure computation?
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A Taxonomy of Primitives

Symmetric encryption

Commitment

PRG

Collision resistant 
hashing

Public-key encryption

Key agreement

Oblivious transfer

Secure function evaluation
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Symmetric encryption

Commitment

PRG

Collision resistant 
hashing

Public-key encryption

Key agreement

Oblivious transfer

Secure function evaluation

easy to implement heuristically 
(numerous candidates, may rely
on “ structureless”  functions) 

very cheap in practice

hard to implement 
heuristically

(few candidates, rely on 
specific algebraic structures) 

more expensive 
by orders of magnitude

Major challenge: bridge efficiency gap



 Reductions in Cryptography

• Motivated by
– minimizing assumptions 
– gaining efficiency 

• Reduction from Y to X: a mapping  f such that if A 
implements X then f(A) implements Y.
– Cannot be ruled out when Y is believed to exist.

• Black-box reduction:
– f(A) makes a black-box use of A;
– Black-box proof of security: Adversary breaking f(A) can 

be used as a black box to break A.

• Almost all known reductions are black-box.
– Non-black-box reductions are inefficient in practice.



 Can       be reduced to     ?

• Impagliazzo-Rudich [IR89]: 
No black-box reduction exists.
– In fact, even a random oracle unlikely to yield



Extending Primitives

≤
 [IR]

≤ +
?

Extending Y using X: 
Realizing n instances of Y by making
•  k (black-box) calls to Y, k<n
•  arbitrary use of X

Want:

•  k << n  
•  black-box use of X.



The Case of Encryption
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• Extending PKE is easy…

• Huge impact on our everyday use of encryption.

This work: Establish a similar result for remaining tasks.

Public-key encryption

Key agreement

Symmetric encryption

Commitment

PRG

Collision resistant hashing

Oblivious transfer

Secure function evaluation

Oblivious transfer

Secure function evaluation

efficient,
black-box



Oblivious Transfer (OT) 

• Several equivalent flavors [Rab81,EGL86,BCR87]

•     -OT:

• Formally defined as an instance of secure 2-party 
computation:
– OT(r, <x0,x1>) = (xr , ⊥)

• Extensively used in 
– general secure computation protocols [Yao86,GV87,Kil88,GMW88] 

• Yao’ s protocol:  # of OT’ s = # of input bits  

– special-purpose protocols

• Auctions [NPS99], shared RSA [BF97,Gil99], information retrieval 
[NP99], data mining [LP00,CIKRRW01],…
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Receiver

r ∈ {0,1}

Sender

x0,x1 ∈ {0,1}l

xr ???



Cost of OT 

• OT is at least as expensive as key-agreement.
– OT’ s form the efficiency bottleneck in many protocols.

– “ OT count”  has become a common efficiency measure.

– Some amortization was obtained in [NP01].

• Cost of OT is pretty much insensitive to l
– Most direct OT implementations give l = security parameter  “ for free”

– Handle larger l via use of a PRG

r ≤ +x0

x1

s0

s1

G(s0)⊕ x0

G(s1)⊕ x1

r

efficient,
black-box



Extending Oblivious Transfers

• Beaver ‘ 96: OT can be extended using a PRG!!
– Thm. If PRG exists, then k OT’ s can be extended to n=kc  OT’ s.

• However:
– Extension makes a non-black-box use of underlying PRG.
– Numerous PRG invocations 
– Huge communication complexity
– Unlikely to be better than direct OT implementations

• Can OT be extended via a black-box reduction?
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Our Result

efficient,
black-box

=  random oracle

=  new type of hash
    function

or
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Strategy
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Notation
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yi,0 = xi,0 ⊕    qi 
yi,1 = xi,1 ⊕    qi⊕ s

izi= yi,r ⊕   ti i

The Basic Protocol

t1

t1

⊕

r
...

s1 s2 sk

t2

t2

⊕

r
tk

tk

⊕

r

Receiver picks T ∈R {0,1}n×k

Sender picks s ∈R {0,1}k

t1

⊕

r
t2 ...

tk

⊕

r

Sender obtains Q ∈ {0,1}n×k

    qi= ti
1 1 0 0ri=0 1 1

 qi= ti⊕ s1 0 0 1ri=1 1 0

•  For 1≤ i ≤n,  Sender sends yi,0 = xi,0 ⊕ H(i, qi)
yi,1 = xi,1 ⊕ H(i, qi⊕ s)

•  For 1≤ i ≤n,  Receiver outputs izi= yi,r ⊕ H(i, ti)i



yi,0 = xi,0 ⊕ H(i, qi)
yi,1 = xi,1 ⊕ H(i, qi⊕ s)

izi= yi,r ⊕ H(i, ti)i

Security

Receiver picks T ∈R {0,1}n×k

Sender picks s ∈R {0,1}k

    qi= ti
ri=0

 qi= ti⊕ sri=1

•  For 1≤ i ≤n,  Sender sends

•  For 1≤ i ≤n,  Receiver outputs

Sender obtains Q ∈ {0,1}n×k

Sender learns nothing
•  Q is uniformly 
random

Receiver learns no 
additional info except w/neg 
prob.
•  Must query H on (i, ti ⊕ s) 



Attack by a Malicious Receiver
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• qi = {
• Receiver can easily learn si given a-priori knowledge of xi,0

– Recover mask H(i,qi) = yi,0 ⊕xi,0

– Find si by querying H

ei,   si=1  
0 ,   si=0  



Handling Malicious Receivers

• Call Receiver well-behaved if each pair of rows are 
either identical or complementary.

• Security proof goes through as long as Receiver is 
well-behaved.

• Good behavior can be easily enforced via a cut-and-
choose technique:
– Run σ copies of the protocol using random inputs

– Sender challenges Receiver to reveal the pairs it used in 
σ/2 of the executions. Aborts if inconsistency is found.

– Remaining executions are combined.



Efficiency

• Basic protocol is extremely efficient
– Seed of k OT’ s

– Very few invocations of H per OT.

• Cut-and-choose procedure multiplies costs by ≈ σ
– Receiver gets away with cheating w/prob ≈ 2-σ/2

– very small σ suffices if some penalty is associated with cheating

• Optimizations
– Different cut-and-choose approach eliminates factor σ overhead to 

seed.

– “ Online”  version, where the number n of OT’ s is not known in 
advance.



Eliminating the Random Oracle

• h:{0,1}k→{0,1}l  is correlation robust if 
fs(t) := h(s ⊕ t) is a weak PRF.

– (t1, … ,tn, h(s ⊕ t1), … , h(s ⊕ tn)) is pseudorandom.

• Correlation robust h can be used to instantiate H.

• Is this a reasonable primitive?
– simple definition
– satisfied by a random function
– many efficient candidates (SHA1, MD5, AES, …)
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Conclusions

• OT’ s can be efficiently extended by making an efficient 
black-box use of a “ symmetric”  primitive.
– Theoretical significance

• Advances our understanding of relations between primitives

– Practical significance
• Amortized cost of OT can be made much lower than previously 

thought.

• Significant even if OT did not exist: Initial seed of OT’ s can be 
implemented by physical means, or using multi-party computation.

• Big potential impact on efficiency of secure computations



Further Research

• Assumptions
– Can OT be extended using OWF as a black-box?
– Study correlation robustness

• Efficiency
– Improve efficiency in malicious case

• Scope
– Obtain similar results for primitives which do not efficiently 

reduce to OT

• Practical implications
– Has generic secure computation come to term?


