
Efficient Private Matching
and Set Intersection

Mike Freedman, NYU
Kobbi Nissim, MSR

Benny Pinkas, HP Labs

(To appear in EUROCRYPT 2004)

We think patients are misusing
prescriptions to obtain drugs…

Here too..

We could share our lists
of patients?

But, what about HIPAA?
And we’re competitors!

Have you heard of “secure
function evaluation” ?

This is all “theory”.
It can’t be efficient.

A Story…

We could share our lists
of patients?

Have you heard of “secure
function evaluation” ?

This is all “theory”.
It can’t be efficient.

A Story…

1.Improvements to generic primitives (SFE, OT)

2.Improvements in specific protocol examples

Client Server

Input: X = x1 … xk Y = y1 … yk

Output: X ∩ Y only nothing

The Scenario

� Enterprises and government holding sensitive databases
� Peer-to-Peer networks
� Mobile wireless crowds (PDAs, cell phones)

Credit rating, CAPS II, shared interests (research, music),
genetic compatibility, etc

Crypto vs. randomization methods

����������

�	
��
��

������
���	���

������ �������
�
�������� � �

���������������
������

� �� ����

Related work

� Use a circuit for SFE [Yao,GMW,BGW]

� Use k2 private equality tests
� Single inputs x,y; return 1 iff x = y, 0 otherwise
� (O(k) computation [NP])

� Diffie-Hellman based solutions [FHH99, EGS03]
� Insecure against malicious adversaries
� Depend on a “random oracle” assumption

� Our work: O(k ln ln k) overhead.
� “Semi-honest” adversaries – no RO assumption
� “Malicious” adversaries – with RO assumption

This talk…
� Overview

� Basic protocol in semi-honest model
� Efficient Improvements

� A little on…
� Extending protocol to malicious model
� Approximation bounds
� Multi-party security
� Fuzzy matching

Basic tool: Homomorphic Encryption

� Semantically-secure public-key encryption

� Given Enc(M1), Enc(M2), can compute

� Enc(M1+M2) = Enc(M1) � Enc(M2)
� Enc(c � M1) = [Enc(M1)] c , for any constant c

without knowing decryption key

� Examples: El Gamal, Paillier, DJ

The Protocol
� Client (C) defines a polynomial of degree k

whose roots are her inputs x1,…,xk

P(y) = (x1-y)(x2-y)…(xk-y) = a0 + a1y +…+ akyk

� C sends to server (S) homomorphic
encryptions of polynomial’s coefficients

Enc(a0),…, Enc(ak)

Enc(P(y)) = Enc(a0 + a1 · y1 + … + ak · yk)

Enc(a0) · Enc (a1) y
1 · … · Enc (ak) y

k

…The Protocol
� S uses homomorphic properties to compute,

∀y, r random

Enc(r � P(y) + y)

� S sends (permuted) results back to C

Enc (y) Enc (random)

if y ∈ X ∩ Y otherwise

Variant protocols…cardinality
Enc(r � P(y) + 1)

� Computes size of intersection: # Enc (1)

Enc (1) Enc (random)

if y ∈ X ∩ Y otherwise

Enc(r � P(y) + s)

Variant protocols…others

� ∀y, compute r � P(y) + s, for s random

� Perform Yao circuit on decrypted values

r1
s2
s3
r4
r5

s1
s2
s3
s4
s5

?
=

circuit

Enc(r � P(y) + s)

Variant protocols…others

� ∀y, compute r � P(y) + s, for s random

� Perform Yao circuit on decrypted values

r1
s2
s3
r4
r5

s1
s2
s3
s4
s5

circuit

�

=
=
�

�

e.g.,
| intersection | > threshold

Security (semi-honest case)

� Client’s privacy
� S only sees semantically-secure enc’s
� Learning about C’s input = breaking enc’s

� Server’s privacy (proof via simulation)
� Client can simulate her view in the protocol, given

the output of X ∩ Y alone: she can compute the
enc’s of items in X ∩ Y and of random items.

Efficiency

� Communication is O(k)
� C sends k coefficients
� S sends k evaluations on polynomial

� Computation
� Client encrypts and decrypts k values
� Server:

� ∀y ∈ Y, computes Enc(r�P(y)+y),
using k exponentiations

� Total O(k2) exponentiations

Improving Efficiency (1)

� Inputs typically from a “small” domain of D
values. Represented by log D bits (…20)

� Use Horner’s rule

P(y)= a0 + y (a1+…y (an-1+yan) ...)

� That is, exponents are only log D bits
� Overhead of exponentiation is linear in | exponent |

� Improve by factor of | modulus | / log D
e.g., 1024 / 20 50

Improving Efficiency (2): Hashing

� C uses PRF H(·) to hash inputs to B bins

xkxk-1…x7x6x5x4x3x2x1

H(·)

B
M

� Let M bound max # of items in a bin

� Client defines B polynomials of deg M. Each poly
encodes x’s mapped to its bin

P2P1 P3 PB

…

Improving Efficiency (2): Hashing

HP2P1 P3 PB

� Client sends B polynomials and H to server.
� For every y, S computes H(y) and evaluates the

single corresponding poly of degree M

∀y, i H(y), r rand

Enc(r · Pi(y) + y)

Overhead with Hashing

� Communication: B � M

� Server: k�M short exp�s, k full exp�s

(Pi(y)) (r·Pi(y) + y)

� How to make M small as possible?

Balanced allocations [ABKU]:
� H: Choose two bins, map to the emptier bin
� B = k / ln ln k M = O (ln ln k) (M ≤ 5 [BM])

� Communication: O(k)
� Server: k ln ln k short exp, k full exp in practice

This talk…
� Overview

� Basic protocol in semi-honest model
� Efficient Improvements

� A little on…
� Extending protocol to malicious model
� Approximation bounds
� Multi-party security
� Fuzzy matching

Malicious Adversaries

� Malicious clients
� Without hashing: trivial. Parties use known a0

� With hashing
� Verify that total # of roots (in all B poly’s) is k
� Solution using cut-and-choose
� Exponentially small error probability

� Still standard model

� Malicious servers
� Privacy…easy:

S receives semantically-secure encryptions

Security against Malicious Server

� Correctness: Ensure that there is an input
of k items corresponding to S’s actions

� Problem: Server computes r�P(y) + y’

� Solution: Server uses RO to commit to
seed, then uses resulting randomness to
“prove” correctness of encryption

Is Approximation easier?
� Represent inputs sets as k-bit vectors

0 0 1 1 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1

� Approximate size of intersection (scalar product)
with sublinear overhead? And securely?

� Lower bound:
� Approximating |X ∩ Y| within 1 ± factor requires

(k) communication
� True even for randomized algorithms
� Proof: Reduction from Razborov�s lower bound for

Disjointness

� We provide secure approximation protocol

Multi-party intersection
� N parties: (N-1) clients, 1 leader

� ∀y, leader prepares (N-1) shares that XOR to y

� Each client performs intersection protocol with
leader, learns random share of y

� Clients XOR (N-1) decrypted values
Recovers y iff y ∈ |X1 ∩ X2 ∩ X3 ∩ … ∩ XN |

� Nice communication flow

Fuzzy matching

� Databases are not always accurate or full
� Errors, omissions, inconsistent spellings, etc.

� How to report a match iff entries similar?
� Match in t out of T “attributes”

� Adaption of earlier protocol, but requires
T choose t overhead

Open problems

� More computationally-efficient protocol?

� Malicious parties
� Protocol secure in standard model?
� Secure, efficient set cardinality protocol?

� Fuzzy matching
� Efficient protocol needed?
� Security in malicious model?

