Efficient Private Matching and Set Intersection

Mike Freedman, NYU
Kobbi Nissim, MSR
Benny Pinkas, HP Labs
(To appear in EUROCRYPT 2004)

A Story...

1.Improvements to generic primitives (SFE, OT)

「2.Improvements in specific protocolexamples
We could: share our lists:
of patients?
Have you heard of "secure function evaluation"?

This is all "theory". It can't be efficient.

A Story...

CVS/pharmacy'

We think patients are misusing prescriptions to obtain drugs...

We could share our lists of patients?

Have you heard of "secure function evaluation"?

RIII RIIE $A \mid D$

Here too..

But, what about HIPAA? And we're competitors!

This is all "theory". It can't be efficient.

The Scenario

Input: $\quad \mathrm{X}=\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{k}} \quad \mathrm{Y}=\mathrm{y}_{1} \ldots \mathrm{y}_{\mathrm{k}}$
Output: $\quad \mathrm{X} \cap \mathrm{Y}$ only \quad nothing
Enterprises and government holding sensitive databases

- Peer-to-Peer networks
Crebile wireless crowds (PDAs, cell phones)
genetic compatibility, etc

Crypto vs. randomization methods

This talk...

- Overview
- Basic protocol in semi-honest model
- Efficient Improvements
- A little on...
- Extending protocol to malicious model
- Approximation bounds
- Multi-party security
- Fuzzy matching

Related work

- Use a circuit for SFE [Yao,GMW,BGW]
- Use k^{2} private equality tests
- Single inputs x, y; return 1 iff $x=y, 0$ otherwise
- (O(k) computation [NP])
- Diffie-Hellman based solutions [FHH99, EGS03]
- Insecure against malicious adversaries
- Depend on a "random oracle" assumption

■ Our work: $\mathrm{O}(\mathrm{k} \ln \ln \mathrm{k})$ overhead.

- "Semi-honest" adversaries - no RO assumption
- "Malicious" adversaries - with RO assumption

Basic tool: Homomorphic Encryption

- Semantically-secure public-key encryption
- Given Enc(M1), Enc(M2), can compute
- Enc(M1+M2) $=\operatorname{Enc}(\mathrm{M} 1) \cdot \operatorname{Enc}(\mathrm{M} 2)$
- Enc(c $\cdot \mathrm{M} 1)=[\operatorname{Enc}(\mathrm{M} 1)]^{\mathrm{c}}$, for any constant C
without knowing decryption key

■ Examples: El Gamal, Paillier, DJ

The Protocol

- Client (C) defines a polynomial of degree k whose roots are her inputs x_{1}, \ldots, x_{k}
$P(y)=\left(x_{1}-y\right)\left(x_{2}-y\right) \ldots\left(x_{k}-y\right)=a_{0}+a_{1} y+\ldots+a_{k} y^{k}$
- C sends to server (S) homomorphic encryptions of polynomial's coefficients

$$
\operatorname{Enc}\left(a_{0}\right), \ldots, \operatorname{Enc}\left(a_{k}\right)
$$

$\operatorname{Enc}(P(y))=\operatorname{Enc}\left(a_{0}+a_{1} \cdot y^{1}+\ldots+a_{k} \cdot y^{k}\right)$ $\operatorname{Enc}\left(a_{0}\right) \cdot \operatorname{Enc}\left(a_{1}\right)^{y^{1}} \cdot \ldots \cdot \operatorname{Enc}\left(a_{k}\right)^{y^{k}}$

Variant protocols...cardinality

Enc (1) Enc (random)

- Computes size of intersection: \# Enc (1)

The Protocol

■ S uses homomorphic properties to compute, $\forall \mathrm{y}, \mathrm{r} \leftarrow$ random

- S sends (permuted) results back to C

Variant protocols...others

■ $\forall \mathrm{y}$, compute $\mathrm{r} \cdot \mathrm{P}(\mathrm{y})+\mathrm{s}$, for $\mathrm{s} \leftarrow$ random

- Perform Yao circuit on decrypted values

Variant protocols...others

$$
\mathrm{Enc}(r \cdot P(y)+s)
$$

■ $\forall \mathrm{y}$, compute $\mathrm{r} \cdot \mathrm{P}(\mathrm{y})+\mathrm{s}$, for $\mathrm{s} \leftarrow$ random

- Perform Yao circuit on decrypted values

Security (semi-honest case)

- Client's privacy
- S only sees semantically-secure enc's
- Learning about C's input = breaking enc's
- Server's privacy (proof via simulation)
- Client can simulate her view in the protocol, given the output of $\mathrm{X} \cap \mathrm{Y}$ alone: she can compute the enc's of items in $\mathrm{X} \cap \mathrm{Y}$ and of random items.

Efficiency

- Communication is $\mathrm{O}(\mathrm{k})$
\checkmark C sends k coefficients
$\checkmark \mathrm{S}$ sends k evaluations on polynomial
- Computation
\checkmark Client encrypts and decrypts k values
\mathbf{x} Server:
- $\forall \mathrm{y} \in \mathrm{Y}$, computes Enc(r•P(y)+y), using k exponentiations
- Total $\mathrm{O}\left(\mathrm{k}^{2}\right)$ exponentiations

Improving Efficiency (1)

- Inputs typically from a "small" domain of D values. Represented by $\log \mathrm{D}$ bits (...20)
- Use Horner's rule

$$
P(y)=a_{0}+y\left(a_{1}+\ldots y\left(a_{n-1}+y a_{n}\right) \ldots\right)
$$

- That is, exponents are only log D bits
- Overhead of exponentiation is linear in | exponent |
\rightarrow Improve by factor of | modulus | / log D e.g., $1024 / 20 \approx 50$

Improving Efficiency (2): Hashing

- C uses PRF $\mathrm{H}(\cdot)$ to hash inputs to B bins
- Let M bound max \# of items in a bin
- Client defines B polynomials of deg M. Each poly encodes x's mapped to its bin

Improving Efficiency (2): Hashing

$\forall \mathrm{y}, \mathrm{i} \leftarrow \mathrm{H}(\mathrm{y}), \mathrm{r} \leftarrow$ rand
$\operatorname{Enc}\left(r \cdot P_{i}(y)+y\right)$

- Client sends B polynomials and H to server.
- For every y, S computes $\mathrm{H}(\mathrm{y})$ and evaluates the single corresponding poly of degree M

This talk...

- Overview
- Basic protocol in semi-honest model
- Efficient Improvements
- A little on...
- Extending protocol to malicious model
- Approximation bounds
- Multi-party security
- Fuzzy matching

Malicious Adversaries

- Malicious clients
- Without hashing: trivial. Parties use known a_{0}
- With hashing
- Verify that total \# of roots (in all B poly's) is k
- Solution using cut-and-choose
- Exponentially small error probability
- Still standard model
- Malicious servers
- Privacy...easy:

S receives semantically-secure encryptions

Security against Malicious Server

- Correctness: Ensure that there is an input of k items corresponding to S's actions

■ Problem: Server computes $\mathrm{r} \cdot \mathrm{P}(\mathrm{y})+\mathrm{y}$ '

- Solution: Server uses RO to commit to seed, then uses resulting randomness to "prove" correctness of encryption

Is Approximation easier?

- Represent inputs sets as k-bit vectors

$$
0011100101010010101
$$

- Approximate size of intersection (scalar product) with sublinear overhead? And securely?
- Lower bound:
- Approximating $|\mathrm{X} \cap \mathrm{Y}|$ within $1 \pm \varepsilon$ factor requires $\Omega(\mathrm{k})$ communication
- True even for randomized algorithms
- Proof: Reduction from Razborov's lower bound for Disjointness
- We provide secure approximation protocol

Multi-party intersection

■ N parties: ($\mathrm{N}-1$) clients, 1 leader

- $\forall \mathrm{y}$, leader prepares ($\mathrm{N}-1$) shares that XOR to y
- Each client performs intersection protocol with leader, learns random share of y
- Clients XOR ($\mathrm{N}-1$) decrypted values Recovers y iff $y \in\left|X_{1} \cap X_{2} \cap X_{3} \cap \ldots \cap X_{N}\right|$

■ Nice communication flow

Fuzzy matching

- Databases are not always accurate or full
- Errors, omissions, inconsistent spellings, etc.

■ How to report a match iff entries similar?

- Match in t out of T "attributes"
- Adaption of earlier protocol, but requires

T choose t overhead

Open problems

- More computationally-efficient protocol?
- Malicious parties
- Protocol secure in standard model?
- Secure, efficient set cardinality protocol?
- Fuzzy matching
- Efficient protocol needed?
- Security in malicious model?

