
Privacy-Enhanced Search

Privacy-Enhanced Searches Using
Encrypted Bloom Filters

Steven M. Bellovin Bill Cheswick
smb@research.att.com ches@lumeta.com

AT&T Labs Research Lumeta Corp.

�������
Steven M. Bellovin — March 15, 2004 1

Privacy-Enhanced Search

Document Searches

� Organizations sometimes want to search for documents owned by
another organization.

� Political or legal barriers can impede sharing (and sometimes that’s
good).

� Parties may be willing to share documents of demonstrable relevance
— but how do you find the relevant documents?

� How do you ensure that searches are authorized?

�������
Steven M. Bellovin — March 15, 2004 2

Privacy-Enhanced Search

Requirements

� Multiple queriers, multiple providers
� Querier gains no knowledge of provider’s database, except for

documents from valid queries
� Provider gains no knowledge of the queries
� Independent party can restrict queries
� No third party sees either queries or results

�������
Steven M. Bellovin — March 15, 2004 3

Privacy-Enhanced Search

General Solution

� Providers create Bloom filters using a special encryption algorithm
and their own key instead of the hash functions

� Queriers generate Bloom filter indices using their own keys
� A third party transforms the filter indices from the querier’s key to the

provider’s

�������
Steven M. Bellovin — March 15, 2004 4

Privacy-Enhanced Search

Bloom Filters

� Initialize an array of � bits to zero
� For each searchable “word” W, calculate � independent hash

functions 	�
� �
���� � of the datum, � � �
���� � � � .
� Set array bit 	
 to 1 for each 	

� To query, calculate the same hash functions; if any selected bit is 0,

the word isn’t there; if all are 1s, it’s probably there.
� If the final bit array has a 1’s density of .5, the probability of a false

positive is �����
� For document collections, create a bit array per document; to check

for membership in a collection, bitwise-OR the individual Bloom filters.

�������
Steven M. Bellovin — March 15, 2004 5

Privacy-Enhanced Search

Encrypted Bloom Filters

� Simple solution: define

�
���� � � ��� � ��!
or

�
���� � � �"� #%$&� �
� Hides queries and indices from outsiders, but requires shared keys,

which violates our requirements
� Solution: use a group cipher such that

' � ('*) (,+ - . (�/10 - . such that �2��� � � �%3 � ��� �54
(and other group properties as well, such as identities and inverses)
�������

Steven M. Bellovin — March 15, 2004 6

Privacy-Enhanced Search

Pohlig-Hellman Encryption

� Group ciphers are rare, and often undesirable — you can’t do iterated
encryption for more strength

� At least one such cipher exists: Pohlig-Hellman
� Pick a large prime 6 � �87 9 : where 7 is also prime

��� �5� � � � ; <>= 6
� Keys must be relatively prime to 6 ? : , i.e., odd and not equal to 7
� The decryption key @ � + �BA corresponding to + is chosen such that

+C@ D : ; <>= �E6 ? :*� — easily calculable using Euclid’s Algorithm
� Typical ciphertext is at least 1024 bits long; take FHG <JI�K � L -bit chunks

as hash values for Bloom filter
�������

Steven M. Bellovin — March 15, 2004 7

Privacy-Enhanced Search

Using Pohlig-Hellman Encryption for Encrypted
Bloom Filters

� Bob creates a Bloom filter for his documents using his key . M
� Alice encrypts her query using . N and sends the query to Ted
� Ted knows the ratio key O NQPRM such that

�2��� � SUT��5VWTYX[Z � ��� �5S\Z
and uses this key to transform the query from Alice’s key to Bob’s

� Ted can either query Bob’s filters himself, or send the transformed
query back to Alice for forwarding to Bob.

� Note: the ratio key is calculable as . �BAN] . M ; <>= �E6 ? :^�
�������

Steven M. Bellovin — March 15, 2004 8

Privacy-Enhanced Search

Problems with the Basic Scheme

� Obvious problem: Bob knows . M and hence knows . �BAM , and can
thus decrypt the query

� Solution: instead of using � for calculating filter indices, use _ ��� � ,
where _ is a cryptographic hash function — such functions are not
invertible

� But Bob can still do a dictionary attack, guessing at likely query words
and calculating their hashes

� Solution: “salt” the query with dummies

�������
Steven M. Bellovin — March 15, 2004 9

Privacy-Enhanced Search

Another Way to Hide Queries

� Bob sends his Bloom filters to an index server; each filter is tagged
with an encrypted version of the corresponding document name.

� Ted transforms Alice’s queries to the index server’s key, and sends
them to the index server

� The index server returns the encrypted document names for each
successful query; Alice forwards those to Bob

� Some dummy terms may still be necessary to disguise the query
topic from Bob

�������
Steven M. Bellovin — March 15, 2004 10

Privacy-Enhanced Search

Warrant Servers and Censorship Sets

� A warrant server enforces certain restrictions on query terms.
� Instead of transforming queries to Bob’s key, Ted transforms them to

the warrant server’s key. The warrant server deletes from the query
set any unauthorized terms, and sends the result back to Ted

� The warrant server operates on the encrypted queries only, and does
not possess a plaintext version of the legal word list. That list is
constructed and encrypted offline.

� Similarly, Ted can enforce a per-querier censorship list supplied by
Bob.

�������
Steven M. Bellovin — March 15, 2004 11

Privacy-Enhanced Search

Provisioning Ted with the Ratio Keys

� How does Ted get the ratio keys without seeing encryption or
decryption keys?

� Roughly speaking, Alice, Bob, and Ted have a three-way conversation
in which ` and a transmit blinded versions of their keys to Ted

� Ted sends Alice and Bob some random numbers; they exchange
values based on these numbers and their blinding factors

� Ted can do some arithmetic to learn only the ratio
� Note: provisioning process is O(b

K
) in the number of parties.

Sometimes possible to use networks of third parties.

�������
Steven M. Bellovin — March 15, 2004 12

Privacy-Enhanced Search

For Further Information

http:

//www.research.att.com/˜smb/papers/bloom-encrypt.ps

or

http:

//www.research.att.com/˜smb/papers/bloom-encrypt.pdf

�������
Steven M. Bellovin — March 15, 2004 13

