
What’s the worst that could happen?

Eric Rescorla
RTFM, Inc.
DIMACS Workshop on Cryptography: Theory Meets Practice

10/18/04 2

Overview

Cryptography alone doesn’t do much
 Real systems combine primitives into protocols

Protocols treat primitives as black boxes
 With certain idealized properties

 Indistinguishability, collision-freeness, preimage resistance...
 The primitives only approximate those properties

 Sometimes more than others...

What happens when the primitives fail?
 Let’s look at some plausible scenarios

10/18/04 3

Major cryptographic algorithms

Key establishment
 RSA, DH

Signature
 RSA, DSS

Encryption
 DES, 3DES, AES, RC4, Blowfish

Message digests
 MD5, SHA-1, MD2

10/18/04 4

Current status of key est. algorithms

RSA
 Basically sound but some active attacks

 Million message attack
 Timing analysis

 There are crypto countermeasures
 OAEP, KEM, etc.

 In reality Countermeasures are implementation only
 Both these attacks caused SSL implementation upgrades

DH
 Basically sound but some active attacks

 Small subgroup
 Timing analysis

 Again, implementation countermeasures
 Most implementations use a fresh key for each transaction

10/18/04 5

Current status of signature algorithms

RSA
 Basically sound
 Provable variants exist but aren’t used

DSS
 Believed to be basically sound
 Limited by key length but NSA is extending

10/18/04 6

Current status of encryption algorithms (I)

DES
 Best analytic attacks require 243 known plaintexts

 In practice this has had no effect
 56-bit key is known to be too weak

 DES keys can be cracked in < 1 day for order $100k fixed
cost

3DES
 No good analytic attacks
 Effective key strength ~112 bits

 (3-key version)

10/18/04 7

Current status of encryption algorithms (II)

AES
 So far basically sound

RC4
 Some serious flaws

 First 256-768 or so bytes are somewhat predictable [Mironov
02]

 Related key vulnerabilities [Fluhrer and Shamir 01]
 Structured keys are a real problem

 Still widely used

10/18/04 8

Current status of digest algorithms

MD5
 Collisions are easy to find [Wang et al. 04]

 … however, they don’t appear to be controllable
 Relationship between M and M’ is fixed

 Preimages are still difficult
 Still believed safe in HMAC

SHA-1
 So far appears sound
 Some disturbing results [Biham 04]

 But only real progress is on reduced round versions
SHA-XXX
 Unknown, but some scary results [Hawkes et al. 04]

10/18/04 9

Attack 1: Controllable MD5 collisions

Current MD5 collisions are tightly constrained
 Only positions 4,11,41 are not fixed

 And it’s not clear they can be set to chosen values
 But it seems reasonable to believe this attack can be

extended
Attack description:
 Given any prefix P and desired values V and V’
 Create two suffixes S and S’ where

 H(P||V||S) = H(P||V’||S’)
For example
 S||V = “Pay $10 <plus garbage>”
 S’||V’ = “Pay $50 <plus other garbage>”

10/18/04 10

Practical implications of MD5 collisions

No real effect on most protocols
 SSL, IPsec, SSH, etc. use MD5 in three ways

 Key expansion
 MACs
 Signatures

 Not affected by collisions
Two important cases
 Signed S/MIME messages
 Certificates

10/18/04 11

MD5 Collisions and S/MIME messages

Classic collision attack
 Attacker generates two variants

 M1 = “I will pay Eric $1.00/hr” (a bargain)
 M2 = “I will pay Eric $1000/hr” (a rip-off)

 Attacker gets victim to sign M1
 Then claims victim signed M2

 And he has evidence to prove it
 This makes the most sense with contracts

Small problems
 Remember that random garbage?

 Real contracts don’t have that
 Victim has both variants

Big problem
 This isn’t how contracts actually work

10/18/04 12

Victim has both variants

Victim originally had “good” variant
The attacker wants to enforce “bad” variant
Question
 Which one generated the good/bad pair?
 Each party points the finger

But in a lot of situations it’s obvious
 “Unsolicited” messages must have been generated by sender

 Because finding pre-images is still hard
 Otherwise, sender must claim that receiver sent him a message

he signed verbatim
Why were you using MD5 anyway?

10/18/04 13

Contracts in the real world

You and I negotiate a contract
 Your lawyer sends me the final copy
 I sign the last page
 I fax it over to you
 You fax it back

No attempt is made to bind contents to signature
 At most, I might initial each page
 But sometimes, just last page is exchanged!

Signature is unverified
 How does relying party know, anyway?
 An “X” can be binding!

It’s the intention that counts

10/18/04 14

Collisions and certificates

Attacker generates two names
 Good: www.attacker.com
 Bad: www.a-victim.com

Sends a CSR with good name to CA
 CA signs cert
 Attacker now has cert with victim’s name

Two problems
 Can you predict the prefix?
 What about the random padding?

10/18/04 15

The structure of certificates

The signature is over H(TBSCertificate)

TBSCertificate ::= SEQUENCE {
version Integer value=2
serialNumber Integer (chosen by CA)
signature algorithm identifier
issuer CA’s name
validity date range
subject subject’s name
subjectPublicKeyInfo public key
extensions arbitrary stuff

}

10/18/04 16

Prefix prediction

Knowing which values to use depends on the prefix
 But the prefix isn’t totally fixed
 This is a total design accident!

All but serial number and validity are fixed
 Sequential serial numbers are easy to predict

 At least to within a few
 Verisign uses H(time_us) which is hard to predict

 How quantum is the validity?
 Verisign seems to use a fixed “not before” but a “not after” based

on the current time
 So predictable to within a few hundred seconds?

Attacker is likely to need to try the attack a number of
times
Randomizing serial number is a simple countermeasure

10/18/04 17

A vulnerable certificate structure

TBSCertificate ::= SEQUENCE {
version Integer value=3
signature algorithm identifier
issuer CA’s name
subject subject’s name
subjectPublicKeyInfo public key
serialNumber Integer (chosen by CA)
validity date range
extensions arbitrary stuff

}

10/18/04 18

Dealing with the random pads

Remember, we want a specific target name
 E.g. www.amazon.com
 Though we have flexibility in the name we send the

CA
Random padding can be concealed in pubkey
 Remember, modulus doesn’t have to be p*q

 As long as we can factor it
 ... which is likely for a random modulus [Back 04]

10/18/04 19

Attack 2: 1st preimages

Preimages hard to find for “standard” hashes
Attack description:
 Given some hash value X
 Find a message M st H(M) = X
 Assumption:

 M is effectively random
 … not controllable by attacker

For example
 S/Key responses are iterated hashes H(H(H(H(H(seed)))))

 Used in reverse order
 If I see one response I can predict the next one

Most scenarios involve 2nd preimages

10/18/04 20

Attack 2 variant: partial 1st preimage

Attacker sees:
 Digest value
 Some of digest inputs
 Common situations

 Challenge/response
 MACs for protocol data

Attacker wants to forge future values
 Using secret data

10/18/04 21

Trivial challenge/response protocol

Attacker wants to find Key
 Can use it to forge future responses
 If Key and Challenge are in same block, then chances

that preimage will be useful are small
 Assume Key is padded to a block multiple

 As in HMAC

Client Server
Challenge

H(Key || Challenge)

10/18/04 22

Attacking partial 1st preimages

Problem definition:
 Given M and hash compression function
 Find state st Compress(State,M) = X

 For all future values of M,X

Not the same as a preimage
 Since we need a specific state
 … in order to forge future messages
 This isn’t possible in general

 Is it possible for ordinary hashes?

10/18/04 23

Preimage != State

Contrived hash function
 CBC-MAC variant with a fixed key
 Zero about half the CBC residue bits

 H0 = 0
 Hn+1 = E((Hn & MD5(Mn+1)) ^ Mn+1)

Preimages are found by decrypting
Consider the two block case
 Decrypting H2 gives (H1 & MD5(M2)) ^ M2
 Attacker can recover H1 & MD5(M2)
 But any other challenge (M2) will zero different bits

 So can’t forge new responses
 Though each response leaks different bits...

10/18/04 24

What if you could forge MACs?

Does this break protocols?
 It depends...

Authenticate then encrypt (SSL/TLS)
 Block ciphers

 Can’t re-insert the MAC
 And wouldn’t match the data in any case

 Stream ciphers
 Can reinsert MAC
 ... but only if you know the plaintext

Encrypt than authenticate (IPsec)
 Easy to do an existential forgery
 Hard to do a controlled one unless plaintext is known

SSH is weird
 Authenticate then encrypt (but not the MAC)
 Can reinsert MAC

 But it doesn’t match the data

10/18/04 25

Attack 3: 2nd preimages

Attack description:
 Given some message M
 Find some message M’ st H(M) = H(M’)

Classic example: message forgery
 Start with signed “Good” message
 Transform it into signed “Bad” message

10/18/04 26

2nd preimages and certificates

This is really serious
 Attacker should be able to forge a cert of his choice
 Validity of all certs with this digest is now

questionable
 No useful countermeasures

How likely do we think this is with MD5?
 If so, really bad
 Lots of valid certificates use MD5!

SHA-1 comfort level is higher

10/18/04 27

2nd preimages and other protocols

Three major uses of hashes
 MACs
 Key expansion
 Signatures

Only signatures are threatened
But they’re commonly used
 SSH, SSL, IPsec key agreement

 Signatures are over nonces
 Only works if very fast

 Need to beat timeouts

 S/MIME authentication
So, this is bad…

10/18/04 28

Attack 4: Weakness in initial RC4 bytes

RC4 initial bytes known to be imperfect
 Recommendation: discard first 256 bytes
 But most protocols don’t do this

 SSL/TLS in particular

Attack description:
 Extension of Mironov and Fluhrer/Shamir work
 Recover key information from initial keystream
 Don’t need to recover key

 Just predict other initial bytes…

10/18/04 29

Consequences of Attack 4

Attacker can recover connection plaintext
Credit cards over HTTPS are particularly weak
 First 4 plaintext bytes known
 Next 28-32 (TLS) or 52-56 (SSLv3) plaintext bytes are

random
 Next plaintext bytes are HTTP fetch and header

 100-500 bytes
 Very predictable

 Followed by a credit card #
 Predictable structure helps here

10/18/04 30

Countermeasures for Attack 4

In principle easy
 At least for SSL

 802.11 already moving to AES
 Almost all clients and servers support DES, 3DES, etc.

 It’s a negotiable item
 Server admin can just turn off RC4

In practice not so easy
 Admins are concerned about performance
 Uptake of fixes is very slow [Rescorla 03]

May not be the easiest attack
 You only recover 1 credit card number
 Poorly maintained servers may have other flaws

10/18/04 31

Attack 5: DES-quality attacks on AES/3DES

Current AES/3DES attacks are nearly useless
 What if we had attacks on AES as good as those on

DES?
Attack description:
 Recover key with 243 known plaintexts and 243 ops
 This would be a major success

 269 improvement for 3DES
 285 improvement for AES

But what does it mean for a real system?

10/18/04 32

Implications for common protocols

SSL
 Each connection uses a separate key
 Most connections are short (HTTP)

 5 minutes is considered long
SSH
 Longer but not a lot of data is moved

S/MIME
 Each message uses a separate key
 When would you have part of a message in the clear?
 243 blocks = 1014 bytes

 This is longer than any commercial disk
 So not realistic as a message

IPsec
 243 blocks is 10 days of full-speed 1Gig traffic

 Not a common situation
 This attack doesn’t apply to 3DES

 3DES uses CBC mode
 You need to change keys every 232 blocks anyway

10/18/04 33

Attack 5 Variant: Total cipher break

Complete key recovery
 Using a few known plaintexts
 And relatively fast

Compromises confidentiality
No effect on authentication
 Encryption keys decoupled from MAC keys

 At least in well designed protocols
 Often encryption keys too short to recover master

secret
 Even if PRFs were broken

10/18/04 34

Attack 6: Remote key recovery

E.g.,timing attacks [Kocher], [Boneh and
Brumley 03]
 Not known if can be executed over Internet
 Easily fixed (blinding)

Attack description:
 Repeated remote probes allow recovery of private key

10/18/04 35

Implications of Attack 6

SSH, IPsec typically use DH
 With a fresh key for each exchange
 Attacks on signature?

 No control of plaintext
 Can’t attack connection A from connection B
 ... SSHv1 was weaker...

SSL/TLS
 Generally uses static RSA

 Though DH variants exist
 These attacks work well here

S/MIME
 What about automated mail responders?

 Timing?
 Faults?

10/18/04 36

Attack 7: RSA signature malleability

Signature forgery is obviously a disaster
 What about something weaker?

Attack description:
 Given a signature over message M

 actually hash value M
 modify the last few bits

Not very plausible with RSA
 PKCS-1 padding
 What about DSA?

But not message integrity
 Can’t go from encryption keys to MAC keys

 Both are generated from a master key
 Even broken hashes don’t help

 Master keys are too long

10/18/04 37

Implications of signature malleability

Remember: all signatures are over hashes
 Forged signature is over a random value

 Effectively an existential forgery
 Note: many algorithms already have this property

 Need to find usable preimage
Use a meet-in-the-middle attack
 2n/2 operations
 2n/2 storage
 Can’t be done in real time….

Only practical for very high value transactions
 Unless of course the hash was also broken

10/18/04 38

Take home points

Protocols are surprisingly resistant failure to primitive
Randomness really helps
Timing counts
Hash early, hash often
Sometimes it’s better to be lucky than good

10/18/04 39

Major comsec protocols

SSL/TLS: Application layer generic channel security
 Web traffic
 E-mail (SMTP/TLS)
 SSL VPNs...
 Mostly short-lived connections between client and server

SSH: Application layer channel security
 Remote login

IPsec: Network-level channel security
 VPNs
 Long-term associations between networks

S/MIME, PGP: Application layer message security
 E-mail

