Attacking binary elliptic curves on a quantum computer

On quantum arithmetic and space-time trade-offs

Martin Roetteler Microsoft Research

Based on joint work with Brittanney Amento and Rainer Steinwandt [arXiv.org: 1209.5491, 1209.6348, 1306.1161]

> DIMACS Workshop on the Mathematics of Post-Quantum Cryptography January 15, 2015

Motivation

• Analyze resources needed to implement Shor

• Focus: Computing dlogs over abelian groups

• Possible circuit optimizations

• Scaling of space (=#qubits) and time (=depth)?

Please ask questions during talk!

Background: Quantum resources

Quantum bits and registers

Quantum register of n qubits

(.....) can hold any coherent superposition $|\Psi\rangle = \sum_{\underline{\epsilon} \in \{0,1\}^n} \alpha_{\epsilon_1 \cdots \epsilon_n} |\epsilon_1\rangle \otimes |\epsilon_2\rangle \otimes \cdots \otimes |\epsilon_n\rangle$ in the 2ⁿ dimensional space $\mathcal{H}_{2^n} = \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2 = \mathbb{C}^{2^n}$.

\neq

Product states of *n* qubits $(\cdot) (\cdot) (\cdot) - (\cdot)$ can only hold a product state $|\Psi_1\rangle \otimes |\Psi_2\rangle \otimes \cdots \otimes |\Psi_n\rangle = (\alpha_1 |\uparrow\rangle + \beta_1 |\downarrow\rangle) \otimes \cdots \otimes (\alpha_n |\uparrow\rangle + \beta_n |\downarrow\rangle)$ (thus, only linear scaling of system and dimension)

Measurements

von Neumann measurements of one qubit

First, specify a basis *B* for \mathbb{C}^2 , e. g. $\{|0\rangle, |1\rangle\}$. The outcome of measuring the state $\alpha |0\rangle + \beta |1\rangle$ is described by a random variable *X*. The probabilities to observe "0" or "1" are given by

$$Pr(X = 0) = |\alpha|^2$$
, $Pr(X = 1) = |\beta|^2$.

Measuring a state in \mathbb{C}^n in an orthonormal basis *B*

$$B = \{ |\psi_i\rangle : i = 1, \dots, N \}, \text{ where } \langle \psi_i | \psi_j \rangle = \delta_{i,j}$$

• Let $|\varphi\rangle = \sum_{i=1}^{N} \alpha_i |i\rangle$, where $\sum_{i=1}^{N} |\alpha_i|^2 = 1$. Then measuring $|\varphi\rangle$ in the basis *B* gives random variable X_B taking values $1, \ldots, N$:

 $\Pr(X_B = 1) = |\langle \psi_1 | \varphi \rangle|^2, \ldots, \ \Pr(X_B = N) = |\langle \psi_N | \varphi \rangle|^2.$

Examples: local operations and CNOT

Notation for unitary matrices

Universality theorem

Universal set of gates

Theorem (Barenco et al., 1995):

$$\mathcal{U}(2^n) = \langle U^{(i)}, \text{CNOT}^{(i,j)} : i, j = 1, \dots, n, i \neq j$$

Quantum gates: main problem

Find efficient factorizations for given $U \in \mathcal{U}(2^n)$!

Levels of abstraction

Unitary matrix

Factorized unitary matrix

$$U = (I \otimes H_2) \quad (I \oplus \sigma_X) \quad (H_2 \otimes I)$$
$$= \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \\ & 1 & -1 \end{pmatrix} \begin{pmatrix} I & I \\ \hline & I & \sigma_X \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & -1 \\ & 1 & -1 \end{pmatrix}$$

Quantum circuit $\frac{H_2}{H_2} + H_2$

Operations on subspaces

Theorem

Every $U \in \mathcal{U}(2^n)$ can be written in the form

$$U = \prod_{s_1, s_2 \in \{0,1\}^n} T(s_1, s_2).$$

Controlled rotations

Conditional gates with multiple controls

Let $U \in \mathcal{U}(2)$. Then $\Lambda_k(U) \in \mathcal{U}(2^{k+1})$ is defined by

$$\Lambda_k := \begin{pmatrix} 1 & & \\ & \ddots & \\ & & \\ & & U \end{pmatrix} = \mathbf{1}_{2^{k+1}-2} \oplus U.$$

Alternative description of $\Lambda_k(U)$

$$\Lambda_k(U) |x_1, \dots, x_n\rangle |y\rangle = \begin{cases} |x_1, \dots, x_n\rangle |y\rangle & \text{if } \exists i : x_i \neq 1 \\ |x_1, \dots, x_n\rangle |U|y\rangle & \text{if } \forall i : x_i = 1 \end{cases}$$

Remark: For U = NOT, the gate $\Lambda_1(NOT)$ is the CNOT gate. The gate $\Lambda_2(NOT)$ is called the Toffoli gate.

Discrete universal gate sets

Important universal gate set "Clifford + T" (for logical operations):

- Consists of all Clifford operations (i.e., the group generated by H_2 , CNOTand diag(1, i)) and the "T gate" (T = $diag(1, \omega_8)$). Can be shown to be universal, i.e., for any unitary U and any given $\epsilon > 0$, there exists an element A in the Clifford+T group such that $|| U - A || \le \epsilon$.
- This gate set arises naturally in the context of fault-tolerant quantum computing for several quantum codes, e.g., Steane code, surface code.
- T gate usually implemented via a process called "magic state distillation" which is very expensive. Much more expensive than Clifford gates.
- Common metrics used to measure resources:
 - •T-count = total number of T gates used in a circuit
 - •T-depth = number of T-layers when a circuit is written as C T C ... T C
 - #qubits = total number of qubits used, including "ancillas" (=scratch space)

Typically, single-qubit rotations account for most of the cost!

Bounding resources: T gates

A useful factorization:

Lemma: If a unitary U can be implemented exactly over Clifford+T, then also $\Lambda(U)$ can be implemented exactly. [arxiv.org:1206.0758]

This Lemma be used in some situations to avoid all errors due to single qubit approximations. $\begin{bmatrix} 0 & 0 & 2 & 0 \end{bmatrix}$

Cost of controlled unitaries:

- Tracking v=[#loc, #CNOT,#H, #P, #T]
- From U to $\Lambda(U)$: matrix vector multiplication Mv.

$$M = \begin{bmatrix} 0 & 0 & 2 & 0 & 0 \\ 1 & 6 & 3 & 16 & 16 \\ 0 & 2 & 2 & 4 & 4 \\ 0 & 1 & 2 & 3 & 2 \\ 0 & 7 & 2 & 14 & 15 \end{bmatrix}$$

Solovay-Kitaev algorithm

Goal: Approximate unitaries by elements of dense subgroup $G \le U(N)$ **Basic idea:** Successive refining of a "net" using commutators

Implementations:

- [Kitaev, Shen, Vyialyi, AMS 2002]: $\log^{3+\delta}(1/\epsilon)$ time, $\log^{3+\delta}(1/\epsilon)$ length
- [Dawson, Nielsen, quant-ph/0505030]: log^{2.71} (1/ε) time, log^{3.97} (1/ε) length
- [Harrow, Recht, Chuang, quant-ph/0111031]: non-constructive, log (1/ε) length 1/15/2015 M. Roetteler -- QuArC Group @ MSR 14

Single qubit gates: synthesis methods

Basic idea: [Kliuchnikov/Maslov/Mosca 2012], [Selinger 2012]

Number of T gates required is $O\left(\log\left(1/\varepsilon\right)\right) \text{ vs } O\left(\log^{3+\delta}\left(1/\varepsilon\right)\right)$ (for the Solovay-Kitaev algorithm)

Shown are all unitaries in $\langle H, T \rangle$ that are obtainable from a simple round-off procedure and have T-count ≤ 12 .

M. Roetteler -- QuArC Group @ MSR

[Slide concept by V. Kliuchnikov]

Tools from the theory of reversible computing

Classical circuits

- Consider functions from n≥1 bits to m≥1 bits. We are interested in implementing functions by combinational circuits, i.e., circuits that do not make use of memory elements or feedback.
- Universal families of gates exist, i.e., sets of elementary gates from which any circuit can be built.

$$a - a \wedge b = a - \overline{a}$$

• We can compose gates together to make larger circuits.

• Problem for quantum computing: many gates are not reversible!

[Slide concept by M. Mosca, Waterloo]

How to invert an irreversible operation?

Reversible computation

Basic issue of reversible computing

Suppose, we want to compute a function $f : \{0, 1\}^n \rightarrow \{0, 1\}^m$ that is not reversible. How can we do this?

One possible solution

Define a new Boolean function which takes n + m inputs and n + m outputs as follows:

$$F(x,y) := (x,y \oplus f(x))$$

Properties of F(x, y)

- On the special inputs (x, 0), where x ∈ {0, 1}ⁿ we obtain that F(x, 0) = (x, f(x)). Furthermore, F is reversible.
- Theorem (Bennett): If f can be computed using K gates, then F can be computed using 2K + m gates.

How to make circuits reversible?

Example:

Replace each gate with a reversible one:

[Slide concept by M. Mosca, Waterloo]

How to avoid garbage?

- Replacing each gate with a reversible one works fine, however, it produces "garbage", i.e., help registers will be in a state different from 0 at the end.
- While this is fine for reversible computing, it is bad for quantum computing (it will prevent interference).
- There is a way out of this dilemma: the Bennett trick

Idea: compute forward, copy the result, "uncompute" the garbage by running the computation backwards.

Uncomputing the garbage

Replace each gate with a reversible one:

The pebble game

Rules of the game: [Bennett, SIAM J. Comp., 1989]

- n boxes, labeled i = 1, ..., n
- in each move, either add or remove a pebble
- a pebble can be added or removed in i=1 at any time
- a pebble can be added of removed in i>1 if and only if there is a pebble in i-1.

Example:

The pebble game

Imposing resource constraints:

- only a total of S pebbles are allowed
- corresponds to reversible algorithm with at most S ancilla qubits

Example: (n=3, S=3)

Optimal pebbling strategies

Definition: Let X be solution of pebble game. Let T(X) be # steps and Let S(X) be #pebbles. Define $F(n,S) = \min \{ T(X) : S(X) \le S \}$.

$n \setminus S$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	8	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
3	8	8		5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
4	8	8	9	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
5	8	8	\sim	11	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
6	8	∞	∞	15	13	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11
7	∞	8	∞	19	17	15	13	13	13	13	13	13	13	13	13	13	13	13	13	13
8	8	8	∞	25	21	19	17	15	15	15	15	15	15	15	15	15	15	15	15	15
9	8	8	∞	∞	25	23	21	19	17	17	17	17	17	17	17	17	17	17	17	17
10	∞	∞	∞	∞	29	27	25	23	21	19	19	19	19	19	19	19	19	19	19	19
11	8	8	8	∞	33	31	29	27	25	23	21	21	21	21	21	21	21	21	21	21
12	8	8	∞	∞	-39	35	33	31	29	27	25	23	23	23	23	23	23	23	23	23
13	8	8	∞	∞	45	39	37	35	33	31	29	27	25	25	25	25	25	25	25	25
14	8	8	∞	∞	53	43	41	39	37	35	33	31	29	27	27	27	27	27	27	27
15	8	8	∞	∞	61	47	45	43	41	39	37	35	33	31	29	29	29	29	29	29
16	8	8	8	∞	71	51	49	47	45	43	41	39	37	35	33	31	31	31	31	31
17	8	8	∞	∞	∞	57	53	51	49	47	45	43	41	39	37	35	33	33	33	33
18	8	8	∞	∞	∞	63	57	55	53	51	49	47	45	43	41	39	37	35	35	35
19	∞	∞	∞	∞	∞	69	61	59	57	55	53	51	49	47	45	43	41	39	37	37
20	8	8	8	∞	∞	77	65	63	61	59	57	55	53	51	49	47	45	43	41	39
21	∞	∞	∞	∞	∞	85	69	67	65	63	61	59	57	55	53	51	49	47	45	43
22	∞	∞	∞	∞	∞	93	73	71	69	67	65	63	61	59	57	55	53	51	49	47
23	8	8	∞	∞	∞	101	79	75	73	71	69	67	65	63	61	59	57	55	53	51
24	∞	∞	∞	∞	∞	109	85	79	77	75	73	71	69	67	65	63	61	59	57	55

Table (small values of F):

1/15/2015

M. Roetteler -- QuArC Group @ MSR[E.Knill, arxiv:math/9508218] 25

Time-space tradeoffs

Let A be an algorithm with time complexity T and space complexity S.

- Using reversible pebble game, [Bennett, SIAM J. Comp. 1989] showed that for any ε>0 there is a reversible algorithm A' with time complexity O(T^{1+ ε}) and space complexity O(S In(T)).
- Issue: one cannot simply take the limit ε→0. The space would grow in an unbounded way (as O(ε2^{1/ε} S ln(T))).
- Improved analysis [Levine, Sherman, SIAM J. Comp. 1990] showed that for any ε>0 there is a reversible algorithm A' with time complexity O(T^{1+ ε}/S^ε) and space complexity O(S (1+ln(T/S))).
- Other time/space tradeoffs: [Buhrman, Tromp, Vitányi, ICALP'01]

Research topic: develop a "compiler" that takes a classical combinational circuit as input and translates it into a reversible circuit, with respect to various resource constraints.

Reducing factoring to period finding

- Modular exponentiation: Let N be an integer and let a be in Z_N . Modular exponentiation is the map $f(x) := a^x \mod N$.
- Fact: The map f can be implemented in O(poly(log N)) ops.
- Fact: It can be shown that it can also be implemented efficiently on a quantum computer.
- More facts:
 - Recall that the order of a is defined as the smallest integer r such that a^r = 1 mod N.
 - The function f(x) := a^x mod N is periodic with period r equal to the order of a, i. e., f (x) = f (x + r) for all x.
 - The problem of factoring N can be reduced to period finding for modular exponentiation f (for random a).

Setting up a periodic state

- Observation: The function f(x) = a^x mod N is periodic and has period length r,
 i. e., f (x) = f (x + r) for all inputs x.
- **Example:** graph of the function f (x) = 2x mod 165:

M. Roetteler -- QuArC Group @ MSR

Shor's algorithm for period finding

Computing the modular exponentiation

Let $f(x) = a^x \mod N$ be modular exponentiation, let $M \gg N$, and compute:

$$\ket{0}\ket{0}\mapsto rac{1}{\sqrt{M}}\sum_{x\in Z_M}\ket{x}\ket{0} \stackrel{f}{\mapsto} rac{1}{\sqrt{M}}\sum_{x\in Z_M}\ket{x}\ket{f(x)}.$$

Collapsing this state

Now, measuring the second register will yield a random $s \in Z_N$ in the image of f. The state collapses to (suppose that r|M)

Period finding using coset states

Coset state for the cyclic group

Let
$$G = Z_M$$
, $x_0 \in G$, $H = \langle r \rangle$, where *r* is the order of *a*. Then:
 $|x_0 + H\rangle = \frac{1}{\sqrt{M/r}} \sum_{k=0}^{M/r-1} |x_0 + k \cdot r\rangle$

Coset states in the abelian case

We can compute *H* efficiently from coset states!

Discrete Fourier Transforms

Definition:

$$\mathsf{DFT}_N := \frac{1}{\sqrt{N}} \Big[\omega_N^{k \cdot \ell} \Big]_{k,\ell=0...N-1}, \quad \omega_N = e^{2\pi i/N}$$

Example:

Discrete Fourier Transform (DFT/QFT)

Definition:
$$\mathsf{DFT}_N = \frac{1}{\sqrt{N}} \left[\omega_N^{k \cdot \ell} \right]_{k,\ell=0...N-1}, \quad \omega_N = e^{2\pi i/N}$$

Cooley-Tukey FFT:

 $\mathsf{DFT}_{4} = \Pi_{rev} \cdot (\mathbf{1}_{2} \otimes \mathsf{DFT}_{2}) \cdot \operatorname{diag}(1, 1, 1, i) \cdot (\mathsf{DFT}_{2} \otimes \mathbf{1}_{2})$ $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 \\ 1 & 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 \\ 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 \\ 1 & -1 \end{bmatrix}$

Theorem: Multiplication with DFT_N can be performed classically in $O(N \log N)$ elementary operations.

We can do much better on a quantum computer!

Quantum Fast Fourier Transform

Quantum circuit for DFT_N

Cost:

Classical Computer T(N) = 2 T(N/2) + O(N) $T(N) = O(N \log N)$

Quantum Computer $T(N) = T(N/2) + O(\log N))$ $T(N) = O(\log^2 N)$

The Hidden Subgroup Problem

Definition of the problem

Given: Group *G*, set *S*, map $f : G \rightarrow S$ given as black box

Promise: There exists subgroup $H \leq G$ with

- f constant on each coset of H
- $g_1H \neq g_2H$ implies $f(g_1) \neq f(g_2)$

Problem: Find generators for *H* (input size: $\log |G|$)

Shor's algorithm for dlogs:

Step 1: Create $\sum_{k \in \{0,1\}^n} |k_1, \dots, k_n\rangle \otimes \sum_{\ell \in \{0,1\}^n} |\ell_1, \dots, \ell_n\rangle \otimes |\mathcal{O}\rangle$ by applying Hadamard gates to 2 registers of n qubits; $n = \lceil \log(ord_P) \rceil$

Step 2: For fixed generator *P* and fixed target $Q \in \langle P \rangle$ compute the transformation that maps this state to

$$\sum_{k \in \{0,1\}^n} |k\rangle \otimes \sum_{\ell \in \{0,1\}^n} |\ell\rangle \otimes |kP + \ell Q\rangle$$

Step 3: Measure the 3rd register. Obtain a result *R*. Letting $Q = \alpha P$ and $R = \beta P$, we obtain a state corresponding to a "line"

$$\sum_{\substack{k,\ell \in \{0,1\}^n: \\ k+\alpha\ell=\beta}} |k\rangle \otimes |\ell\rangle \otimes |R\rangle = \sum_{\ell \in \{0,1\}^n} |\beta - \alpha\ell\rangle \otimes |\ell\rangle$$

Step 4: Apply $QFT \otimes QFT$ and measure to sample from the line $\{(x, \alpha x), x \in \{0, ..., 2^n - 1\}$. If x is a unit, we obtain α .

1/15/2015
Visualizing Fourier duality

Abelian groups:

$$\mathsf{DFT}_A\Big(\frac{1}{\sqrt{|U|}}\sum_{\mathbf{x}\in U+c} |\mathbf{x}\rangle\!\!\!\Big) = \frac{1}{\sqrt{|U^{\perp}|}}\sum_{\mathbf{y}\in U^{\perp}} \varphi_{c,y} |\mathbf{y}\rangle$$

Circuit for Shor's dlog algorithm

Phase estimation circuit layout:

Simple circuit optimizations

Double & Add

Input: binary string
$$(x_{n-1}, x_{n-2}, \dots, x_1, x_0)$$

Output:
$$x = \sum_{i} x_i 2^i = x_0 + 2(x_1 + 2(x_2 + \dots))$$

Method 1 ("evaluate left-to-right")

```
x \leftarrow x_0
for i = 1 ... n - 1 do
x \leftarrow x + 2^i x_i
end for
return x
```

Method 2 ("evaluate right-to-left") $x \leftarrow x_{n-1}$ for $i = n - 2 \dots 1$ do $x \leftarrow 2x + x_i$ end for return x

Rewriting the ECC dlog circuit

Rewriting the ECC dlog circuit

Double & Add: Shamir's Trick

More rewriting: Shamir's trick

Semi-classical QFT

Example: ECC point addition

Consider elliptic curve in short Weierstrass form over $GF(2^m)$

$$y^2 + xy = x^3 + a_2x^2 + a_6$$

Adding 2 projective points $P_1 = (X_1, Y_1, Z_1)$ and $P_2 = (X_2, Y_2, Z_2)$ can be done with 12 $GF(2^m)$ -mults—of which 9 are generic— 7 $GF(2^m)$ -adds, and 1 squaring (madd-2008-bl):

$$\begin{array}{rclrcl} A &=& Y_1 + Z_1 \cdot y_2, & B &=& X_1 + Z_1 \cdot x_2, & AB &=& A + B, \\ C &=& B^2, & E &=& B \cdot C, & F &=& (A \cdot AB + a_2 \cdot C) \cdot Z_1 + E, \\ \hline X_3 &=& B \cdot F, \\ Y_3 &=& C \cdot (A \cdot X_1 + B \cdot Y_1) + AB \cdot F, \\ Z_3 &=& E \cdot Z_1. \end{array}$$

[Bernstein, Lange: http://www.hyperelliptic.org/EFD/]

Complete binary Edwards curves

[Bernstein, Lange, Farashahi, 2008]: For $n \ge 3$ each ordinary binary elliptic curve is birationally equivalent to a complete binary Edwards curve: $(d_1, d_2 \in GF(2^n)$ with $Tr(d_2)=1$).

$$d_1(x+y) + d_2(x^2+y^2) = xy + xy(x+y) + x^2y^2$$

Point addition / group law:

$$\begin{aligned} x_3 &= \frac{d_1(x_1+x_2) + d_2(x_1+y_1)(x_2+y_2) + (x_1+x_1^2)(x_2(y_1+y_2+1)+y_1y_2)}{d_1 + (x_1+x_1^2)(x_2+y_2)} \text{ and } \\ y_3 &= \frac{d_1(y_1+y_2) + d_2(x_1+y_1)(x_2+y_2) + (y_1+y_1^2)(y_2(x_1+x_2+1)+x_1x_2)}{d_1 + (y_1+y_1^2)(x_2+y_2)}, \end{aligned}$$

- no projective closure needed
- one formula to implement group law for all points
- identity: (0,0)

Complete binary Edwards curves

Consider complete binary Edwards curve:

$$d_1(x+y) + d_2(x^2+y^2) = xy + xy(x+y) + x^2y^2$$

- One can work projectively to avoid inversions.
- Adding projective points $P_1 = (X_1, Y_1, Z_1)$ and $P_2 = (X_2, Y_2, Z_2)$ can be done with 21 $GF(2^m)$ -mults—of which 17 are generic— 15 $GF(2^m)$ -adds, and 1 squaring:

$$\begin{array}{rclrclcrcl} W_1 &=& X_1 + Y_1, \ W_2 &=& X_2 + Y_2, & A &=& X_1 \cdot (X_1 + Z_1), & B &=& Y_1 \cdot (Y_1 + Z_1), \\ C &=& Z_1 \cdot Z_2, & D &=& W_2 \cdot Z_2, & E &=& d_1 C^2, & H &=& (d_1 Z_2 + d_2 W_2) \cdot W_1 \cdot C, \\ I &=& d_1 Z_1 \cdot C, \ U &=& E + A \cdot D, \ V &=& E + B \cdot D, & S &=& U \cdot V, \\ X_3 &=& S \cdot Y_1 + (H + X_2 \cdot (I + A \cdot (Y_2 + Z_2))) \cdot V \cdot Z_1, \\ Y_3 &=& S \cdot X_1 + (H + Y_2 \cdot (I + B \cdot (X_2 + Z_2))) \cdot U \cdot Z_1, \\ Z_3 &=& S \cdot Z_1. \end{array}$$

Example: higher genus

Algorithm 1 Projective doubling for general divisors on the Jacobian of $C: y^2 =$ $x^5 + f_3 x^3 + f_2 x^2 + f_1 + f_0.$ **Input:** $P = (U_1 : U_0 : V_1 : V_0 : Z)$ and f_2 , f_3 (curve constants) Output: [2]P $= (U_1'': U_0'': V_1'': V_0'': Z'').$ $U_0'' \leftarrow U_0 \cdot Z, \quad t_1 \leftarrow Z^2,$ $t_2 \leftarrow U_1^2$, $t_3 \leftarrow 2 \cdot t_2$, $t_4 \leftarrow 2 \cdot U_0''$, $t_5 \leftarrow t_3 + t_4$, $t_5 \leftarrow t_5 \cdot U_1, \quad t_6 \leftarrow V_1^2,$ $t_7 \leftarrow f_2 \cdot t_1$, $t_6 \leftarrow t_7 - t_6$ $t_6 \leftarrow t_6 \cdot Z, \qquad t_6 \leftarrow t_6 + t_5,$ $t_1 \leftarrow f_3 \cdot t_1, \quad t_1 \leftarrow t_1 + t_2,$ $t_4 \leftarrow t_1 - t_4, \quad t_4 \leftarrow t_4 + t_3,$ $V_0'' \leftarrow V_0 \cdot Z, \quad t_1 \leftarrow U_1 \cdot V_1,$ $t_2 \leftarrow 2 \cdot t_1, \qquad t_1 \leftarrow t_1 + V_0'',$ $t_2 \leftarrow t_2 - V_0'', \ t_3 \leftarrow t_3 + U_0'',$ $t_3 \leftarrow V_1 \cdot t_3, \quad t_5 \leftarrow t_3 \cdot t_4,$ $t_7 \leftarrow t_6 \cdot t_2$, $t_5 \leftarrow t_5 - t_7$, $t_6 \leftarrow t_6 \cdot V_1, \quad t_4 \leftarrow t_4 \cdot t_1,$ $t_4 \leftarrow t_4 - t_6, \quad t_3 \leftarrow t_3 \cdot V_1,$ $t_1 \leftarrow t_1 \cdot t_2$, $t_3 \leftarrow t_3 - t_1$, $t_1 \leftarrow t_5 \cdot t_4$, $t_2 \leftarrow t_3 \cdot t_4$, $t_4 \leftarrow t_4^2$, $t_6 \leftarrow U_0'' \cdot t_4,$ $t_7 \leftarrow t_4 \cdot Z, \qquad t_4 \leftarrow t_4 \cdot U_1,$ $t_3 \leftarrow 2 \cdot t_3$, $t_3 \leftarrow t_3^2$, $t_3 \leftarrow t_3 \cdot Z, \quad t_2 \leftarrow 2 \cdot t_2,$ $U_0'' \leftarrow t_2 \cdot Z, \quad V_1'' \leftarrow V_1 \cdot U_0'',$ $V_0'' \leftarrow V_0'' \cdot t_2, \quad t_2 \leftarrow t_1 - t_4,$ $t_5 \leftarrow t_5^2$, $t_8 \leftarrow 2 \cdot t_3,$ $t_8 \leftarrow t_8 - t_2, \quad t_8 \leftarrow t_8 - t_1,$ $t_8 \leftarrow t_8 \cdot U_1, \quad t_8 \leftarrow t_8 + t_5,$ $t_5 \leftarrow 2 \cdot V_1'', \quad t_8 \leftarrow t_8 + t_5,$ $V_1'' \leftarrow t_6 + V_1'', t_6 \leftarrow t_6 \cdot t_2,$ $U_1'' \leftarrow 2 \cdot t_2, \quad U_1'' \leftarrow U_1'' - t_3,$ $t_2 \leftarrow U_1'' - t_2, \ t_4 \leftarrow t_4 - U_1'',$ $t_4 \leftarrow t_4 \cdot t_2, \quad t_4 \leftarrow t_4 \cdot Z,$ $Z'' \leftarrow U_0'' \cdot Z, \quad t_1 \leftarrow t_1 - U_1'',$ $U_1'' \leftarrow U_1'' \cdot Z'', \ U_0'' \leftarrow t_8 \cdot U_0'',$ $V_1'' \leftarrow V_1'' - t_8, V_1'' \leftarrow V_1'' \cdot t_7,$ $V_1'' \leftarrow t_4 - V_1'', V_0'' \leftarrow V_0'' \cdot t_7,$ $t_1 \leftarrow t_1 \cdot t_8, \qquad t_1 \leftarrow t_1 - t_6,$ $V_0'' \leftarrow t_1 - V_0'', Z'' \leftarrow Z'' \cdot t_7$

Algorithm 2 Projective addition between general divisors on the Jacobian of C: $y^2 = x^5 + f_3 x^3 + f_2 x^2 + f_1 + f_0.$ **Input:** $P = (U_1 : U_0 : V_1 : V_0 : Z),$ $Q = (U'_1 : U'_0 : V'_1 : V'_0 : Z').$ **Output:** P + Q $= (U_1'': U_0'': V_1'': V_0'': Z'').$ $U_1'' \leftarrow U_1 \cdot Z', \quad U_0'' \leftarrow U_0 \cdot Z',$ $t_1 \leftarrow V_0 \cdot Z', \quad t_2 \leftarrow V'_0 \cdot Z,$ $t_1 \leftarrow t_1 - t_2, \quad t_2 \leftarrow U_0' \cdot Z,$ $t_3 \leftarrow U_1' \cdot Z, \quad t_4 \leftarrow t_3 \cdot t_2,$ $t_2 \leftarrow t_2 - U_0'', \quad t_5 \leftarrow U_1'' - t_3,$ $t_6 \leftarrow U_1'' \cdot U_0'', \quad t_4 \leftarrow t_4 - t_6,$ $Z'' \leftarrow Z \cdot Z',$ $t_6 \leftarrow V_1' \cdot Z$, $t_7 \leftarrow V_1 \cdot Z', \quad t_8 \leftarrow t_7 - t_6,$ $t_9 \leftarrow U_1^{\prime\prime 2}$ $t_6 \leftarrow t_7 + t_6$, $t_{10} \leftarrow Z'' \cdot t_2, \quad t_{10} \leftarrow t_9 + t_{10},$ $t_{11} \leftarrow t_3^2$, $t_3 \leftarrow U_1'' + t_3,$ $t_{12} \leftarrow t_{10} - t_{11}, t_{11} \leftarrow t_9 + t_{11},$ $t_9 \leftarrow t_4 \cdot t_8, \qquad t_4 \leftarrow t_4 \cdot t_5,$ $t_5 \leftarrow t_1 \cdot t_5$, $t_1 \leftarrow t_1 \cdot t_{12},$ $t_8 \leftarrow t_2 \cdot t_8, \qquad t_2 \leftarrow t_2 \cdot t_{12},$ $t_1 \leftarrow t_9 + t_1, \quad t_5 \leftarrow t_5 + t_8,$ $t_2 \leftarrow t_2 - t_4, \quad t_4 \leftarrow t_5 \cdot Z'',$ $t_8 \leftarrow t_2 \cdot t_4$, $t_2 \leftarrow t_2^2$, $t_5 \leftarrow t_5 \cdot t_4,$ $t_4 \leftarrow t_1 \cdot t_4,$ $U_1'' \leftarrow U_1'' \cdot t_5, \quad t_9 \leftarrow 2 \cdot t_4,$ $t_9 \leftarrow t_9 - t_2, \quad t_{12} \leftarrow t_5 \cdot t_3,$ $t_9 \leftarrow t_9 - t_{12}, \quad t_2 \leftarrow t_9 - t_2,$ $t_2 \leftarrow t_2 \cdot t_3, \qquad t_{11} \leftarrow t_5 \cdot t_{11},$ $t_2 \leftarrow t_2 + t_{11}, \quad t_2 \leftarrow t_2/2,$ $t_{12} \leftarrow Z'' \cdot t_5, \quad U_0'' \leftarrow U_0'' \cdot t_{12},$ $t_{12} \leftarrow t_8 \cdot t_{12}, \quad t_{11} \leftarrow Z' \cdot t_{12},$ $V_0'' \leftarrow t_{11} \cdot V_0, \quad V_1'' \leftarrow t_{11} \cdot V_1,$ $t_{11} \leftarrow t_4 - t_9, \quad t_4 \leftarrow U_1'' - t_4,$ $t_1 \leftarrow t_1^2$, $t_6 \leftarrow t_8 \cdot t_6$, $t_1 \leftarrow t_1 \cdot Z'', \quad t_1 \leftarrow t_1 + t_6,$ $t_1 \leftarrow t_1 - t_2, \quad t_2 \leftarrow t_1 - U_0'',$ $t_5 \leftarrow t_2 \cdot t_5$, $t_2 \leftarrow t_9 \cdot t_{11},$ $t_{11} \leftarrow t_1 \cdot t_{11}, \quad t_6 \leftarrow U_1'' \cdot t_4,$ $t_6 \leftarrow t_6 + t_2, \quad t_5 \leftarrow t_6 + t_5,$ $t_4 \leftarrow U_0'' \cdot t_4, \quad t_{11} \leftarrow t_4 + t_{11},$ $t_9 \leftarrow t_9 \cdot t_8, \qquad U_1'' \leftarrow t_9 \cdot Z'',$ $U_0'' \leftarrow t_1 \cdot t_8, \quad t_5 \leftarrow t_5 \cdot Z'',$ $V_1'' \leftarrow t_5 - V_1'', V_0'' \leftarrow t_{11} - V_0'',$ $Z'' \leftarrow Z'' \cdot t_{12}$

Algorithm 3 Mixed addition between general divisors on the Jacobian of $C: y^2 =$ $x^5 + f_3 x^3 + f_2 x^2 + f_1 + f_2$ **Input:** $P = (U_1 : U_0 : V_1 : V_0 : Z),$ $Q = (u_1, u_0, v_1, v_0).$ **Output:** P + Q $= (U_1'': U_0'': V_1'': V_0'': Z'').$ $V_0^{\prime\prime} \leftarrow V_0 - t_1,$ $t_1 \leftarrow v_0 \cdot Z$, $t_1 \leftarrow v_1 \cdot Z$, $t_2 \leftarrow t_1 + V_1$, $t_1 \leftarrow t_1 - V_1$, $V_1'' \leftarrow u_1 \cdot Z$, $t_3 \leftarrow V_1'' + U_1, \quad t_4 \leftarrow u_0 \cdot Z,$ $t_5 \leftarrow V_1'' \cdot t_4$, $t_6 \leftarrow U_1 \cdot U_0$, $t_6 \leftarrow t_6 - t_5$, $U_0^{\prime\prime} \leftarrow U_0 - t_4,$ $t_5 \leftarrow V_1^{\prime\prime 2},$ $t_7 \leftarrow U_1^2$, $U_1'' \leftarrow V_1'' - U_1, \ t_8 \leftarrow t_5 - t_7,$ $t_5 \leftarrow t_5 + t_7$, $t_7 \leftarrow Z \cdot U_0'',$ $t_8 \leftarrow t_7 + t_8$, $t_7 \leftarrow t_6 \cdot t_1$, $t_1 \leftarrow U_0'' \cdot t_1,$ $U_0'' \leftarrow U_0'' \cdot t_8,$ $t_6 \leftarrow t_6 \cdot U_1'',$ $U_1'' \leftarrow V_0'' \cdot U_1''$ $t_8 \leftarrow V_0^{\prime\prime} \cdot t_8,$ $t_7 \leftarrow t_7 - t_8$, $t_1 \leftarrow t_1 - U_1'', \quad U_0'' \leftarrow U_0'' - t_6,$ $t_8 \leftarrow U_0^{\prime\prime 2}$, $t_6 \leftarrow t_1 \cdot Z$, $U_0'' \leftarrow U_0'' \cdot t_6, \quad t_1 \leftarrow t_1 \cdot t_6,$ $V_1'' \leftarrow t_1 \cdot V_1'', \quad t_5 \leftarrow t_1 \cdot t_5,$ $V_0'' \leftarrow t_7 \cdot t_6,$ $t_6 \leftarrow t_6^2$, $t_7 \leftarrow t_7^2$, $t_4 \leftarrow t_4 \cdot t_6$, $t_6 \leftarrow U_0'' \cdot t_6,$ $U_1'' \leftarrow 2 \cdot V_0'',$ $U_1'' \leftarrow U_1'' - t_8, \quad t_2 \leftarrow U_0'' \cdot t_2,$ $t_7 \leftarrow t_7 \cdot Z$. $t_7 \leftarrow t_7 + t_2$, $U_1'' \leftarrow U_1'' - t_2,$ $t_2 \leftarrow t_1 \cdot t_3$, $t_8 \leftarrow U_1'' - t_8, \quad t_3 \leftarrow t_3 \cdot t_8,$ $t_3 \leftarrow t_3 + t_5$, $t_3 \leftarrow t_3/2$, $t_7 \leftarrow t_7 - t_3$, $t_8 \leftarrow V_1'' - V_0''$ $V_0'' \leftarrow V_0'' - U_1'', t_5 \leftarrow t_7 - t_4,$ $V_1'' \leftarrow V_1'' \cdot t_8, \quad t_1 \leftarrow t_1 \cdot t_5,$ $t_1 \leftarrow t_1 + V_1'', \quad V_1'' \leftarrow U_1'' \cdot V_0'',$ $V_1'' \leftarrow V_1'' + t_1, \quad t_4 \leftarrow t_4 \cdot t_8,$ $V_0'' \leftarrow V_0'' \cdot t_7, \quad V_0'' \leftarrow t_4 + V_0'',$ $t_4 \leftarrow t_6 \cdot v_1,$ $V_1'' \leftarrow V_1'' - t_4,$ $U_1'' \leftarrow U_1'' \cdot Z$, $U_1'' \leftarrow U_1'' \cdot U_0'',$ $U_0'' \leftarrow t_7 \cdot U_0'', \quad V_1'' \leftarrow Z \cdot V_1'',$ $Z'' \leftarrow Z \cdot t_6$, $t_7 \leftarrow Z'' \cdot v_0$, $V_0'' \leftarrow V_0'' - t_7$

Projective coordinates of the points require division at the end to make representation unambiguous

Algorithm 6 Combined doubling and pseudoaddition, $\mathcal{K}(\text{DBLADD})$.

Input: P = (x : y : z : t), Q = (x' : y' : z' : t'), $P - Q = (\bar{x} : \bar{y} : \bar{z} : \bar{t}), \text{ and } y_0, z_0, t_0, y'_0, z'_0, t'_0.$ Output: ([2]P, P + Q) = DBLADD(P, Q, P - Q).1. $x, y, z, t \leftarrow \text{H}(x, y, z, t), x', y', z', t' \leftarrow \text{H}(x', y', z', t').$ 2. $X \leftarrow x \cdot x', Y \leftarrow y \cdot y'_0, Z \leftarrow z \cdot z'_0, T \leftarrow t \cdot t'_0.$ 3. $x \leftarrow x^2, y \leftarrow y \cdot Y, z \leftarrow z \cdot Z, t \leftarrow t \cdot T.$ 4. $Y \leftarrow Y \cdot y', Z \leftarrow Z \cdot z', T \leftarrow T \cdot t'.$ 5. $x, y, z, t \leftarrow \text{H}(x, y, z, t), X, Y, Z, T \leftarrow \text{H}(X, Y, Z, T).$ 6. $x \leftarrow x^2, Y \leftarrow y^2, z \leftarrow z^2, t \leftarrow t^2.$ 7. $X \leftarrow X^2, Y \leftarrow Y^2, Z \leftarrow Z^2, T \leftarrow T^2.$ 8. $y \leftarrow y \cdot y_0, z \leftarrow z \cdot z_0, t \leftarrow t \cdot t_0.$ 9. $x \leftarrow X/\bar{x}, y' \leftarrow Y/\bar{y}, z' \leftarrow Z/\bar{z}, t' \leftarrow T/\bar{t}.$ 10. return (x, y : z : t), (x' : y' : z' : t').

modular division

[Bos, Costello, Hisil, Lauter, 2013]

Quantum arithmetic

what is the problem? why is this non-trivial? who cares?

Adders

[CDKM:04] S. A. Cuccaro, T. G. Draper, S. A. Kutin, and D. P. Moulton, quant-ph/0410184 (2004).

This is a space optimized adder. Runs in T-depth 2n-1. Quite poor load factor, i.e., most qubits in the computation are idle. Explore time/space trade-offs.

Controlled quantum adder

[Draper, Kutin, Rains, Svore, 2004]

Resource estimate: 14n - 11 Toffoli gates

Multipliers

QCViev	ver		🖂 🐗 🕅 1:57 PM 👤 Alex Parent 🔮
0	📔 I 🕢 I 🖶 🛁 → 😣 Gates	÷	
	R D X H		
	S ST T T		
V			
	Name: ADD10		- Uning - Eliza - Eliza - Eliza
	Expand		
	Expand All	Annu	
	Unroll		MA VMA VMA VMA Marg ♥ ♥ ♥ ♥ ♥ ♥ • • • ● ● ● • <t< th=""></t<>
I	Edit Breakpoints	*	
Side:	Properties		L L L L L L L L L L L L L L L L L L L
	Edit Controls	и.	
	Iterations: 1		
		+	
ت]			
1			
0		• • • •	
?	•		
		• • • • • • • • • • • • • • • • • • •	
	Gates: 188 Qbits: 62		

Wallace tree multiplier. T-count of $n^2 + 4n \log_2(n)$ and T-depth $O(\log_2(n))$. Shown is an implementation in .qc/QCViewer of a circuit generated dynamically by a Haskell library.

1/15/2015

Division with remainder

For a division with remainder we obtain the estimate $Divider(n) = n \cdot (CSub(n) + Adder(n) + 3CNOT)$, where CSub(n) is bounded by the cost of one Adder(n), 3n local Pauli operations, n CNOT gates, and (n + 1)Toffoli gates.

Time-space tradeoffs II

Adders for *n* bit integers:

- Low depth circuit:
 - [Draper, Kutin, Rains, Svore, quant-ph/0406142].
 - Depth $O(\log n)$, however, requires O(n) ancillas.
 - In-place version exists. Easy to modify into controlled adder
- Space optimized circuit:
 - [Cuccaro, Draper, Kutin, Moulton, quant-ph/0410184].
 - Can be used to implement in-place addition |x, y⟩ → |x, x + y⟩ with only 1 additional ancilla qubit. Depth scales linear with n.

Multipliers for n bit integers:

- Simple $O(n^2)$ "school" method using controlled adders. Disadvantage: circuit depth scales linear with n. Improvement: Wallace tree in log depth.
- Limitation: only out-of-place multipliers $|x, y, 0\rangle \mapsto |x, y, x \cdot y\rangle$ known.

Arithmetic for modular exponentiation:

• Computing $x \mapsto a^x \mod N$ for **fixed** a, N is relatively easy and can be done using 2n + 3 qubits and $O(n^3)$ time: [Beauregard, quant-ph/0205095]

Modular inverses: Approaches based on Fermat's little theorem

Modular Inverse a la Fermat

Basic idea:

- Let *p* be prime, let $x \in \{1, ..., p 2\}$.
- Recall that in any finite group: $x^{|G|} = e$.
- When applied to GF(p)[×] this implies
 x^{p-1} ≡ 1 (p)
- Or in other words: $x^{p-2} \cdot x \equiv 1 \ (p)$
- Or in other words: $x^{-1} \equiv x^{p-2}(p)$
- That means we can compute the inverse by exponentiation of the (unknown) *x* for the (known, fixed) exponent *p*.

Modular multiplier

Square & multiply by unrolling

Depth: $2n \times depth(MUL) + 2depth(ADD)) + n$ Width: $2n \times n = n^2$

- Here *n* is the bit-size of *x*
- Use binary representation of p-2 to compute x^{p-2}

Open problem: improvements?

Depth: $O(n^2)$ Width: O(n) Can we achieve this using suitable initial configuration, suitable U?

- Partial success: using MUL and suitable permutations U we can compute the Chebyshev polynomials $T_n(x) \mod p$.
- Unclear whether they allow to efficiently compute monomials x^n

Unknown whether linear space can be achieved by this approach

1/15/2015

Modular inverses: Approaches based on the Euclidean algorithm

Modular Inverse via GCD

Basic idea:

- Let *p* be prime, let $x \in \{1, ..., p 2\}$.
- Compute the greatest common divisor (GCD) of p and x
- ... and find the linear representation of the GCD: a p + b x = GCD(p, x) = 1
- This means that modulo p we have that b x = 1
- In other words: $x^{-1} \mod p = b$.

How to find a and b? → Extended Euclidean Algorithm

An Orwellian principle (?)

"Ignorance is Strength"

Any computation that a quantum computer carries out must be independent of the input data.

- Reason: quantum programs must be able to run on superposition of input data. If the execution flow of the depended on the input in any way that makes
 2 or more inputs distinguishable, this can lead unwanted entanglement that destroys interference.
- In quantum context first studied by [Bernstein/Vazirani'93]
 → path synchronization technique for Quantum TMs.
- Classically studied too: "Oblivious Turing Machines"

Saeedi & Markov's method

Uses binary Euclid:

- If A%2 = B%2 = 0, gcd(A, B) = 2 gcd(A/2, B/2)
- If A%2 = 0 = 1 B%2, gcd(A, B) = gcd(A/2, B)If A%2 = 1 = 1 - B%2, gcd(A, B) = gcd(A, B/2)
- If A%2 = B%2 = 1, then we ensure that $A \ge B$, and use $gcd(A, B) = gcd\left(\frac{A-B}{2}, B\right)$

Single round:

Summary: + Easy to circuitize

- + Depth scales as O(n log n)
- But does not yield linear representation of GCD

[Saeedi, Markov arXiv:1304.7516]

Shor for factoring vs ECC dlog

Facto	oring algorithe	m (RSA)	EC discrete logarithm (ECC)		
n	$\approx \#$ qubits	time	n	$\approx \#$ qubits	time
	2n	$4n^3$		f'(n) $(f(n))$	$360n^{3}$
512	1024	$0.54\cdot 10^9$	110	700 (800)	$0.5\cdot 10^9$
1024	2048	$4.3 \cdot 10^{9}$	163	1000(1200)	$1.6 \cdot 10^{9}$
2048	4096	$34 \cdot 10^{9}$	224	1300(1600)	$4.0 \cdot 10^{9}$
3072	6144	$120 \cdot 10^{9}$	256	1500(1800)	$6.0 \cdot 10^{9}$
15360	30720	$1.5 \cdot 10^{13}$	512	2800(3600)	$50 \cdot 10^{9}$

[Proos, Zalka, quant-ph/0301141]

- Suggests that quantum attacks on ECC/dlog can be done more efficiently than RSA/factoring with comparable level of security.
- Circuits are somewhat non-trivial to implement and to layout.
- Only short Weierstrass forms considered, unclear how classical optimizations of point additions can be leveraged.
- Leaves open how to optimize depth for Shor ECC.

Optimizing the circuit depth for the binary case

Low-depth GF(2ⁿ)-arithmetic

Design decision: polynomial basis representation

- Addition: depth O(1)
- Squaring: matrix-vector mult. → addition |x⟩ trees+"multi-fan-out CNOT w/ |0⟩-input": |0⟩ 0(log n)
- Multiplication: Maslov et al.'s construction invite reduces to 3 matrix-vector multiplications invite parallelization: depth O(log n)

Projective point addition: depth O(log n) Note: all this is irrelevant for the large p case !!

Inversion: prior work

Beauregard et al. 2003, Kaye-Zalka 2004, Maslov et al. 2009 offer circuits for GF(2^m)-inversion:

Inversion: apply extended Euclidean algorithm in depth O(m²) using 2m + O(log m) qubits.

We can actually do much better in the binary case and achieve poly-log scaling of depth!

Ghost-bit basis representation

- [Itoh-Tsujii 1989], [Silverman 1999]:
- If $f=1+x+...+x^m \in GF(2^m)[x]$ is irreducible, the maps
 - $\begin{array}{ll} \mathsf{GF}(2^m)[\mathbf{x}]/(\mathbf{f}) & \longrightarrow & \mathsf{GF}(2^m)[\mathbf{x}]/(\mathbf{x}^{m+1}+1) \\ & \Sigma\alpha_i + (\mathbf{f}) & \longrightarrow & \Sigma\alpha_i + (\mathbf{x}^{m+1}+1) \\ & \Sigma(\alpha_i + \alpha_m)\mathbf{x}^i + (\mathbf{f}) & \leftarrow & \alpha_0\mathbf{x}^0 + \dots + \alpha_m\mathbf{x}^m + (\mathbf{x}^{m+1}+1) \end{array}$

allow to move arithmetic to $GF(2^m)[x]/(x^{m+1}+1)$.

Ghost-bit basis arithmetic

- Addition: bit-wise \oplus (i.e., depth 1 with CNOTs)
- Multiplication: $(\sum a_i x^i) \cdot (\sum b_i x^i) = \sum_i (\sum_j a_j b_{(i-j) \mod (m+1)}) \cdot x^i$
- Squaring: $(\sum a_i x^i)^2 = \sum a_{p^{-1}(i)} \cdot x^i$ with $p(i)=2 \cdot i \mod (m+1)$

Squaring is a shuffle of the coefficient vector

Gaussian normal basis of type T

Vector space basis {h, h^2 , h^{2^2} ,..., $h^{2^{m-1}}$ } of GF(2^m); let p=Tm+1, u \in GF(2^m)^{*} of order T, F(2ⁱu^j mod p)=i

- Addition: bit-wise \oplus
- Multiplication: $(\sum a_i \cdot h^{2^i}) \cdot (\sum b_i \cdot h^{2^i}) = \sum g_i \cdot h^{2^i}$ with $g_i = a_{F(1+1)+i} \cdot b_{F(p-1)+i} + \dots + a_{F(Tm-1+1)+i} \cdot b_{F(p-(Tm-1))+i}$
- Squaring: $(\sum a_i \cdot h^{2^i})^2 = \sum a_{i-1 \pmod{m}} \cdot h^{2^i}$

Squaring is a rotation of the coefficient vector

Itoh-Tsujii inversion algorithm

For $\alpha \in GF(2^m)^*$ let $\beta_i = \alpha^{2^i - 1}$. Then $\beta_1 = \alpha$, $\alpha^{-1} = (\beta_{m-1})^2$, and $\beta_{i+j} = \beta_i \cdot (\beta_j)^{2^i}$. (*)

(1) write $m-1=2^{k_1}+...+2^{k_{HW}(m-1)}$ with $\lfloor \log_2(m-1) \rfloor = k_1 > ... > k_{HW(m-1)} \ge 0$

(2) find $\beta_{2^0}, \beta_{2^1}, \dots, \beta_{2^{k_1}}$ applying (*) with i=j

(3) find
$$\beta_{2^{k_{1+2}k_2},...,\beta_{2^{k_{1+...+2^{k_{HW}(m-1)}}}}(=\beta_{m-1})$$
 with (*)

Total cost:

 $\lfloor \log_2(m-1) \rfloor + HW(m-1) - 1$ multiplications (+ squarings)
Inversion in depth O($\log^2 m$)

- (1) find β₂0,β₂1,...,β₂k₁ from Itoh-Tsujii algorithm with log₂(m-1) "single-input" multipliers (squaring is free: permute control positions)
- (2) find β_{2^k1+...+2^kHW(m-1)}(=β_{m-1}) with HW(m-1)-1
 "ordinary" multipliers (not needed for
 m=2ⁿ+1, e.g., a Fermat prime)
- (3) Finally, $\alpha^{-1} = (\beta_{m-1})^2$ which is just a shuffle

How not to compute k·P+l·Q...

Maslov et al.'strategy – right-to-left double-and-add:

```
\begin{split} \mathsf{R} &\leftarrow \mathsf{O} \\ \text{for } \mathsf{i} = \mathsf{O} \text{ to } \mathsf{n} \text{ step } \mathsf{1} \\ &\quad \mathsf{if } \mathsf{k}_{\mathsf{i}} = \mathsf{1} \text{ then } \mathsf{R} \leftarrow \mathsf{R} + 2^{\mathsf{i}} \cdot \mathsf{P} \\ &\quad \mathsf{if } \boldsymbol{\ell}_{\mathsf{i}} = \mathsf{1} \text{ then } \mathsf{R} \leftarrow \mathsf{R} + 2^{\mathsf{i}} \cdot \mathsf{Q} \\ &\quad \mathsf{return } \mathsf{R} \end{split}
```

... yields depth O(n·log n) circuit

Instead: Parallelized double-and-add

- requires "multi-fan-out CNOT w/ |0>-input"
- depth O(log²n), using general addition circuits

Open problems

- Can we adapt the methods to a 2D NN architecture?
- Can square&multiply based ideas be modified to make them space efficient?
- Can the "quantum-quantum" techniques based on the quantum Fourier transform (e.g., Draper adder) be applied to the modular inversion problem? Can we avoid modular inversions altogether?
- Can we simplify the (Edwards) point addition circuits? Few T-gates, less T-depth, less qubits?
- Use the resource estimates to obtain resource estimates for quantum attacks on ECC dlog for NIST curves and generalize this to Jacobians of hyperelliptic curves.