Attacking binary elliptic curves on a quantum computer

On quantum arithmetic and space-time trade-offs

Martin Roetteler
Microsoft Research

Based on joint work with Brittanney Amento and
Rainer Steinwandt [arXiv.org: 1209.5491, 1209.6348, 1306.1161]

DIMACS Workshop on the Mathematics of Post-Quantum Cryptography

January 15, 2015

Motivation

- Analyze resources needed to implement Shor
- Focus: Computing dlogs over abelian groups
- Possible circuit optimizations
- Scaling of space (=\#qubits) and time (=depth)?

Please ask questions during talk!

Background: Quantum resources

Quantum bits and registers

Quantum register of n qubits

(\because) can hold any coherent superposition

$$
|\Psi\rangle=\sum_{\epsilon \in\{0,1\}^{n}} \alpha_{\epsilon_{1} \cdots \epsilon_{n}}\left|\epsilon_{1}\right\rangle \otimes\left|\epsilon_{2}\right\rangle \otimes \cdots \otimes\left|\epsilon_{n}\right\rangle
$$

in the 2^{n} dimensional space $\mathcal{H}_{2^{n}}=\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \cdots \otimes \mathbb{C}^{2}=\mathbb{C}^{2^{n}}$.

$$
\mathcal{H}
$$

Product states of n qubits

$\left|\Psi_{1}\right\rangle \otimes\left|\Psi_{2}\right\rangle \otimes \cdots \otimes\left|\Psi_{n}\right\rangle=\left(\alpha_{1}|\uparrow\rangle+\beta_{1}|\downarrow\rangle\right) \otimes \cdots \otimes\left(\alpha_{n}|\uparrow\rangle+\beta_{n}|\downarrow\rangle\right)$ (thus, only linear scaling of system and dimension)

Measurements

von Neumann measurements of one qubit

First, specify a basis B for C^{2}, e. g. $\{|0\rangle,|1\rangle\}$. The outcome of measuring the state $\alpha|0\rangle+\beta|1\rangle$ is described by a random variable X. The probabilities to observe " 0 " or " 1 " are given by

$$
\operatorname{Pr}(X=0)=|\alpha|^{2}, \quad \operatorname{Pr}(X=1)=|\beta|^{2} .
$$

Measuring a state in \mathbb{C}^{n} in an orthonormal basis B

- Recall: Orthonormal Basis of \mathbb{C}^{N}

$$
B=\left\{\left|\psi_{i}\right\rangle: i=1, \ldots, N\right\}, \quad \text { where }\left\langle\psi_{i} \mid \psi_{j}\right\rangle=\delta_{i, j}
$$

- Let $|\varphi\rangle=\sum_{i=1}^{N} \alpha_{i}|i\rangle$, where $\sum_{i=1}^{N}\left|\alpha_{i}\right|^{2}=1$. Then measuring $|\varphi\rangle$ in the basis B gives random variable X_{B} taking values $1, \ldots, N$:

$$
\operatorname{Pr}\left(X_{B}=1\right)=\left|\left\langle\psi_{1} \mid \varphi\right\rangle\right|^{2}, \ldots, \operatorname{Pr}\left(X_{B}=N\right)=\left|\left\langle\psi_{N} \mid \varphi\right\rangle\right|^{2} .
$$

Examples: local operations and CNOT

Local operations

$$
\mathbf{1}_{N} \otimes U=\left(\begin{array}{llll}
\boxed{U} & & & \\
& U & & \\
& & \ddots & \\
& & \boxed{U}
\end{array}\right), \text { where } U \in \mathcal{U}(2)
$$

Conditioned operation: the controlled NOT (CNOT)

$$
\begin{aligned}
|00\rangle & \mapsto|00\rangle \\
|01\rangle & \mapsto|01\rangle \\
|10\rangle & \mapsto|11\rangle \\
|11\rangle & \mapsto|10\rangle
\end{aligned} \quad \widehat{=} \quad\left(\begin{array}{cccc}
1 & \cdot & \cdot & \cdot \\
\cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & \cdot & 1 \\
\cdot & \cdot & 1 & \cdot
\end{array}\right) \quad \widehat{=}
$$

Notation for unitary matrices

Gate in Feynman notation

Wire $=$ qubit $\quad H_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right)$

Universality theorem

Elementary quantum gates

Universal set of gates
Theorem (Barenco et al., 1995):

$$
\mathcal{U}\left(2^{n}\right)=\left\langle U^{(i)}, \operatorname{CNOT}^{(i, j)} \quad: \quad i, j=1, \ldots, n, \quad i \neq j\right\rangle
$$

Quantum gates: main problem
Find efficient factorizations for given $U \in \mathcal{U}\left(2^{n}\right)$!

Levels of abstraction

Unitary matrix

$$
U=\frac{1}{2}\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
-1 & 1 & 1 & -1
\end{array}\right)
$$

Factorized unitary matrix

$$
\left.\begin{array}{rl}
U & =\left(I \otimes H_{2}\right) \quad\left(I \oplus \sigma_{X}\right) \quad\left(H_{2} \otimes I\right) \\
& =\frac{1}{2}\left(\begin{array}{lll}
1 & 1 & \\
1 & -1 & \\
& 1 & 1 \\
& 1 & 1
\end{array}\right)\left(\begin{array}{ll}
I
\end{array}\right) \\
\hline & \sigma_{X}
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & \\
1 & 1 & 1 \\
1 & -1 & \\
1 & & -1
\end{array}\right) .
$$

Quantum circuit

Operations on subspaces

Rotation on a subspace spanned by the states s_{1} and s_{2}

Theorem

Every $U \in \mathcal{U}\left(2^{n}\right)$ can be written in the form

$$
U=\prod_{s_{1}, s_{2} \in\{0,1\}^{n}} T\left(s_{1}, s_{2}\right) .
$$

Controlled rotations

Conditional gates with multiple controls

Let $U \in \mathcal{U}(2)$. Then $\wedge_{k}(U) \in \mathcal{U}\left(2^{k+1}\right)$ is defined by

$$
\Lambda_{k}:=\left(\begin{array}{lll}
1 & & \\
& \ddots & \\
& 1 & \\
& & \boxed{U}
\end{array}\right)=\mathbf{1}_{2^{k+1}-2} \oplus U
$$

Alternative description of $\Lambda_{k}(U)$

$$
\Lambda_{k}(U)\left|x_{1}, \ldots, x_{n}\right\rangle|y\rangle= \begin{cases}\left|x_{1}, \ldots, x_{n}\right\rangle|y\rangle & \text { if } \exists i: x_{i} \neq 1 \\ \left|x_{1}, \ldots, x_{n}\right\rangle \cup|y\rangle & \text { if } \forall i: x_{i}=1\end{cases}
$$

Remark: For $U=N O T$, the gate $\Lambda_{1}(N O T)$ is the CNOT gate. The gate $\Lambda_{2}(N O T)$ is called the Toffoli gate.

Discrete universal gate sets

 Important universal gate set "Clifford + T" (for logical operations):Consists of all Clifford operations (i.e., the group generated by H_{2}, CNOT and $\operatorname{diag}(1, i)$) and the " T gate" ($\mathrm{T}=\operatorname{diag}\left(1, \omega_{8}\right)$). Can be shown to be universal, i.e., for any unitary U and any given $\epsilon>0$, there exists an element A in the Clifford + T group such that $\|U-A\| \leq \epsilon$.

- This gate set arises naturally in the context of fault-tolerant quantum computing for several quantum codes, e.g., Steane code, surface code.
- T gate usually implemented via a process called "magic state distillation" which is very expensive. Much more expensive than Clifford gates.
- Common metrics used to measure resources:
-T-count = total number of T gates used in a circuit
-T-depth = number of T-layers when a circuit is written as C T C ... T C
- \#qubits = total number of qubits used, including "ancillas" (=scratch space)

Typically, single-qubit rotations account for most of the cost!

Bounding resources: T gates

A useful factorization:

Lemma: If a unitary U can be implemented exactly over Clifford+T, then also $\Lambda(U)$ can be implemented exactly. [arxiv.org:1206.0758]

This Lemma be used in some situations to avoid all errors due to single qubit approximations.

Cost of controlled unitaries:

- Tracking v=[\#loc, \#CNOT,\#H, \#P, \#T]
- From U to $\wedge(\mathrm{U})$: matrix vector multiplication Mv.
$M=\left[\begin{array}{ccccc}0 & 0 & 2 & 0 & 0 \\ 1 & 6 & 3 & 16 & 16 \\ 0 & 2 & 2 & 4 & 4 \\ 0 & 1 & 2 & 3 & 2 \\ 0 & 7 & 2 & 14 & 15\end{array}\right]$

Solovay-Kitaev algorithm

Goal: Approximate unitaries by elements of dense subgroup $G \leq U(N)$ Basic idea: Successive refining of a "net" using commutators

[Image source: Nielsen/Chuang, CUP 2000]

Implementations:

- [Kitaev, Shen, Vyialyi, AMS 2002]: $\log ^{3+\delta}(1 / \varepsilon)$ time, $\log ^{3+\delta}(1 / \varepsilon)$ length
- [Dawson, Nielsen, quant-ph/0505030]: $\log ^{2.71}(1 / \varepsilon)$ time, $\log ^{3.97}(1 / \varepsilon)$ length
- [Harrow, Recht, Chuang, quant-ph/0111031]: non-constructive, log (1/ ε) length

Single qubit gates: synthesis methods

Basic idea: [Kliuchnikov/Maslov/Mosca 2012], [Selinger 2012]

Number of T gates required is $O(\log (1 / \varepsilon))$ vs $O\left(\log ^{3+\delta}(1 / \varepsilon)\right)$ (for the Solovay-Kitaev algorithm)

Shown are all unitaries in $\langle H, T\rangle$ that are obtainable from a simple round-off procedure and have T-count ≤ 12.

Tools from the theory of reversible computing

Classical circuits

- Consider functions from $n \geq 1$ bits to $m \geq 1$ bits. We are interested in implementing functions by combinational circuits, i.e., circuits that do not make use of memory elements or feedback.
- Universal families of gates exist, i.e., sets of elementary gates from which any circuit can be built.

- We can compose gates together to make larger circuits.

- Problem for quantum computing: many gates are not reversible!

How to invert an irreversible operation?

Reversible computation

Basic issue of reversible computing

Suppose, we want to compute a function $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ that is not reversible. How can we do this?

One possible solution

Define a new Boolean function which takes $n+m$ inputs and $n+m$ outputs as follows:

$$
F(x, y):=(x, y \oplus f(x))
$$

Properties of $F(x, y)$

- On the special inputs $(x, 0)$, where $x \in\{0,1\}^{n}$ we obtain that $F(x, 0)=(x, f(x))$. Furthermore, F is reversible.
- Theorem (Bennett): If f can be computed using K gates, then F can be computed using $2 K+m$ gates.

How to make circuits reversible?

Example:

Replace each gate with a reversible one:

[Slide concept by M. Mosca, Waterloo]

How to avoid garbage?

- Replacing each gate with a reversible one works fine, however, it produces "garbage", i.e., help registers will be in a state different from 0 at the end.
- While this is fine for reversible computing, it is bad for quantum computing (it will prevent interference).
- There is a way out of this dilemma: the Bennett trick
$|x\rangle|0\rangle|0\rangle|0\rangle \mapsto|x\rangle|f(x)\rangle|\operatorname{garbage}(x)\rangle|0\rangle$

$$
\begin{aligned}
& \mapsto \quad|x\rangle|f(x)\rangle|\operatorname{garbage}(x)\rangle|f(x)\rangle \\
& \mapsto \quad|x\rangle|0\rangle|0\rangle|f(x)\rangle
\end{aligned}
$$

Idea: compute forward, copy the result, "uncompute" the garbage by running the computation backwards.

Uncomputing the garbage

Replace each gate with a reversible one:

The pebble game

Rules of the game: [Bennett, SIAM J. Comp., 1989]

- n boxes, labeled $\mathrm{i}=1, \ldots, \mathrm{n}$
- in each move, either add or remove a pebble
- a pebble can be added or removed in $i=1$ at any time
- a pebble can be added of removed in $i>1$ if and only if there is a pebble in i-1.

The pebble game

Imposing resource constraints:

- only a total of S pebbles are allowed
- corresponds to reversible algorithm with at most S ancilla qubits

22
Example: $(\mathrm{n}=3, \mathrm{~S}=3$)
33
41

54
63
71
82
91

Optimal pebbling strategies

Definition: Let X be solution of pebble game. Let $T(X)$ be \# steps and Let $S(X)$ be \#pebbles. Define $F(n, S)=\min \{T(X): S(X) \leq S\}$.

Table (small values of F):

| $n \backslash S$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| :---: |
| 1 |
| 2 | ∞ | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| 3 | ∞ | ∞ | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
| 4 | ∞ | ∞ | 9 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 |
| 5 | ∞ | ∞ | ∞ | 11 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 |
| 6 | ∞ | ∞ | ∞ | 15 | 13 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 |
| 7 | ∞ | ∞ | ∞ | 19 | 17 | 15 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 |
| 8 | ∞ | ∞ | ∞ | 25 | 21 | 19 | 17 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 |
| 9 | ∞ | ∞ | ∞ | ∞ | 25 | 23 | 21 | 19 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 |
| 10 | ∞ | ∞ | ∞ | ∞ | 29 | 27 | 25 | 23 | 21 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 |
| 11 | ∞ | ∞ | ∞ | ∞ | 33 | 31 | 29 | 27 | 25 | 23 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 |
| 12 | ∞ | ∞ | ∞ | ∞ | 39 | 35 | 33 | 31 | 29 | 27 | 25 | 23 | 23 | 23 | 23 | 23 | 23 | 23 | 23 | 23 |
| 13 | ∞ | ∞ | ∞ | ∞ | 45 | 39 | 37 | 35 | 33 | 31 | 29 | 27 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 |
| 14 | ∞ | ∞ | ∞ | ∞ | 53 | 43 | 41 | 39 | 37 | 35 | 33 | 31 | 29 | 27 | 27 | 27 | 27 | 27 | 27 | 27 |
| 15 | ∞ | ∞ | ∞ | ∞ | 61 | 47 | 45 | 43 | 41 | 39 | 37 | 35 | 33 | 31 | 29 | 29 | 29 | 29 | 29 | 29 |
| 16 | ∞ | ∞ | ∞ | ∞ | 71 | 51 | 49 | 47 | 45 | 43 | 41 | 39 | 37 | 35 | 33 | 31 | 31 | 31 | 31 | 31 |
| 17 | ∞ | ∞ | ∞ | ∞ | ∞ | 57 | 53 | 51 | 49 | 47 | 45 | 43 | 41 | 39 | 37 | 35 | 33 | 33 | 33 | 33 |
| 18 | ∞ | ∞ | ∞ | ∞ | ∞ | 63 | 57 | 55 | 53 | 51 | 49 | 47 | 45 | 43 | 41 | 39 | 37 | 35 | 35 | 35 |
| 19 | ∞ | ∞ | ∞ | ∞ | ∞ | 69 | 61 | 59 | 57 | 55 | 53 | 51 | 49 | 47 | 45 | 43 | 41 | 39 | 37 | 37 |
| 20 | ∞ | ∞ | ∞ | ∞ | ∞ | 77 | 65 | 63 | 61 | 59 | 57 | 55 | 53 | 51 | 49 | 47 | 45 | 43 | 41 | 39 |
| 21 | ∞ | ∞ | ∞ | ∞ | ∞ | 85 | 69 | 67 | 65 | 63 | 61 | 59 | 57 | 55 | 53 | 51 | 49 | 47 | 45 | 43 |
| 22 | ∞ | ∞ | ∞ | ∞ | ∞ | 93 | 73 | 71 | 69 | 67 | 65 | 63 | 61 | 59 | 57 | 55 | 53 | 51 | 49 | 47 |
| 23 | ∞ | ∞ | ∞ | ∞ | ∞ | 101 | 79 | 75 | 73 | 71 | 69 | 67 | 65 | 63 | 61 | 59 | 57 | 55 | 53 | 51 |
| 24 | ∞ | ∞ | ∞ | ∞ | ∞ | 109 | 85 | 79 | 77 | 75 | 73 | 71 | 69 | 67 | 65 | 63 | 61 | 59 | 57 | 55 |

Time-space tradeoffs

Let A be an algorithm with time complexity T and space complexity S .

- Using reversible pebble game, [Bennett, SIAM J. Comp. 1989] showed that for any $\varepsilon>0$ there is a reversible algorithm A^{\prime} with time complexity $\mathrm{O}\left(\mathrm{T}^{1+\varepsilon}\right)$ and space complexity $\mathrm{O}(\mathrm{S} \ln (\mathrm{T}))$.
- Issue: one cannot simply take the limit $\varepsilon \rightarrow 0$. The space would grow in an unbounded way (as $O\left(\varepsilon 2^{1 / \varepsilon} S \ln (T)\right)$).
- Improved analysis [Levine, Sherman, SIAM J. Comp. 1990] showed that for any $\varepsilon>0$ there is a reversible algorithm A^{\prime} with time complexity $O\left(T^{1+\varepsilon} / S^{\varepsilon}\right)$ and space complexity $O(S(1+\ln (T / S)))$.
- Other time/space tradeoffs: [Buhrman, Tromp, Vitányi, ICALP’01]

Research topic: develop a "compiler" that takes a classical combinational circuit as input and translates it into a reversible circuit, with respect to various resource constraints.

Shor

Reducing factoring to period finding

- Modular exponentiation: Let N be an integer and let a be in Z_{N}. Modular exponentiation is the map $f(x):=a^{x} \bmod N$.
- Fact: The map f can be implemented in $\mathrm{O}(\operatorname{poly}(\log N))$ ops.
- Fact: It can be shown that it can also be implemented efficiently on a quantum computer.
- More facts:
- Recall that the order of a is defined as the smallest integer r such that $a^{r}=1 \bmod N$.
- The function $f(x):=a^{x}$ mod N is periodic with period r equal to the order of a, i. e., $f(x)=f(x+r)$ for all x.
- The problem of factoring N can be reduced to period finding for modular exponentiation f (for random a).

Setting up a periodic state

- Observation: The function $f(x)=a^{x}$ mod N is periodic and has period length r, i. e., $f(x)=f(x+r)$ for all inputs x.
- Example: graph of the function $f(x)=2 x \bmod 165$:

Shor's algorithm for period finding

Computing the modular exponentiation
Let $f(x)=a^{x} \bmod N$ be modular exponentiation, let $M \gg N$, and compute:

$$
|0\rangle|0\rangle \mapsto \frac{1}{\sqrt{M}} \sum_{x \in Z_{M}}|x\rangle|0\rangle \stackrel{f}{\mapsto} \frac{1}{\sqrt{M}} \sum_{x \in Z_{M}}|x\rangle|f(x)\rangle .
$$

Collapsing this state

Now, measuring the second register will yield a random $s \in Z_{N}$ in the image of f. The state collapses to (suppose that $r \mid M$)

$$
\left.\frac{1}{\sqrt{M / r}} \sum_{k=0}^{M / r-1}\left|x_{0}+k \cdot r\right\rangle \quad \overbrace{\underbrace{}_{X_{0}}}^{r}|\quad| \quad \right\rvert\,
$$

This is an example of a coset state!

Period finding using coset states

Coset state for the cyclic group
Let $G=Z_{M}, x_{0} \in G, H=\langle r\rangle$, where r is the order of a. Then:

$$
\left|x_{0}+H\right\rangle=\frac{1}{\sqrt{M / r}} \sum_{k=0}^{M / r-1}\left|x_{0}+k \cdot r\right\rangle
$$

Period finding (Shor'94)
Coset state $\left|x_{0}+H\right\rangle$ and its Fourier transform:

Coset states in the abelian case
We can compute H efficiently from coset states!

Discrete Fourier Transforms

Definition:

$$
\operatorname{DFT}_{N}:=\frac{1}{\sqrt{N}}\left[\omega_{N}^{k \cdot \ell}\right]_{k, \ell=0 \ldots N-1}, \quad \omega_{N}=e^{2 \pi i / N}
$$

Example:

Discrete Fourier Transform (DFT/QFT)

Definition: $\quad \operatorname{DFT}_{N}=\frac{1}{\sqrt{N}}\left[\omega_{N}^{k \cdot \ell}\right]_{k, \ell=0 \ldots N-1}, \quad \omega_{N}=e^{2 \pi i / N}$

Cooley-Tukey FFT:

$$
\begin{aligned}
& \mathrm{DFT}_{4}=\Pi_{r e v} \cdot\left(\mathbf{1}_{2} \otimes \mathrm{DFT}_{2}\right) \cdot \operatorname{diag}(1,1,1, i) \cdot\left(\mathrm{DFT}_{2} \otimes \mathbf{1}_{2}\right) \\
& {\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & i & -1 & -i \\
1 & -1 & 1 & -1 \\
1 & -i & -1 & i
\end{array}\right]=\left[\begin{array}{lll}
1 & & \\
& & 1 \\
& 1 & \\
& & 1
\end{array}\right] \cdot\left[\begin{array}{rrrr}
1 & 1 & & \\
1 & -1 & & \\
& & 1 & 1 \\
& & 1 & -1
\end{array}\right] \cdot\left[\begin{array}{lll}
1 & & \\
& 1 & \\
& & 1 \\
& & \\
& &
\end{array}\right] \cdot\left[\begin{array}{llll}
1 & & 1 & \\
& & 1 & \\
1 & & -1 & 1 \\
& & 1 & \\
& & & -1
\end{array}\right]}
\end{aligned}
$$

Theorem: Multiplication with DFT_{N} can be performed classically in $O(N \log N)$ elementary operations.

We can do much better on a quantum computer!

Quantum Fast Fourier Transform

Quantum circuit for DFT $_{N}$

Cost:

Classical Computer

$$
\begin{gathered}
T(N)=2 T(N / 2)+O(N) \\
T(N)=O(N \log N)
\end{gathered}
$$

Quantum Computer

$$
\begin{gathered}
T(N)=T(N / 2)+O(\log N)) \\
T(N)=O\left(\log ^{2} N\right)
\end{gathered}
$$

The Hidden Subgroup Problem

Definition of the problem

Given: Group G, set S, map $f: G \rightarrow S$ given as black box
Promise: There exists subgroup $H \leq G$ with

- f constant on each coset of H
- $g_{1} H \neq g_{2} H$ implies $f\left(g_{1}\right) \neq f\left(g_{2}\right)$

Problem: Find generators for H (input size: $\log |G|$)

Visualization of the cosets of H in G

Caveat

Difficulty of HSP depends crucially on the structure of the group G.

Shor's algorithm for dlogs:

Step 1: Create $\sum_{k \in\{0,1\}^{n}}\left|k_{1}, \ldots, k_{n}\right\rangle \otimes \sum_{\ell \in\{0,1\}^{n}}\left|\ell_{1}, \ldots, \ell_{n}\right\rangle \otimes|O\rangle$ by applying Hadamard gates to 2 registers of n qubits; $n=\left\lceil\log \left(\operatorname{ord}_{P}\right)\right\rceil$

Step 2: For fixed generator P and fixed target $Q \in\langle P\rangle$ compute the transformation that maps this state to

$$
\sum_{k \in\{0,1\}^{n}}|k\rangle \otimes \sum_{\ell \in\{0,1\}^{n}}|\ell\rangle \otimes|k P+\ell Q\rangle
$$

Step 3: Measure the $3^{\text {rd }}$ register. Obtain a result R. Letting $Q=\alpha P$ and $R=\beta P$, we obtain a state corresponding to a "line"

$$
\sum_{\substack{k, \ell \in\{0,1\}^{n}: \\ k+\alpha \ell=\beta}}|k\rangle \otimes|\ell\rangle \otimes|R\rangle=\sum_{\ell \in\{0,1\}^{n}}|\beta-\alpha \ell\rangle \otimes|\ell\rangle
$$

Step 4: Apply $Q F T \otimes Q F T$ and measure to sample from the line $\left\{(x, \alpha x), x \in\left\{0, . ., 2^{n}-1\right\}\right.$. If x is a unit, we obtain α.

Visualizing Fourier duality

Abelian groups:

$$
\mathrm{DFT}_{A}\left(\frac{1}{\sqrt{|U|}} \sum_{\mathbf{x} \in U+c}|\mathbf{x}\rangle\right)=\frac{1}{\sqrt{\left|U^{\perp}\right|}} \sum_{\mathbf{y} \in U^{\perp}} \varphi_{c, y}|\mathbf{y}\rangle
$$

Circuit for Shor's dlog algorithm

Phase estimation circuit layout:

Simple circuit optimizations

Double \& Add

Input: binary string $\left(x_{n-1}, x_{n-2}, \ldots, x_{1}, x_{0}\right)$
Output: $x=\sum_{i} x_{i} 2^{i}=\mathrm{x}_{0}+2\left(\mathrm{x}_{1}+2\left(\mathrm{x}_{2}+\ldots\right)\right)$

Method 1 ("evaluate left-to-right")

Method 2 ("evaluate right-to-left")
$\mathrm{x} \leftarrow x_{0}$
for $\mathrm{i}=1 \ldots \mathrm{n}-1$ do
$\mathrm{x} \leftarrow x+2^{i} x_{i}$
end for
return x

$$
\begin{aligned}
& \mathrm{x} \leftarrow x_{n-1} \\
& \text { for } \mathrm{i}=\mathrm{n}-2 \ldots 1 \text { do } \\
& \quad \mathrm{x} \leftarrow 2 x+x_{i} \\
& \text { end for } \\
& \text { return } \mathrm{x}
\end{aligned}
$$

Rewriting the ECC dlog circuit

Rewriting the ECC dlog circuit

Double \& Add: Shamir's Trick

```
R\leftarrow\mathcal{O}
    # initialize result to identity
if }\mp@subsup{k}{n}{}=1\mathrm{ then }R\leftarrowR+P # adjust starting value based on most significant bi
if }\mp@subsup{\ell}{n}{}=1\mathrm{ then }R\leftarrowR+
for }i=n-1\mathrm{ to 0 step -1
    R\leftarrow2\cdotR
    if }\mp@subsup{k}{i}{}=\mathrm{ Nhen }R\leftarrowR+
    if \elli=1 th&n R}\leftarrowR+
return R
\[
\# R=k P+\ell Q
\]
Saves 50\% of the doublers
```


More rewriting: Shamir's trick

Semi-classical QFT

Equivalent protocol:

Saves a lot of qubits!

Example: ECC point addition

Consider elliptic curve in short Weierstrass form over $G F\left(2^{m}\right)$

$$
y^{2}+x y=x^{3}+a_{2} x^{2}+a_{6}
$$

Adding 2 projective points $P_{1}=\left(\mathrm{X}_{1}, \mathrm{Y}_{1}, \mathrm{Z}_{1}\right)$ and $P_{2}=\left(\mathrm{X}_{2}, \mathrm{Y}_{2}, \mathrm{Z}_{2}\right)$ can be done with $12 G F\left(2^{m}\right)$-mults-of which 9 are generic$7 G F\left(2^{m}\right)$-adds, and 1 squaring (madd-2008-bl):

$$
\begin{aligned}
& A=Y_{1}+Z_{1} \cdot y_{2}, \quad B=X_{1}+Z_{1} \cdot x_{2}, \quad A B=A+B, \\
& C=B^{2}, \quad E=B \cdot C, \quad F=\left(A \cdot A B+a_{2} \cdot C\right) \cdot Z_{1}+E, \\
& \hline X_{3}=B \cdot F, \\
& Y_{3}=C \cdot\left(A \cdot X_{1}+B \cdot Y_{1}\right)+A B \cdot F, \\
& Z_{3}=E \cdot Z_{1} .
\end{aligned}
$$

[Bernstein, Lange: http://www.hyperelliptic.org/EFD/]

Complete binary Edwards curves

[Bernstein, Lange, Farashahi, 2008]: For $\mathrm{n} \geq 3$ each ordinary binary elliptic curve is birationally equivalent to a complete binary Edwards curve: $\left(d_{1}, d_{2} \in G F\left(2^{n}\right)\right.$ with $\left.\operatorname{Tr}\left(d_{2}\right)=1\right)$.

$$
d_{1}(x+y)+d_{2}\left(x^{2}+y^{2}\right)=x y+x y(x+y)+x^{2} y^{2}
$$

Point addition / group law:

$$
\begin{aligned}
& x_{3}=\frac{d_{1}\left(x_{1}+x_{2}\right)+d_{2}\left(x_{1}+y_{1}\right)\left(x_{2}+y_{2}\right)+\left(x_{1}+x_{1}^{2}\right)\left(x_{2}\left(y_{1}+y_{2}+1\right)+y_{1} y_{2}\right)}{d_{1}+\left(x_{1}+x_{1}^{2}\right)\left(x_{2}+y_{2}\right)} \text { and } \\
& y_{3}=\frac{d_{1}\left(y_{1}+y_{2}\right)+d_{2}\left(x_{1}+y_{1}\right)\left(x_{2}+y_{2}\right)+\left(y_{1}+y_{1}^{2}\right)\left(y_{2}\left(x_{1}+x_{2}+1\right)+x_{1} x_{2}\right)}{d_{1}+\left(y_{1}+y_{1}^{2}\right)\left(x_{2}+y_{2}\right)}
\end{aligned}
$$

- no projective closure needed
- one formula to implement group law for all points
- identity: $(0,0)$

Complete binary Edwards curves

Consider complete binary Edwards curve:

$$
d_{1}(x+y)+d_{2}\left(x^{2}+y^{2}\right)=x y+x y(x+y)+x^{2} y^{2}
$$

- One can work projectively to avoid inversions.
- Adding projective points $P_{1}=\left(\mathrm{X}_{1}, \mathrm{Y}_{1}, \mathrm{Z}_{1}\right)$ and $P_{2}=\left(\mathrm{X}_{2}, \mathrm{Y}_{2}, \mathrm{Z}_{2}\right)$ can be done with $21 G F\left(2^{m}\right)$-mults-of which 17 are generic$15 G F\left(2^{m}\right)$-adds, and 1 squaring:

$$
\begin{array}{llll}
W_{1}=X_{1}+Y_{1}, \quad W_{2}=X_{2}+Y_{2}, \quad A=X_{1} \cdot\left(X_{1}+Z_{1}\right), & B=Y_{1} \cdot\left(Y_{1}+Z_{1}\right), \\
C & =Z_{1} \cdot Z_{2}, \quad D=W_{2} \cdot Z_{2}, & E=d_{1} C^{2}, & H=\left(d_{1} Z_{2}+d_{2} W_{2}\right) \cdot W_{1} \cdot C, \\
I & =d_{1} Z_{1} \cdot C, U=E+A \cdot D, V=E+B \cdot D, & S=U \cdot V, \\
X_{3}=S \cdot Y_{1}+\left(H+X_{2} \cdot\left(I+A \cdot\left(Y_{2}+Z_{2}\right)\right)\right) \cdot V \cdot Z_{1}, & & \\
Y_{3}=S \cdot X_{1}+\left(H+Y_{2} \cdot\left(I+B \cdot\left(X_{2}+Z_{2}\right)\right)\right) \cdot U \cdot Z_{1}, & & \\
Z_{3}=S \cdot Z_{1} . & & &
\end{array}
$$

Example: higher genus

Algorithm 3 Mixed addition between general divisors on the Jacobian of $C: y^{2}=$

Projective coordinates of the points require division at the end to make representation unambiguous

Quantum arithmetic

 what is the problem? why is this non-trivial? who cares?
Adders

[CDKM:04] S. A. Cuccaro, T. G. Draper, S. A. Kutin, and D. P. Moulton, quant-ph/0410184 (2004).
This is a space optimized adder. Runs in T-depth $2 \mathrm{n}-1$. Quite poor load factor, i.e., most qubits in the computation are idle. Explore time/space trade-offs.

Controlled quantum adder

Resource estimate: $14 n-11$ Toffoli gates

[Draper, Kutin, Rains, Svore, 2004]

Multipliers

Wallace tree multiplier. T-count of $n^{2}+4 n \log _{2}(n)$ and T-depth $O\left(\log _{2}(n)\right)$. Shown is an implementation in .qc/QCViewer of a circuit generated dynamically by a Haskell library.

Division with remainder

For a division with remainder we obtain the estimate $\operatorname{Divider}(n)=n \cdot(\operatorname{CSub}(n)+\operatorname{Adder}(n)+3 C N O T)$, where $\operatorname{CSub}(n)$ is bounded by the cost of one $\operatorname{Adder}(n), 3 n$ local Pauli operations, n CNOT gates, and $(n+1)$ Toffoli gates.

Time-space tradeoffs II

Adders for n bit integers:

- Low depth circuit:
- [Draper, Kutin, Rains, Svore, quant-ph/0406142].
- Depth $O(\log n)$, however, requires $O(n)$ ancillas.
- In-place version exists. Easy to modify into controlled adder
- Space optimized circuit:
- [Cuccaro, Draper, Kutin, Moulton, quant-ph/0410184].
- Can be used to implement in-place addition $|x, y\rangle \mapsto|x, x+y\rangle$ with only 1 additional ancilla qubit. Depth scales linear with n.

Multipliers for n bit integers:

- Simple $O\left(n^{2}\right)$ "school" method using controlled adders. Disadvantage: circuit depth scales linear with n. Improvement: Wallace tree in log depth.
- Limitation: only out-of-place multipliers $|x, y, 0\rangle \mapsto|x, y, x \cdot y\rangle$ known.

Arithmetic for modular exponentiation:

- Computing $x \mapsto a^{x} \bmod N$ for fixed a, N is relatively easy and can be done using $2 n+3$ qubits and $O\left(n^{3}\right)$ time: [Beauregard, quant-ph/0205095]

Modular inverses:

Approaches based on Fermat's little theorem

Modular Inverse a la Fermat

Basic idea:

- Let p be prime, let $x \in\{1, \ldots, p-2\}$.
- Recall that in any finite group: $x^{|G|}=e$.
- When applied to $G F(p)^{\times}$this implies

$$
\text { - } x^{p-1} \equiv 1(p)
$$

- Or in other words: $x^{p-2} \cdot x \equiv 1(p)$
- Or in other words: $x^{-1} \equiv x^{p-2}(p)$
- That means we can compute the inverse by exponentiation of the (unknown) x for the (known, fixed) exponent p.

Modular multiplier

Square \& multiply by unrolling

Depth: $2 n \times \operatorname{depth}(M U L)+2 \operatorname{depth}(A D D))+n$
Width: $2 n \times n=n^{2}$

- Here n is the bit-size of x
- Use binary representation of $p-2$ to compute x^{p-2}

Open problem: improvements?

Depth: $O\left(n^{2}\right) \quad \leftarrow$ Can we achieve this using suitable Width: $O(n)$ initial configuration, suitable U?

- Partial success: using MUL and suitable permutations U we can compute the Chebyshev polynomials $T_{n}(x) \bmod p$.
- Unclear whether they allow to efficiently compute monomials x^{n}

Unknown whether linear space can be achieved by this approach

Modular inverses:
Approaches based on the Euclidean algorithm

Modular Inverse via GCD

Basic idea:

- Let p be prime, let $x \in\{1, \ldots, p-2\}$.
- Compute the greatest common divisor (GCD) of p and x
- ... and find the linear representation of the GCD:

$$
a p+b x=\operatorname{GCD}(p, x)=1
$$

- This means that modulo p we have that $b x=1$
- In other words: $x^{-1} \bmod p=b$.

How to find a and $\mathrm{b} ? \quad \rightarrow$ Extended Euclidean Algorithm

An Orwellian principle (?)

"Ignorance is Strength"

Any computation that a quantum computer carries out must be independent of the input data.

- Reason: quantum programs must be able to run on superposition of input data. If the execution flow of the depended on the input in any way that makes 2 or more inputs distinguishable, this can lead unwanted entanglement that destroys interference.
- In quantum context first studied by [Bernstein/Vazirani'93] \rightarrow path synchronization technique for Quantum TMs.
- Classically studied too: "Oblivious Turing Machines"

Saeedi \& Markov’s method

Uses binary Euclid: - If $A \% 2=B \% 2=0, \operatorname{gcd}(A, B)=2 \operatorname{gcd}(A / 2, B / 2)$

- If $A \% 2=0=1-B \% 2, \operatorname{gcd}(A, B)=\operatorname{gcd}(A / 2, B)$ If $A \% 2=1=1-B \% 2, \operatorname{gcd}(A, B)=\operatorname{gcd}(A, B / 2)$
- If $A \% 2=B \% 2=1$, then we ensure that $A \geq B$, and use $\operatorname{gcd}(A, B)=\operatorname{gcd}\left(\frac{A-B}{2}, B\right)$
Single round:

Summary: + Easy to circuitize

+ Depth scales as O(n log n)
- But does not yield linear representation of GCD

Shor for factoring vs ECC dlog

Factoring algorithm (RSA)			EC discrete logarithm (ECC)		
n	\approx \# qubits	time	n	\approx \# qubits	time
	$2 n$	$4 n^{3}$		$f^{\prime}(n)(f(n))$	$360 n^{3}$
512	1024	$0.54 \cdot 10^{9}$	110	$700(800)$	$0.5 \cdot 10^{9}$
1024	2048	$4.3 \cdot 10^{9}$	163	$1000(1200)$	$1.6 \cdot 10^{9}$
2048	4096	$34 \cdot 10^{9}$	224	$1300(1600)$	$4.0 \cdot 10^{9}$
3072	6144	$120 \cdot 10^{9}$	256	$1500(1800)$	$6.0 \cdot 10^{9}$
15360	30720	$1.5 \cdot 10^{13}$	512	$2800(3600)$	$50 \cdot 10^{9}$

[Proos, Zalka, quant-ph/0301141]

- Suggests that quantum attacks on ECC/dlog can be done more efficiently than RSA/factoring with comparable level of security.
- Circuits are somewhat non-trivial to implement and to layout.
- Only short Weierstrass forms considered, unclear how classical optimizations of point additions can be leveraged.
- Leaves open how to optimize depth for Shor ECC.

Optimizing the circuit depth for the binary case

Low-depth GF($\left.2^{\mathrm{n}}\right)$-arithmetic

Design decision: polynomial basis representation

- Addition: depth O(1)
- Squaring: matrix-vector mult. \rightarrow addition trees+"multi-fan-out CNOT w/ |0才-input": O($\log \mathrm{n})$
- Multiplication: Maslov et al.'s construction reduces to 3 matrix-vector multiplications parallelization: depth $\mathrm{O}(\log \mathrm{n})$

Projective point addition: depth $\mathrm{O}(\log \mathrm{n})$ Note: all this is irrelevant for the large p case !!

Inversion: prior work

Beauregard et al. 2003, Kaye-Zalka 2004, Maslov et al. 2009 offer circuits for GF(2m)-inversion:

Inversion: apply extended Euclidean algorithm in depth $\mathrm{O}\left(\mathrm{m}^{2}\right)$ using $2 \mathrm{~m}+\mathrm{O}(\log \mathrm{m})$ qubits.

We can actually do much better in the binary case and achieve poly-log scaling of depth!

Ghost-bit basis representation

[Itoh-Tsujii 1989], [Silverman 1999]:
If $\mathrm{f}=1+\mathrm{x}+\ldots+\mathrm{x}^{\mathrm{m}} \in \mathrm{GF}\left(2^{\mathrm{m}}\right)[\mathrm{x}]$ is irreducible, the maps

$$
\begin{array}{ll}
\mathrm{GF}\left(2^{\mathrm{m}}\right)[\mathrm{x}] /(\mathrm{f}) & \longrightarrow \mathrm{GF}\left(2^{m}\right)[\mathrm{x}] /\left(\mathrm{x}^{\mathrm{m}+1}+1\right) \\
\Sigma \alpha_{i}+(\mathrm{f}) & \rightarrow \Sigma \alpha_{i}+\left(\mathrm{x}^{\mathrm{m+1}+1)}\right. \\
\Sigma\left(\alpha_{i}+\alpha_{m}\right) \mathrm{x}^{i}+(\mathrm{f}) & \leftarrow \quad \alpha_{0} \mathrm{x}^{0}+\ldots+\alpha_{m} \mathrm{x}^{m}+\left(\mathrm{x}^{m+1}+1\right)
\end{array}
$$

allow to move arithmetic to $\operatorname{GF}\left(2^{m}\right)[x] /\left(x^{m+1}+1\right)$.

Ghost-bit basis arithmetic

- Addition: bit-wise \oplus (i.e., depth 1 with CNOTs)
- Multiplication: $\left(\sum a_{i} x^{i}\right) \cdot\left(\sum b_{i} x^{i}\right)=\sum_{i}\left(\sum_{j} a_{j} b_{(i-j)} \bmod (m+1) \cdot x^{i}\right.$
- Squaring:

$$
\begin{aligned}
\left(\sum a_{i} x^{i}\right)^{2} & =\sum a_{p-1(i)} \cdot x^{i} \text { with } \\
p(i) & =2 \cdot i \bmod (m+1)
\end{aligned}
$$

Squaring is a shuffle of the coefficient vector

Gaussian normal basis of type T

Vector space basis $\left\{h, h^{2}, h^{2^{2}}, \ldots, h^{2^{m-1}}\right\}$ of GF $\left(2^{m}\right)$; let $p=T m+1, u \in G F\left(2^{m}\right)^{*}$ of order $T, F\left(2^{i} u^{j} \bmod p\right)=i$

- Addition: bit-wise \oplus
- Multiplication: $\left(\sum a_{i} \cdot h^{2^{i}}\right) \cdot\left(\sum b_{i} \cdot h^{2^{i}}\right)=\sum g_{i} \cdot h^{2^{i}}$ with

$$
g_{i}=a_{F(1+1)+i} \cdot b_{F(p-1)+i}+\ldots+a_{F(T m-1+1)+i} \cdot b_{F(p-(T m-1))+i}
$$

- Squaring: $\left(\sum \mathrm{a}_{\mathrm{i}} \cdot \mathrm{h}^{2^{i}}\right)^{2}=\sum \mathrm{a}_{\mathrm{i}-1(\bmod m)} \cdot h^{2^{i}}$

Squaring is a rotation of the coefficient vector

Itoh-Tsujii inversion algorithm

For $\alpha \in \operatorname{GF}\left(2^{m}\right)^{*}$ let $\beta_{i}=\alpha^{2^{i}-1}$. Then $\beta_{1}=\alpha, \alpha^{-1}=\left(\beta_{m-1}\right)^{2}$, and

$$
\beta_{i+j}=\beta_{i} \cdot\left(\beta_{j}\right)^{2} \cdot\left(^{*}\right)
$$

(1) write $m-1=2^{\mathrm{k}_{1}}+\ldots+2^{\mathrm{k}} \mathrm{Hw}(m-1)$ with

$$
\left\lfloor\log _{2}(m-1)\right\rfloor=k_{1}>\ldots>k_{H W(m-1)} \geq 0
$$

(2) find $\beta_{2^{0},}, \beta_{2^{1}}, \ldots, \beta_{2^{\mathrm{k}_{1}}}$ applying (${ }^{*}$) with $\mathrm{i}=\mathrm{j}$
(3) find $\beta_{2^{k} 1+2^{k} 2}, \ldots, \beta_{2^{k_{1}}+\ldots+2^{k} H W(m-1)}\left(=\beta_{m-1}\right)$ with (*)

Total cost:

$\left\lfloor\log _{2}(m-1)\right\rfloor+H W(m-1)-1$ multiplications (+ squarings)

Inversion in depth $\mathrm{O}\left(\log ^{2} \boldsymbol{m}\right)$

(1) find $\beta_{2^{0},}, \beta_{2^{1}}, \ldots, \beta_{2^{k} 1}$ from Itoh-Tsujii algorithm with $\left\lfloor\log _{2}(m-1)\right\rfloor$ "single-input" multipliers (squaring is free: permute control positions)
(2) find $\beta_{2^{k} 1+\ldots+2^{k H W}(m-1)}\left(=\beta_{m-1}\right)$ with HW(m-1)-1 "ordinary" multipliers (not needed for $m=2^{n}+1$, e.g., a Fermat prime)
(3) Finally, $\alpha^{-1}=\left(\beta_{m-1}\right)^{2}$ which is just a shuffle

How not to compute $\mathrm{k} \cdot \mathrm{P}+\ell \cdot \mathrm{Q} . .$.

Maslov et al.'strategy - right-to-left double-and-add:

$$
\begin{aligned}
& R \leftarrow 0 \\
& \text { for } i=0 \text { to } n \text { step } 1 \\
& \text { if } k_{i}=1 \text { then } R \leftarrow R+2^{2^{i} \cdot P} \\
& \text { if } \ell_{i}=1 \text { then } R \leftarrow R+\underbrace{2^{i} \cdot Q} \\
& \text { return } R \quad \text { precomputed }
\end{aligned}
$$

... yields depth $O(n \cdot \log n)$ circuit

Instead: Parallelized double-and-add

- requires "multi-fan-out CNOT w/ |0才-input"
- depth $O\left(\log ^{2} n\right)$, using general addition circuits

Open problems

- Can we adapt the methods to a 2D NN architecture?
- Can square\&multiply based ideas be modified to make them space efficient?
- Can the "quantum-quantum" techniques based on the quantum Fourier transform (e.g., Draper adder) be applied to the modular inversion problem? Can we avoid modular inversions altogether?
- Can we simplify the (Edwards) point addition circuits? Few Tgates, less T-depth, less qubits?
- Use the resource estimates to obtain resource estimates for quantum attacks on ECC dlog for NIST curves and generalize this to Jacobians of hyperelliptic curves.

