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Motivation
• Analyze resources needed to implement Shor

• Focus: Computing dlogs over abelian groups

• Possible circuit optimizations

• Scaling of space (=#qubits) and time (=depth)?

Please ask questions during talk!
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Background: 
Quantum resources



Quantum bits and registers
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≠



Measurements
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Examples: local operations and CNOT
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Notation for unitary matrices
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Wire = qubit



Universality theorem
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Levels of abstraction
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Operations on subspaces

1/15/2015 M. Roetteler -- QuArC Group @ MSR 10



Controlled rotations
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Remark: For 𝑈 = 𝑁𝑂𝑇, the gate Λ1 𝑁𝑂𝑇 is the CNOT gate. 
The gate Λ2(𝑁𝑂𝑇) is called the Toffoli gate.



Discrete universal gate sets
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Important universal gate set “Clifford + T” (for logical operations):

Consists of all Clifford operations (i.e., the group generated by 𝐻2, 𝐶𝑁𝑂𝑇

and 𝑑𝑖𝑎𝑔(1, 𝑖)) and the “T gate” (T = 𝑑𝑖𝑎𝑔(1, 𝜔8)). Can be shown to be   
universal, i.e., for any unitary U and any given 𝜖 > 0, there exists an element A 
in the Clifford+T group such that || 𝑈 − 𝐴 || ≤ 𝜖 .

• This gate set arises naturally in the context of fault-tolerant quantum computing   
for several quantum codes, e.g., Steane code, surface code.

• T gate usually implemented via a process called “magic state distillation” which is  
very expensive. Much more expensive than Clifford gates. 

• Common metrics used to measure resources:
•T-count = total number of T gates used in a circuit
•T-depth = number of T-layers when a circuit is written as C T C … T C
• #qubits = total number of qubits used, including “ancillas” (=scratch space)

Typically, single-qubit rotations account for most of the cost!



Bounding resources: T gates
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A useful factorization: 

Lemma: If a unitary U can be implemented exactly over Clifford+T, 
then also Λ(U) can be implemented exactly. [arxiv.org:1206.0758]

This Lemma be used in some situations to avoid all errors due to 
single qubit approximations.

Cost of controlled unitaries:
• Tracking v=[#loc, #CNOT,#H, #P, #T]
• From U to Λ(U): matrix vector multiplication Mv. 
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Solovay-Kitaev algorithm
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Goal: Approximate unitaries by elements of dense subgroup 𝐺 ≤ 𝑈(𝑁)
Basic idea: Successive refining of a “net” using commutators 

Implementations:
• [Kitaev, Shen, Vyialyi, AMS 2002]: log3+δ (1/ε) time, log3+δ(1/ε) length 

• [Dawson, Nielsen, quant-ph/0505030]: log2.71 (1/ε)  time, log3.97 (1/ε) length 

• [Harrow, Recht, Chuang, quant-ph/0111031]: non-constructive, log (1/ε) length 

[Image source: Nielsen/Chuang, CUP 2000]



Single qubit gates: synthesis methods
Basic idea:

Shown are all unitaries in 〈𝐻, 𝑇〉 that 
are obtainable from a simple round-off 

procedure and have T-count ≤ 12.

[Kliuchnikov/Maslov/Mosca 2012], [Selinger 2012]

[Slide concept by V. Kliuchnikov]
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Tools from the theory of 
reversible computing



Classical circuits
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• Consider functions from n≥1 bits to m≥1 bits. We are interested 
in implementing functions by combinational circuits, i.e., circuits  
that do not make use of memory elements or feedback. 

• Universal families of gates exist, i.e., sets of elementary    
gates from which any circuit can be built.

• We can compose gates together to make larger circuits.

• Problem for quantum computing: many gates are not reversible!

a
b

a Λ b a a

[Slide concept by M. Mosca, Waterloo]



How to invert an irreversible operation?
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Reversible computation 
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How to make circuits reversible?
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Example:

Replace each gate with a reversible one:

[Slide concept by M. Mosca, Waterloo]



• Replacing each gate with a reversible one works fine, 
however, it produces “garbage”, i.e., help registers will 
be in a state different from 0 at the end.
• While this is fine for reversible computing, it is bad for 
quantum computing (it will prevent interference).
• There is a way out of this dilemma: the Bennett trick

Idea: compute forward, copy the result, “uncompute”   
the garbage by running the computation backwards.

How to avoid garbage?
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Uncomputing the garbage
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Replace each gate with a reversible one:
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The pebble game

1/15/2015 M. Roetteler -- QuArC Group @ MSR 23

Example:

Rules of the game: [Bennett, SIAM J. Comp., 1989]
• n boxes, labeled i = 1, …, n
• in each move, either add or remove a pebble
• a pebble can be added or removed in i=1 at any time
• a pebble can be added of removed in i>1 if and only if 

there is a pebble in i-1.

1 2 3 4

#    i

1 1
2 2
3 3
4 4
5 3
6 2
7 1



The pebble game
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Example: (n=3, S=3)

Imposing resource constraints:
• only a total of S pebbles are allowed
• corresponds to reversible algorithm with at most S
ancilla qubits

1 2 3 4

#    i

1 1
2 2
3 3
4 1
5 4
6 3
7 1
8 2
9 1



Optimal pebbling strategies
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Definition: Let X be solution of pebble game. Let T(X) be # steps and 
Let S(X) be #pebbles. Define F(n,S) = min { T(X) : S(X) ≤ S }.

Table (small values of F):

[E.Knill, arxiv:math/9508218]



Let A be an algorithm with time complexity T and space complexity S. 

• Using reversible pebble game, [Bennett, SIAM J. Comp. 1989]   
showed that for any ε>0 there is a reversible algorithm A’ with 
time complexity O(T1+ ε) and space complexity O(S ln(T)).

• Issue: one cannot simply take the limit ε→0. The space would   
grow in an unbounded way (as O(ε21/ε S ln(T))). 

• Improved analysis [Levine, Sherman, SIAM J. Comp. 1990]
showed that for any ε>0 there is a reversible algorithm  A’ with  
time complexity O(T1+ ε/S ε) and space complexity O(S (1+ln(T/S))).
• Other time/space tradeoffs: [Buhrman, Tromp, Vitányi, ICALP’01]

Research topic: develop a “compiler” that takes a classical 
combinational circuit as input and translates it into a reversible 
circuit, with respect to various resource constraints. 

Time-space tradeoffs
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Shor



Reducing factoring to period finding
• Modular exponentiation: Let N be an integer and let a be in 

ZN. Modular exponentiation is the map f(x) := ax mod N.

• Fact: The map f can be implemented in O(poly(log N)) ops.

• Fact: It can be shown that it can also be implemented 
efficiently on a quantum computer.

• More facts:

– Recall that the order of a is defined as the smallest 
integer r such that ar = 1 mod N.

– The function f(x) := ax mod N is periodic with period r 
equal to the order of a, i. e., f (x) = f (x + r) for all x.

– The problem of factoring N can be reduced to period 
finding for modular exponentiation f (for random a).
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Setting up a periodic state
• Observation: The function f(x) = ax mod N is periodic and has period length r, 

i. e., f (x) = f (x + r) for all inputs x.

• Example: graph of the function f (x) = 2x mod 165: 

x|

f(x)y| 



Shor’s algorithm for period finding
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Period finding using coset states
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Discrete Fourier Transforms



Discrete Fourier Transform (DFT/QFT)
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Quantum Fast Fourier Transform
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The Hidden Subgroup Problem
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Shor’s algorithm for dlogs:
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Step 1: Create  𝑘∈ 0,1 𝑛 𝑘1, … , 𝑘𝑛 ⊗ ℓ∈ 0,1 𝑛 ℓ1, … , ℓ𝑛 ⊗ |𝒪 〉 by  

applying Hadamard gates to 2 registers of 𝑛 qubits; 𝑛 = ⌈log 𝑜𝑟𝑑𝑃 ⌉

Step 2: For fixed generator 𝑃 and fixed target 𝑄 ∈ 𝑃 compute
the transformation that maps this state to 

 

𝑘∈ 0,1 𝑛

𝑘 ⊗  

ℓ∈ 0,1 𝑛

ℓ ⊗ |𝑘𝑃 + ℓ𝑄〉

Step 3: Measure the 3rd register. Obtain a result 𝑅. Letting 𝑄 = 𝛼𝑃
and 𝑅 = 𝛽𝑃, we obtain a state corresponding to a “line” 

 

𝑘,ℓ∈ 0,1 𝑛:
𝑘+𝛼ℓ=𝛽

𝑘 ⊗ ℓ ⊗ 𝑅 =  

ℓ∈ 0,1 𝑛

𝛽 − 𝛼ℓ ⊗ ℓ

Step 4: Apply 𝑄𝐹𝑇 ⊗ 𝑄𝐹𝑇 and measure to sample from the line
{ 𝑥, 𝛼𝑥 , 𝑥 ∈ 0, . . , 2𝑛 − 1 . If 𝑥 is a unit, we obtain 𝛼.



Visualizing Fourier duality

| 〉 | 〉
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Circuit for Shor’s dlog algorithm

Phase estimation circuit layout: 



Simple circuit optimizations
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Double & Add

Input: binary string 𝑥𝑛−1, 𝑥𝑛−2, … , 𝑥1, 𝑥0

Output: 𝑥 =  𝑖 𝑥𝑖2
𝑖 = x0 + 2(x1 + 2 x2 + … )

Method 1 (“evaluate left-to-right")

x ← 𝑥0
for i = 1 … n − 1 do
x ← 𝑥 + 2𝑖𝑥𝑖
end for
return x

Method 2 (“evaluate right-to-left")

x ← 𝑥𝑛−1
for i = n − 2…1 do
x ← 2𝑥 + 𝑥𝑖
end for
return x
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Rewriting the ECC dlog circuit
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Rewriting the ECC dlog circuit

Improvement 2: use Shamir’s trick 
to combine double& add for P and Q
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Double & Add: Shamir’s Trick

Saves 50% of the doublers
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More rewriting: Shamir’s trick

+P

H

H

H

H

H

H

+Q +Q

QFT22n+2

2x 2x+P +Q
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Semi-classical QFT

+P

H

H

H

H

H

H

+Q +Q

QFT

2x 2x+P +Q

measure

+P/+Q

H Z(𝜃) H

Equivalent protocol:

measure

|𝐴〉

|𝒪〉

Saves a lot of qubits!



Example: ECC point addition

1/15/2015 46M. Roetteler -- QuArC Group @ MSR

[Bernstein, Lange: http://www.hyperelliptic.org/EFD/]

Consider elliptic curve in short Weierstrass form over 𝐺𝐹(2𝑚)

Adding 2 projective points 𝑃1 = (X1, Y1, Z1) and 𝑃2 = (X2, Y2, Z2)
can be done with 12 𝐺𝐹 2𝑚 -mults—of which 9 are generic—
7 𝐺𝐹(2𝑚)-adds, and 1 squaring (madd-2008-bl):



Complete binary Edwards curves
[Bernstein, Lange, Farashahi, 2008]: For n3 each ordinary binary 

elliptic curve is birationally equivalent to a complete binary 
Edwards curve: (d1, d2GF(2n) with Tr(d2)=1).

• no projective closure needed

• one formula to implement group law for all points

• identity: (0,0)
1/15/2015 M. Roetteler -- QuArC Group @ MSR 47

Point addition / group law:



Complete binary Edwards curves
Consider complete binary Edwards curve:

• One can work projectively to avoid inversions. 

• Adding projective points 𝑃1 = (X1, Y1, Z1) and 𝑃2 = (X2, Y2, Z2)

can be done with 21 𝐺𝐹 2𝑚 -mults—of which 17 are generic—

15 𝐺𝐹(2𝑚)-adds, and 1 squaring:
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Example: higher genus
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Projective coordinates 
of the points require
division at the end to
make representation
unambiguous

Some formulas require 
modular division 

[Bos, Costello, Hisil, Lauter, 2013]



Quantum arithmetic
what is the problem?
why is this non-trivial?
who cares?



Adders
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This is a space optimized adder. Runs in T-depth 2n-1. Quite poor load factor, 
i.e., most qubits in the computation are idle. Explore time/space trade-offs. 

51M. Roetteler -- QuArC Group @ MSR



Controlled quantum adder
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Resource estimate:
14𝑛 − 11 Toffoli gates

[Draper, Kutin, Rains, 

Svore, 2004]



Multipliers

1/15/2015

Wallace tree multiplier. T-count of 𝑛2+ 4𝑛 log2(𝑛) and T-depth 𝑂(log2(𝑛)). Shown is an 
implementation in .qc/QCViewer of a circuit generated dynamically by a Haskell library.
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Division with remainder

1/15/2015 54M. Roetteler -- QuArC Group @ MSR



Adders for 𝑛 bit integers:
• Low depth circuit: 

• [Draper, Kutin, Rains, Svore, quant-ph/0406142].
• Depth 𝑂(log 𝑛), however, requires 𝑂(𝑛) ancillas.
• In-place version exists. Easy to modify into controlled adder

• Space optimized circuit: 
• [Cuccaro, Draper, Kutin, Moulton, quant-ph/0410184].
• Can be used to implement in-place addition 𝑥, 𝑦 ↦ 𝑥, 𝑥 + 𝑦 with    

only 1 additional ancilla qubit. Depth scales linear with 𝑛.

Multipliers for 𝑛 bit integers: 
• Simple 𝑂(𝑛2) “school” method using controlled adders. Disadvantage: 

circuit depth scales linear with 𝑛. Improvement: Wallace tree in log depth. 
• Limitation: only out-of-place multipliers 𝑥, 𝑦, 0 ↦ 𝑥, 𝑦, 𝑥 ⋅ 𝑦 known.

Arithmetic for modular exponentiation:
• Computing 𝑥 ↦ 𝑎𝑥 𝑚𝑜𝑑 𝑁 for fixed 𝑎,𝑁 is relatively easy and can be done

using 2𝑛 + 3 qubits and 𝑂 𝑛3 time: [Beauregard, quant-ph/0205095]

Time-space tradeoffs II

1/15/2015 M. Roetteler -- QuArC Group @ MSR 55



Modular inverses:

Approaches based on Fermat’s little theorem



Modular Inverse a la Fermat
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Basic idea:

• Let 𝑝 be prime, let 𝑥 ∈ 1,… , 𝑝 − 2 .

• Recall that in any finite group: 𝑥|𝐺| = 𝑒.

• When applied to 𝐺𝐹 𝑝 × this implies 
• 𝑥𝑝−1 ≡ 1 𝑝

• Or in other words: 𝑥𝑝−2 ⋅ 𝑥 ≡ 1 𝑝

• Or in other words: 𝑥−1 ≡ 𝑥𝑝−2 𝑝

• That means we can compute the inverse by exponentiation 
of the (unknown) 𝑥 for the (known, fixed) exponent 𝑝.



Modular multiplier
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AMUL𝑦

𝑥

𝑧 + 𝑥𝑦

𝑥

𝑧

𝑦



Square & multiply by unrolling
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AMUL

𝑥

AMUL

𝑥

0

𝑥

𝑥2

𝑥4

𝑥8

𝑥16

…

…

Depth: 2𝑛 × 𝑑𝑒𝑝𝑡ℎ 𝑀𝑈𝐿 + 2𝑑𝑒𝑝𝑡ℎ 𝐴𝐷𝐷 ) + 𝑛
Width: 2𝑛 × 𝑛 = 𝑛2

• Here 𝑛 is the bit-size of 𝑥
• Use binary representation of 𝑝 − 2 to compute 𝑥𝑝−2

-

+ -

+



Open problem: improvements?
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AMUL

?

?

0

?

?
…

Depth: 𝑂 𝑛2

Width: 𝑂(𝑛)

• Partial success: using MUL and suitable permutations U we can 
compute the Chebyshev polynomials 𝑇𝑛(𝑥) 𝑚𝑜𝑑 𝑝.

• Unclear whether they allow to efficiently compute monomials 𝑥𝑛

AU AMUL…

← Can we achieve this using suitable
initial configuration, suitable U? 

Unknown whether linear space can be achieved by this approach 



Modular inverses:

Approaches based on the Euclidean algorithm



Modular Inverse via GCD
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Basic idea:

• Let 𝑝 be prime, let 𝑥 ∈ 1,… , 𝑝 − 2 .

• Compute the greatest common divisor (GCD) of p and x

• … and find the linear representation of the GCD:
𝑎 𝑝 + 𝑏 𝑥 = 𝐺𝐶𝐷(𝑝, 𝑥) = 1

• This means that modulo p we have that 𝑏 𝑥 = 1

• In other words: 𝑥−1 𝑚𝑜𝑑 𝑝 = 𝑏. 

How to find a and b?     →    Extended Euclidean Algorithm



An Orwellian principle (?)
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“Ignorance is Strength” 

Any computation that a quantum computer carries
out must be independent of the input data. 

• Reason: quantum programs must be able to run on 
superposition of input data. If the execution flow of 
the depended on the input in any way that makes 
2 or more inputs distinguishable, this can lead
unwanted entanglement that destroys interference. 

• In quantum context first studied by [Bernstein/Vazirani’93]
→ path synchronization technique for Quantum TMs.

• Classically studied too: “Oblivious Turing Machines”



Saeedi & Markov’s method
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Uses binary Euclid:

Single round:

Summary:  + Easy to circuitize
+ Depth scales as O(n log n)
- But does not yield linear representation of GCD

[Saeedi, Markov arXiv:1304.7516]



Shor for factoring vs ECC dlog
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• Suggests that quantum attacks on ECC/dlog can be done more 
efficiently than RSA/factoring with comparable level of security.

• Circuits are somewhat non-trivial to implement and to layout.
• Only short Weierstrass forms considered, unclear how classical 

optimizations of point additions can be leveraged.
• Leaves open how to optimize depth for Shor ECC.

[Proos, Zalka, quant-ph/0301141]



Optimizing the circuit depth 
for the binary case



Low-depth GF(2n)-arithmetic

Design decision: polynomial basis representation

• Addition: depth O(1)

• Squaring: matrix-vector mult. →    addition
trees+“multi-fan-out CNOT w/ |0-input”:
O(log n)

• Multiplication: Maslov et al.’s construction 
reduces to 3 matrix-vector multiplications    

parallelization: depth O(log n)

Projective point addition: depth O(log n)

Note: all this is irrelevant for the large p case !!
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Inversion: prior work

Beauregard et al. 2003, Kaye-Zalka 2004, Maslov
et al. 2009 offer circuits for GF(2m)-inversion:

Inversion: apply extended Euclidean algorithm 
in depth O(m2) using 2m + O(log m) qubits.

We can actually do much better in the binary 
case and achieve poly-log scaling of depth!
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Ghost-bit basis representation

[Itoh-Tsujii 1989], [Silverman 1999]:

If f=1+x+…+xm GF(2m)[x] is irreducible, the maps

GF(2m)[x]/(f)        GF(2m)[x]/(xm+1+1)

Sai+(f)                  Sai+(xm+1+1)

S(ai+am)xi+(f)  a0x0+…+amxm+(xm+1+1)

allow to move arithmetic to GF(2m)[x]/(xm+1+1).
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Ghost-bit basis arithmetic

• Addition: bit-wise  (i.e., depth 1 with CNOTs)

• Multiplication: ( aix
i)( bi xi) =  i( j  ajb(i-j) mod (m+1))x

i

• Squaring: ( aix
i)2  =  ap-1(i)x

i with
p(i)=2i mod (m+1)

Squaring is a shuffle of the coefficient vector
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Gaussian normal basis of type T

Vector space basis {h, h2, h22,…, h2m-1} of GF(2m); let

p=Tm+1, uGF(2m)* of order T,  F(2iuj mod p)=i

• Addition: bit-wise 

• Multiplication:  ( ai  h2i)( bi  h2i) =  gi h 2i with

gi = aF(1+1)+i  bF(p-1)+i + … + aF(Tm-1+1)+ibF(p-(Tm-1))+i

• Squaring: ( aih
2i)2 =  ai-1 (mod m)h

2i

Squaring is a rotation of the coefficient vector
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Itoh-Tsujii inversion algorithm
For aGF(2m)* let bi=a2i-1. Then b1=a, a-1  (bm-1)2, and

bi+j=bi(bj)
2i 

. (*)

(1) write m-1=2k1+…+2kHW(m-1) with
log2(m-1)=k1>…>kHW(m-1)0

(2) find β20,β21,...,β2k1 applying (*) with i=j

(3) find β2k1+2k2,…,β2k1+…+ 2kHW(m-1)(=bm-1) with (*)     

Total cost:

log2(m-1) +HW(m-1) -1 multiplications (+ squarings)
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Inversion in depth O(log𝟐𝒎)

(1) find β20,β21,...,β2k1 from Itoh-Tsujii algorithm

with log2(m-1) “single-input” multipliers

(squaring is free: permute control positions)

(2) find β2k1+…+ 2kHW(m-1)(=bm-1) with HW(m-1) -1 
“ordinary” multipliers (not needed for 
m=2n+1, e.g., a Fermat prime)

(3) Finally, 𝛼−1 = 𝛽𝑚−1
2 which is just a shuffle
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How not to compute kP+lQ…

Maslov et al.’strategy – right-to-left double-and-add:

R ← 0

for i = 0 to n step 1

if ki= 1 then R ← R + 2i·P

if li= 1 then R ← R + 2i·Q

return R

… yields depth O(nlog n) circuit

requires O(n) potentially different adder circuits

precomputed
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Instead: Parallelized double-and-add

• requires “multi-fan-out CNOT w/ |0-input”

• depth O(log2n), using general addition circuits
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Open problems
• Can we adapt the methods to a 2D NN architecture? 

• Can square&multiply based ideas be modified to make
them space efficient? 

• Can the “quantum-quantum” techniques based on the 
quantum Fourier transform (e.g., Draper adder) be 
applied to the modular inversion problem? Can we avoid   
modular inversions altogether?

• Can we simplify the (Edwards) point addition circuits? Few T-
gates, less T-depth, less qubits? 

• Use the resource estimates to obtain resource estimates
for quantum attacks on ECC dlog for NIST curves and   
generalize this to Jacobians of hyperelliptic curves. 
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