The SimpleMatrix Encryption scheme

Jintai Ding, Albrecht Petzoldt, Lih-Chung Wang

DIMACS Workshop on The Mathematics of Post-Quantum Cryptography

Rutgers University, New Jersey, USA
15.01.2015

Outline

(1) Multivariate Cryptography
(2) The Simple Matrix Encryption Scheme
(3) Improvements
(1) Decreasing the probability of decryption failures
(2) Increasing the security of the scheme
© Reducing the blow up factor between plain and ciphertext size
(1) Parameters
(5) Conclusion

Multivariate Cryptography

$$
\left.\left.\begin{array}{rl}
p^{(1)}\left(x_{1}, \ldots, x_{n}\right)= & \sum_{i=1}^{n} \sum_{j=i}^{n} p_{i j}^{(1)} \cdot x_{i} x_{j}
\end{array}+\sum_{i=1}^{n} p_{i}^{(1)} \cdot x_{i}+p_{0}^{(1)}\right) ~ \begin{array}{rl}
p^{(2)}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} \sum_{j=i}^{n} p_{i j}^{(2)} \cdot x_{i} x_{j} & +\sum_{i=1}^{n} p_{i}^{(2)} \cdot x_{i}+p_{0}^{(2)} \\
& \vdots \\
p^{(m)}\left(x_{1}, \ldots, x_{n}\right)= & \sum_{i=1}^{n} \sum_{j=i}^{n} p_{i j}^{(m)} \cdot x_{i} x_{j}
\end{array}\right)
$$

The security of multivariate schemes is based on the
Problem MQ: Given m multivariate quadratic polynomials $p^{(1)}(\mathbf{x}), \ldots, p^{(m)}(\mathbf{x})$, find a vector $\overline{\mathbf{x}}=\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)$ such that $p^{(1)}(\overline{\mathbf{x}})=\ldots=p^{(m)}(\overline{\mathbf{x}})=0$.

Multivariate Cryptography (2)

Advantages

- Resistant against attacks with quantum computers
- Very fast
- Modest computational requirements
\Rightarrow can be implemented on low cost devices

Multivariate Cryptography (3)

Drawbacks

- Relatively young field of research \Rightarrow Security is not so well understood
- No explicit parameter choices to meet given security levels known
- Large size of the public and private keys
- Many practical signature schemes (UOV, Rainbow, HFEv-, ...), but hardly any efficient and secure encryption schemes

Multivariate Cryptography (4)

Construction

- Easily invertible quadratic map $\mathcal{F}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$
- Two invertible affine (or linear) maps $\mathcal{S}: \mathbb{F}^{m} \rightarrow \mathbb{F}^{m}$ and $\mathcal{T}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$
- Public key: $\mathcal{P}=\mathcal{S} \circ \mathcal{F} \circ \mathcal{T}$ supposed to look like a random system
- Private key: $\mathcal{S}, \mathcal{F}, \mathcal{T}$ allows to invert the public key

Multivariate Cryptography (5)

Encryption Schemes

Encryption: Given: message $\mathbf{d} \in \mathbb{F}^{n}$.
Compute $\mathbf{c}=\mathcal{P}(\mathbf{d}) \in \mathbb{F}^{m}$.
Decryption: Given c $\in \mathbb{F}^{m}$.
Compute recursively $\mathbf{z}=\mathcal{S}^{-1}(\mathbf{c}), \mathbf{y}=\mathcal{F}^{-1}(\mathbf{z})$ and $\mathbf{d}=\mathcal{T}^{-1}(\mathbf{y})$.

Key Generation

- Three $s \times s$ matrices A, B and C

$$
A=\left(\begin{array}{ccc}
x_{1} & \ldots & x_{s} \\
\vdots & & \vdots \\
x_{(s-1) \cdot s+1} & \cdots & x_{n}
\end{array}\right), B=\left(\begin{array}{ccc}
b_{1} & \ldots & b_{s} \\
\vdots & & \vdots \\
b_{(s-1) \cdot s+1} & \ldots & b_{n}
\end{array}\right), C=\left(\begin{array}{ccc}
c_{1} & \ldots & c_{s} \\
\vdots & & \vdots \\
c_{(s-1) \cdot s+1} & \cdots & c_{n}
\end{array}\right)
$$

- b_{1}, \ldots, b_{n} and c_{1}, \ldots, c_{n} : randomly chosen linear combinations of x_{1}, \ldots, x_{n}.
- $E_{1}=A \cdot B, E_{2}=A \cdot C$.
- central map $\mathcal{F}: m$ components of E_{1} and E_{2}.
- Public key: $\mathcal{P}=\mathcal{S} \circ \mathcal{F} \circ \mathcal{T}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$
- Private key : B, C, \mathcal{S} and \mathcal{T}.

Encryption

Given: message $\mathbf{d} \in \mathbb{F}^{n}$.

Compute $\mathbf{c}=\mathcal{P}(\mathbf{d}) \in \mathbb{F}^{m}$.

Decryption

Given: ciphertext $\mathbf{c} \in \mathbb{F}^{m}$.

Step 1. Compute $\mathbf{z}=\mathcal{S}^{-1}(\mathbf{c})$ and define

$$
\bar{E}_{1}=\left(\begin{array}{cccc}
z_{1} & \cdots & z_{s} \\
\vdots & & & \vdots \\
z_{(s-1) \cdot s+1} & \cdots & z_{n}
\end{array}\right), \quad \bar{E}_{2}=\left(\begin{array}{ccc}
z_{n+1} & \cdots & z_{n+s} \\
\vdots & & \vdots \\
z_{n+(s-1) \cdot s+1} & \cdots & z_{m}
\end{array}\right) .
$$

Decryption (cont.)

Step 2. Find a vector $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$ such that $\mathcal{F}(\mathbf{y})=\mathbf{z}$.
Assume $\bar{A}=A(\mathbf{y})$ to be invertible

- Consider the relations $\bar{A}^{-1} \cdot \bar{E}_{1}-B=0$ and $\bar{A}^{-1} \cdot \bar{E}_{2}-C=0$.
- Interpret the elements of \bar{A}^{-1} as new variables $w_{1}, \ldots, w_{n} \Rightarrow$ m linear equations in the m variables $w_{1}, \ldots, w_{n}, y_{1}, \ldots, y_{n}$.
Step 3. Compute the plaintext by $\mathbf{d}=\mathcal{T}^{-1}\left(y_{1}, \ldots, y_{n}\right)$.
The linear systems in step 2 of the decryption process often have multiple solutions. In this case one has to test which of the possible plaintexts corresponds to the given ciphertext.

Decryption failure rate

If the matrix \bar{A} from step 2 of the encryption process is not invertible, there occurs a decryption failure.

$$
\begin{gathered}
\operatorname{pr}(\bar{A} \text { not invertible })=1-\left(1-\frac{1}{q^{s}}\right)\left(1-\frac{1}{q^{s-1}}\right) \cdots\left(1-\frac{1}{q}\right) \approx \frac{1}{q} . \\
\Rightarrow \operatorname{pr}(\text { decryption failure }) \approx \frac{1}{q}
\end{gathered}
$$

Improvements

(1) Decreasing the probability of decryption failures \Rightarrow Rectangular Simple Matrix
(2) Increasing the security of the scheme further \Rightarrow Cubic Simple Matrix
(3) Reducing the blow up factor between plain and ciphertext size \Rightarrow Triangular Simple Matrix (work in progress)

Decreasing the probability of decryption failures \Rightarrow Rectangular Simple Matrix

Parameters:

- finite field \mathbb{F} with q elements
- integers n, r, s, u with $r \leq s$
- set $m=2$. su

Key Generation

- Three rectangular matrices A, B and C of the form

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 s} \\
a_{21} & 22 & \ldots & a_{2 s} \\
\vdots & \vdots & \ddots & \vdots \\
a_{r 1} & a_{r 2} & \ldots & a_{r s}
\end{array}\right), B=\left(\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 u} \\
b_{21} & b_{22} & \ldots & b_{2 u} \\
\vdots & \vdots & \ddots & \vdots \\
b_{s 1} & b_{s 2} & \ldots & b_{s u}
\end{array}\right), C=\left(\begin{array}{cccc}
c_{11} & c_{12} & \cdots & c_{1 u} \\
c_{21} & c_{22} & \ldots & c_{2 u} \\
\vdots & \vdots & \ddots & \vdots \\
c_{s 1} & c_{s 2} & \ldots & c_{s u}
\end{array}\right) .
$$

The elements $a_{i j}, b_{i j}$ and $c_{i j}$ are randomly chosen linear combinations of x_{1}, \ldots, x_{n}.

- $E_{1}=A \cdot B, E_{2}=A \cdot C$
- central map \mathcal{F} : m components of E_{1} and E_{2}.
- Choose randomly two invertible linear maps $\mathcal{S}: \mathbb{F}^{m} \rightarrow \mathbb{F}^{m}$ and $\mathcal{T}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$.
- Public key : $\mathcal{P}=\mathcal{S} \circ \mathcal{F} \circ \mathcal{T}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$
- Private key : A, B, C, \mathcal{S} and \mathcal{T}.

Encryption

Given: message $\mathbf{d} \in \mathbb{F}^{n}$.

Compute $\mathbf{c}=\mathcal{P}(\mathbf{d}) \in \mathbb{F}^{m}$.

Decryption

Given: ciphertext $\mathbf{c} \in \mathbb{F}^{m}$.

Step 1. Compute $\mathbf{z}=\left(z_{1}, z_{2}, \ldots, z_{m}\right)=\mathcal{S}^{-1}(\mathbf{c})$ and set

$$
\begin{gathered}
\bar{E}_{1}=\left(\begin{array}{cccc}
z_{1} & z_{2} & \cdots & z_{u} \\
z_{u+1} & z_{u+2} & \cdots & z_{2 u} \\
\vdots & \vdots & \ddots & \vdots \\
z_{(s-1) u+1} & z_{(s-1) u+2} & \cdots & z_{s u}
\end{array}\right) \in \mathbb{F}^{s \times u} ; \\
\bar{E}_{2}=\left(\begin{array}{cccc}
z_{s u+1} & z_{s u+2} & \cdots & z_{(s+1) \cdot u} \\
z_{(s+1) \cdot u} & z_{(s+1) \cdot u+2} & \cdots & z_{(s+3) \cdot u} \\
\vdots & \vdots & \ddots & \vdots \\
z_{(2 s-1) \cdot u+1} & z_{(2 s-1) \cdot u+2} & \cdots & z_{2 s u}
\end{array}\right) \in \mathbb{F}^{s \times u} .
\end{gathered}
$$

Decryption (cont.)

Step 2. Find $\mathbf{y} \in \mathbb{F}^{n}$ such that $\mathcal{F}(\mathbf{y})=\mathbf{z}$. Set $\bar{A}=A(\mathbf{y})$.
$\operatorname{Rank}(\bar{A})=r \Rightarrow \exists W \in \mathbb{F}^{r \times s}$ with $W \cdot \bar{A}=I$.
Consider the relations $W \cdot \bar{E}_{1}=B$ and $W \cdot \bar{E}_{2}=C$. Interpret the elements of W as new variables $w_{1}, \ldots w_{r s}$.
$\Rightarrow 2 r u$ linear equations in $s r+n$ unknowns.
\Rightarrow Eliminate the elements of W from the system
$\Rightarrow r \cdot(2 u-s)$ linear equations in the variables $y_{1}, y_{2}, \ldots, y_{n}$
\Rightarrow Substitute these equations into \mathcal{F}
\Rightarrow Quadratic system of m equations in a very small number of variables.
\Rightarrow System can be solved by Relinearization

Decryption (cont.)

Step 3. Compute the plaintext by $\mathbf{d}=\mathcal{T}^{-1}(\mathbf{y})$.

Probability of decryption failures

Decryption failure occurs $\Leftrightarrow \operatorname{Rank}(\bar{A})<r$
$\operatorname{Pr}(\operatorname{Rank}(\overline{\mathcal{A}})<r)=1-\left(1-\frac{1}{q^{s}}\right)\left(1-\frac{1}{q^{s-1}}\right) \cdots\left(1-\frac{1}{q^{s-r+1}}\right) \approx \frac{1}{q^{s-r+1}}$,
\Rightarrow By choosing r and s in an appropriate way it is possible to decrease the probability of decryption failures to a negligible value.

Reducing the probability of decryption failures

Other methods

- use a public bijective map \mathcal{Q} over the ring $\mathbb{Z} / q \mathbb{Z}$ encrypt messages \mathbf{d} and $\mathcal{Q}(\mathbf{d})$
$\Rightarrow \operatorname{Pr}($ decr. fails $) \approx \frac{1}{q^{2}}$
- use messages \mathbf{d} of length $n-1$ plus extra variable $x \in \mathbb{F}$ encrypt messages $x_{1} \| \mathbf{d}$ and $x_{2} \| \mathbf{d}$
$\Rightarrow \operatorname{Pr}($ decr. fails $) \approx \frac{1}{q^{2}}$

Increasing the security \Rightarrow Cubic Simple Matrix

Parameters:

- finite field \mathbb{F} with q elements
- integer s
- set $n=s^{2}$ and $m=2 \cdot n$

Key Generation

- Three $s \times s$ matrices A, B and C

$$
A=\left(\begin{array}{ccc}
a_{1} & \ldots & a_{s} \\
\vdots & & \vdots \\
a_{(s-1) \cdot s+1} & \cdots & a_{n}
\end{array}\right), B=\left(\begin{array}{ccc}
b_{1} & \ldots & b_{s} \\
\vdots & & \vdots \\
b_{(s-1) \cdot s+1} & \ldots & b_{n}
\end{array}\right), C=\left(\begin{array}{ccc}
c_{1} & \ldots & c_{s} \\
\vdots & & \vdots \\
c_{(s-1) \cdot s+1} & \cdots & c_{n}
\end{array}\right)
$$

- a_{1}, \ldots, a_{n} : random quadratic polynomials in x_{1}, \ldots, x_{n}
- b_{1}, \ldots, b_{n} and c_{1}, \ldots, c_{n} : randomly chosen linear combinations of x_{1}, \ldots, x_{n}.
- $E_{1}=A \cdot B, E_{2}=A \cdot C$.
- central map \mathcal{F} : m components of E_{1} and E_{2}.
- Public key : $\mathcal{P}=\mathcal{S} \circ \mathcal{F} \circ \mathcal{T}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$
- Private key : A, B, C, \mathcal{S} and \mathcal{T}.

En- and Decryption

just as for the original scheme.

Security

Rank attacks

- MinRank Problem: Given $m n \times n$ matrices Q_{1}, \ldots, Q_{m}, find a linear combination

$$
\tilde{Q}=\sum_{i=1}^{m} \lambda_{i} \cdot Q_{i}
$$

of minimal rank s.

- The MinRank attack can be used to recover the central map from the public key.
- In our scheme, the polynomials of A are random polynomials of degree 2
\Rightarrow Rank is close to $n \Rightarrow$ Rank attacks are not applicable

Security (cont.)

Direct attacks
Denote

- I_{A} : ideal generated by the polynomials in A
- I_{E} : ideal generated by the polynomials in E_{1} and E_{2}
$E_{1}=A \cdot B, E_{2}=A \cdot C \Rightarrow I_{E} \subset I_{A}$
\Rightarrow every nontrivial syzygy between the elements of I_{E} should be a nontrivial syzygy between the elements of I_{A}
\Rightarrow solving the public system directly should be at least as hard as solving the system A

Reducing the blow up factor between plain and ciphertext size \Rightarrow Triangular Simple Matrix (work in progress)

Basic idea: Use structured quadratic polynomials in the matrix A

Benefits

- blow up factor between plain and ciphertext size is minimized
- \mathcal{P} is a nearly determined system
\Rightarrow direct attacks become more complicated
\Rightarrow possibility to decrease parameters and therefore key sizes?

Problems to be solved

- \mathcal{F} is not bijective
\Rightarrow restrict to messages from a subspace of \mathbb{F}^{m}
- Security against Rank attacks

Parameters and Key Sizes

80 bit security

scheme	plaintext size (bit)	ciphertext size (bit)	public key size (kB)	private key size (kB)	probability of decryption failures
SimpleMatrix $\left(\operatorname{GF}\left(2^{8}\right), 8,64,128\right)$	512	1,024	280.1	28.7	2^{-8}
$\operatorname{RSM}\left(\operatorname{GF}\left(2^{8}\right), 8,11,12,128,264\right)$	1,008	2,112	2,062	84.0	2^{-32}
$\operatorname{cubicSM}\left(\operatorname{GF}\left(2^{8}\right), 7,49,98\right)$	392	784	2,115	72.7	2^{-8}
$\operatorname{TSM}\left(\operatorname{GF}\left(2^{8}\right), 5,48,50\right)$	384	400	1,077	17.2	2^{-8}

Parameters and Key Sizes (cont.)

100 bit security

scheme	plaintext size (bit)	ciphertext size (bit)	public key size (kB)	private key size (kB)	probability of decryption failures
SimpleMatrix $\left(\operatorname{GF}\left(2^{8}\right), 10,100,200\right)$	800	1,600	1,030	70.0	2^{-8}
$\operatorname{RSM}\left(\operatorname{GF}\left(2^{8}\right), 10,13,14,180,364\right)$	1,408	2,912	5,537	160.0	2^{-32}
$\operatorname{cubicSM}\left(\operatorname{GF}\left(2^{8}\right), 8,64,128\right)$	512	1,024	5,988	154.0	2^{-8}
$\operatorname{TSM}\left(\operatorname{GF}\left(2^{8}\right), 6,70,72\right)$	560	576	4,552	45.0	2^{-8}

Conclusion

The Simple Matrix Encryption Scheme

+ resists all known attacks
+ has a very fast decryption process
- decryption failures occur with non-negligible probability
- large public key size

Improvements

- Decrease the probability of decryption failures
- Improve the security of the scheme further
- Reduce the blow up factor between plain and ciphertext size

Future Work

Future work includes

- behavior of direct attacks against cubic Simple Matrix
- security issues of the triangular schemes
- analysis of different methods to decrease the probability of decryption failures
- cyclic version of the scheme \Rightarrow reduce key sizes
- white-box implementation of the scheme \Rightarrow eliminate decryption failures completely

THANK YOU

Questions?

