On the Existence of Semi-Regular Sequences

Sergio Molina ${ }^{1}$
joint work with
T. J. Hodges ${ }^{1}$ J. Schlather
${ }^{1}$ Department of Mathematics
University of Cincinnati
DIMACS, January 2015

Background

- Important Problem: Finding solutions to systems of polynomial equations of the form

$$
\begin{equation*}
p_{1}\left(x_{1}, \ldots, x_{n}\right)=\beta_{1}, \ldots, p_{m}\left(x_{1}, \ldots, x_{n}\right)=\beta_{m} \tag{1}
\end{equation*}
$$

Background

- Important Problem: Finding solutions to systems of polynomial equations of the form

$$
\begin{equation*}
p_{1}\left(x_{1}, \ldots, x_{n}\right)=\beta_{1}, \ldots, p_{m}\left(x_{1}, \ldots, x_{n}\right)=\beta_{m} \tag{1}
\end{equation*}
$$

- MPKC systems: Multivariate Public Key Cryptographic systems.

Background

- Important Problem: Finding solutions to systems of polynomial equations of the form

$$
\begin{equation*}
p_{1}\left(x_{1}, \ldots, x_{n}\right)=\beta_{1}, \ldots, p_{m}\left(x_{1}, \ldots, x_{n}\right)=\beta_{m} \tag{1}
\end{equation*}
$$

- MPKC systems: Multivariate Public Key Cryptographic systems.
- The security of MPKC systems relies on the difficulty of solving a system (1) of quadratic equations over a finite field.

Background

- Main types of algorithms used to solve such systems of equations are:

Background

- Main types of algorithms used to solve such systems of equations are:
- Gröbner basis algorithm [Buchberger] and its variants \mathbf{F}_{4} and \mathbf{F}_{5} [Faugère].

Background

- Main types of algorithms used to solve such systems of equations are:
- Gröbner basis algorithm [Buchberger] and its variants \mathbf{F}_{4} and \mathbf{F}_{5} [Faugère].
- The XL algorithms including FXL [Courtois et al.] and mutantXL [Buchmann et al.].

Background

- To assess complexity of the \mathbf{F}_{4} and \mathbf{F}_{5} algorithms for solution of polynomial equations the concept of "semi-regular" sequences over \mathbb{F}_{2} was introduced by Bardet, Faugère, Salvy and Yang.

Background

- To assess complexity of the \mathbf{F}_{4} and \mathbf{F}_{5} algorithms for solution of polynomial equations the concept of "semi-regular" sequences over \mathbb{F}_{2} was introduced by Bardet, Faugère, Salvy and Yang.
- Roughly speaking, semi-regular sequences over \mathbb{F}_{2} are sequences of homogeneous elements of the algebra

$$
B^{(n)}=\mathbb{F}_{2}\left[X_{1}, \ldots, X_{n}\right] /\left(X_{1}^{2}, \ldots, X_{n}^{2}\right)
$$

which have as few relations between them as possible.

Background

- To assess complexity of the \mathbf{F}_{4} and \mathbf{F}_{5} algorithms for solution of polynomial equations the concept of "semi-regular" sequences over \mathbb{F}_{2} was introduced by Bardet, Faugère, Salvy and Yang.
- Roughly speaking, semi-regular sequences over \mathbb{F}_{2} are sequences of homogeneous elements of the algebra

$$
B^{(n)}=\mathbb{F}_{2}\left[X_{1}, \ldots, X_{n}\right] /\left(X_{1}^{2}, \ldots, X_{n}^{2}\right)
$$

which have as few relations between them as possible.

- Experimental evidence has shown that randomly generated sequences tend to be semi-regular.

Definitions

Let $B_{d} \subset B^{(n)}$ be the set of homogeneous polynomials of degree d.

Definitions

Let $B_{d} \subset B^{(n)}$ be the set of homogeneous polynomials of degree d.

Definition 1

Let $B^{(n)}=\mathbb{F}_{2}\left[X_{1}, \ldots, X_{n}\right] /\left(X_{1}^{2}, \ldots, X_{n}^{2}\right)$. If $\lambda_{1}, \ldots, \lambda_{m} \in B^{(n)}$ is a sequence of homogeneous elements of positive degrees d_{1}, \ldots, d_{m} and $I=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ then

Definitions

Let $B_{d} \subset B^{(n)}$ be the set of homogeneous polynomials of degree d.

Definition 1

Let $B^{(n)}=\mathbb{F}_{2}\left[X_{1}, \ldots, X_{n}\right] /\left(X_{1}^{2}, \ldots, X_{n}^{2}\right)$. If $\lambda_{1}, \ldots, \lambda_{m} \in B^{(n)}$ is a sequence of homogeneous elements of positive degrees d_{1}, \ldots, d_{m} and $I=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ then

- $\operatorname{Ind}(I)=\min \left\{d \geq 0 \mid I \cap B_{d}=B_{d}\right\}$

Definitions

Let $B_{d} \subset B^{(n)}$ be the set of homogeneous polynomials of degree d.

Definition 1

Let $B^{(n)}=\mathbb{F}_{2}\left[X_{1}, \ldots, X_{n}\right] /\left(X_{1}^{2}, \ldots, X_{n}^{2}\right)$. If $\lambda_{1}, \ldots, \lambda_{m} \in B^{(n)}$ is a sequence of homogeneous elements of positive degrees d_{1}, \ldots, d_{m} and $I=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ then

- $\operatorname{Ind}(I)=\min \left\{d \geq 0 \mid I \cap B_{d}=B_{d}\right\}$
- The sequence $\lambda_{1}, \ldots, \lambda_{m}$ is semi-regular over \mathbb{F}_{2} if for all $i=1,2, \ldots, m$, if μ is homogeneous and

$$
\mu \lambda_{i} \in\left(\lambda_{1}, \ldots, \lambda_{i-1}\right) \quad \text { and } \quad \operatorname{deg}(\mu)+\operatorname{deg}\left(\lambda_{i}\right)<\operatorname{Ind}(I)
$$ then $\mu \in\left(\lambda_{1}, \ldots, \lambda_{i}\right)$.

Characterization with Hilbert Series

Characterization with Hilbert Series

- The truncation of a series $\sum a_{i} z^{i}$ is defined to be:

$$
\left[\sum a_{i} z^{i}\right]=\sum b_{i} z^{i}
$$

where $b_{i}=a_{i}$ if $a_{j}>0$ for all $j \leq i$, and $b_{i}=0$ otherwise.

Characterization with Hilbert Series

- The truncation of a series $\sum a_{i} z^{i}$ is defined to be:

$$
\left[\sum a_{i} z^{i}\right]=\sum b_{i} z^{i}
$$

where $b_{i}=a_{i}$ if $a_{j}>0$ for all $j \leq i$, and $b_{i}=0$ otherwise.

- For instance

$$
\left[1+10 z+z^{2}+20 z^{3}-z^{4}+z^{6}+\cdots\right]=1+10 z+z^{2}+20 z^{3}
$$

Characterization with Hilbert Series

Theorem 2 (Bardet, Faugère, Salvy, Yang)

Let $\lambda_{1}, \ldots, \lambda_{m} \in B^{(n)}$ be a sequence of homogeneous elements of positive degrees d_{1}, \ldots, d_{m} and $I=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$. Then, the sequence $\lambda_{1}, \ldots, \lambda_{m}$ is semi-regular if and only if

$$
\operatorname{Hilb}_{B^{(n)} / I}(z)=\left[\frac{(1+z)^{n}}{\prod_{i=1}^{m}\left(1+z^{d_{i}}\right)}\right]
$$

Characterization with Hilbert Series

Theorem 2 (Bardet, Faugère, Salvy, Yang)

Let $\lambda_{1}, \ldots, \lambda_{m} \in B^{(n)}$ be a sequence of homogeneous elements of positive degrees d_{1}, \ldots, d_{m} and $I=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$. Then, the sequence $\lambda_{1}, \ldots, \lambda_{m}$ is semi-regular if and only if

$$
\operatorname{Hilb}_{B^{(n)} / I}(z)=\left[\frac{(1+z)^{n}}{\prod_{i=1}^{m}\left(1+z^{d_{i}}\right)}\right]
$$

- Let $\lambda_{1}, \ldots, \lambda_{m} \in B^{(n)}$ be a sequence of homogeneous elements and let $I=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$. If the sequence is semi-regular then

$$
\operatorname{Ind}\left(\lambda_{1}, \ldots, \lambda_{m}\right)=1+\operatorname{deg}\left(\operatorname{Hilb}_{B^{(n)} / I}(z)\right)
$$

Example

- Consider the element $\lambda=x_{1} x_{2}+x_{3} x_{4}+x_{5} x_{6}$ in $B^{(6)}$ and let $I=(\lambda)$.

Example

- Consider the element $\lambda=x_{1} x_{2}+x_{3} x_{4}+x_{5} x_{6}$ in $B^{(6)}$ and let $I=(\lambda)$.

$$
H S_{B^{(6)} / l}(z)=1+6 z+14 z^{2}+14 z^{3}+z^{4}
$$

and

$$
\frac{(1+z)^{6}}{1+z^{2}}=1+6 z+14 z^{2}+14 z^{3}+z^{4}-8 z^{5}+\cdots
$$

Example

- Consider the element $\lambda=x_{1} x_{2}+x_{3} x_{4}+x_{5} x_{6}$ in $B^{(6)}$ and let $I=(\lambda)$.

$$
H S_{B^{(6)} / l}(z)=1+6 z+14 z^{2}+14 z^{3}+z^{4}
$$

and

$$
\frac{(1+z)^{6}}{1+z^{2}}=1+6 z+14 z^{2}+14 z^{3}+z^{4}-8 z^{5}+\cdots
$$

- $\left[\frac{(1+z)^{6}}{1+z^{2}}\right]=1+6 z+14 z^{2}+14 z^{3}+z^{4}=H S_{B^{(6)} / I}(z)$.

Example

- Consider the element $\lambda=x_{1} x_{2}+x_{3} x_{4}+x_{5} x_{6}$ in $B^{(6)}$ and let $I=(\lambda)$.

$$
H S_{B^{(6)} / l}(z)=1+6 z+14 z^{2}+14 z^{3}+z^{4}
$$

and

$$
\frac{(1+z)^{6}}{1+z^{2}}=1+6 z+14 z^{2}+14 z^{3}+z^{4}-8 z^{5}+\cdots
$$

- $\left[\frac{(1+z)^{6}}{1+z^{2}}\right]=1+6 z+14 z^{2}+14 z^{3}+z^{4}=H S_{B^{(6)} / l}(z)$.
- λ is semi-regular and $\operatorname{Ind}(\lambda)=5$.

Existence of Semi-Regular Sequences

- Sequences that are trivially semi-regular:

Existence of Semi-Regular Sequences

- Sequences that are trivially semi-regular:
- Sequences of linear elements that are linearly independent are semi-regular.

Existence of Semi-Regular Sequences

- Sequences that are trivially semi-regular:
- Sequences of linear elements that are linearly independent are semi-regular.
- Sequences of homogeneous polynomials of degree $n-1$ in $B^{(n)}$ that are linearly independent are semi-regular.

Existence of Semi-Regular Sequences

- Sequences that are trivially semi-regular:
- Sequences of linear elements that are linearly independent are semi-regular.
- Sequences of homogeneous polynomials of degree $n-1$ in $B^{(n)}$ that are linearly independent are semi-regular.
- $x_{1} x_{2} \cdots x_{n} \in B^{(n)}$ is semi-regular.

Existence of Semi-Regular Sequences

- Sequences that are trivially semi-regular:
- Sequences of linear elements that are linearly independent are semi-regular.
- Sequences of homogeneous polynomials of degree $n-1$ in $B^{(n)}$ that are linearly independent are semi-regular.
- $x_{1} x_{2} \cdots x_{n} \in B^{(n)}$ is semi-regular.
- Any a basis of B_{d} the space of homogeneous polynomials of degree d, is semi-regular.

Existence of Semi-Regular Sequences

Conjecture 1 (Bardet, Faugère, Salvy, Yang)

The proportion of semi-regular sequences tends to one as the number of variables tends to infinity.

Existence of Semi-Regular Sequences

Conjecture 1 (Bardet, Faugère, Salvy, Yang)

The proportion of semi-regular sequences tends to one as the number of variables tends to infinity.

- This conjecture is true in the following precise sense.

Existence of Semi-Regular Sequences

Conjecture 1 (Bardet, Faugère, Salvy, Yang)

The proportion of semi-regular sequences tends to one as the number of variables tends to infinity.

- This conjecture is true in the following precise sense.

Theorem 3 (Hodges, Molina, Schlather)

Let $h(n)$ be the number of subsets of $B^{(n)}$ consisting of homogeneous elements of degree greater than or equal to one. Let $s(n)$ be the number of such subsets that are semi-regular. Then

$$
\lim _{n \rightarrow \infty} \frac{s(n)}{h(n)}=1
$$

Non-Existence of Semi-Regular Sequences

Conjecture 2 (Bardet, Faugère, Salvy)

Let $\pi\left(n, m, d_{1}, \ldots, d_{m}\right)$ be the proportion of sequences in $B^{(n)}$ of m elements of degrees d_{1}, \ldots, d_{m} that are semi-regular. Then $\pi\left(n, m, d_{1}, \ldots, d_{m}\right)$ tends to 1 as n tends to ∞.

Non-Existence of Semi-Regular Sequences

Conjecture 2 (Bardet, Faugère, Salvy)

Let $\pi\left(n, m, d_{1}, \ldots, d_{m}\right)$ be the proportion of sequences in $B^{(n)}$ of m elements of degrees d_{1}, \ldots, d_{m} that are semi-regular. Then $\pi\left(n, m, d_{1}, \ldots, d_{m}\right)$ tends to 1 as n tends to ∞.

- This conjecture is false. In fact the opposite is true.

Non-Existence of Semi-Regular Sequences

Conjecture 2 (Bardet, Faugère, Salvy)

Let $\pi\left(n, m, d_{1}, \ldots, d_{m}\right)$ be the proportion of sequences in $B^{(n)}$ of m elements of degrees d_{1}, \ldots, d_{m} that are semi-regular. Then $\pi\left(n, m, d_{1}, \ldots, d_{m}\right)$ tends to 1 as n tends to ∞.

- This conjecture is false. In fact the opposite is true.

Theorem 4 (Hodges, Molina, Schlather)

For a fixed choice of $\left(m, d_{1}, \ldots, d_{m}\right)$, there exists N such that

$$
\pi\left(n, m, d_{1}, \ldots, d_{m}\right)=0
$$

for all $n \geq N$.

Table: Proportion of Samples of 20 Sets of m Homogeneous Quadratic Elements in n variables that are Semi-Regular

$n \backslash m$	2	3	4	5	6	7	8	9	10	11	12	13	14
3	1	.8	1	1	1	1							
4	.35	1	.75	.75	.3	.65	.85	.9	1	1	1	1	1
5	0	.85	.95	1	.9	.85	.75	.6	.2	.65	.7	.9	.9
6	.85	.7	.65	.9	1	1	1	.95	.95	.95	.75	.8	.5
7	0	.85	1	.1	1	1	1	1	1	1	1	.95	1
8	.7	.45	1	1	.95	.1	1	1	1	1	1	1	1
9	0	.95	.7	1	1	1	1	.8	.9	1	1	1	1
10	0	.85	1	.35	1	1	1	1	1	1	.25	1	1
11	0	.95	1	1	1	1	1	1	1	1	1	1	1
12	0	0	1	1	1	1	.9	1	1	1	1	1	1
13	0	0	1	1	1	1	1	1	1	1	1	1	1
14	0	0	0	1	1	1	1	1	1	1	1	1	1
15	0	0	0	1	1	1	1	1	1	1	1	1	.45

- Neither of the previous conjectures accurately addresses the observed fact that "most" quadratic sequences of length n in n variables are semi-regular.
- Neither of the previous conjectures accurately addresses the observed fact that "most" quadratic sequences of length n in n variables are semi-regular.

Conjecture 3

For any $1 \leq d \leq n$ define $\pi(n, d)$ to be the proportion of sequences of degree d and length n in n variables that are semi-regular. Then

$$
\lim _{n \rightarrow \infty} \pi(n, d)=1
$$

- Neither of the previous conjectures accurately addresses the observed fact that "most" quadratic sequences of length n in n variables are semi-regular.

Conjecture 3

For any $1 \leq d \leq n$ define $\pi(n, d)$ to be the proportion of sequences of degree d and length n in n variables that are semi-regular. Then

$$
\lim _{n \rightarrow \infty} \pi(n, d)=1
$$

Conjecture 4

There exists an ϵ such that if $m(n)=\lfloor\alpha n\rfloor+c$, then the proportion of sequences of length $m(n)$ in n variables tends to one as n tends to infinity whenever $\alpha>\epsilon$.

Existence of Semi-Regular Sequences (case $m=1$)

Existence of Semi-Regular Sequences (case $m=1$)

Question 1

For which values of n and d do there exist semi-regular elements of degree d in $B^{(n)}$?

Existence of Semi-Regular Sequences (case $m=1$)

Question 1

For which values of n and d do there exist semi-regular elements of degree d in $B^{(n)}$?

- In her thesis Bardet asserts that the elementary symmetric quadratic polynomial

$$
\sigma_{2}\left(x_{1}, \ldots, x_{n}\right)=\sum_{1 \leq i<j \leq n} x_{i} x_{j}
$$

is semi-regular for all n.

Existence of Semi-Regular Sequences (case $m=1$)

Question 1

For which values of n and d do there exist semi-regular elements of degree d in $B^{(n)}$?

- In her thesis Bardet asserts that the elementary symmetric quadratic polynomial

$$
\sigma_{2}\left(x_{1}, \ldots, x_{n}\right)=\sum_{1 \leq i<j \leq n} x_{i} x_{j}
$$

is semi-regular for all n.

- By the previous theorem there are finitely many values of n for which $\sigma_{2}\left(x_{1}, \ldots, x_{n}\right)$ can be semi-regular. Moreover, we have the following theorem.

Existence of Semi-Regular Sequences (case $m=1$)

Theorem 5 (Hodges, Molina, Schlather)

A homogeneous element of degree $d \geq 2$ can only be semi-regular if $n \leq 3 d$.

Existence of Semi-Regular Sequences (case $m=1$)

Theorem 5 (Hodges, Molina, Schlather)

A homogeneous element of degree $d \geq 2$ can only be semi-regular if $n \leq 3 d$.

- For instance $\sigma_{2}\left(x_{1}, \ldots, x_{n}\right)$ (or any quadratic homogeneous polynomial) can only be semi-regular if $n \leq 6$.

Existence of Semi-Regular Sequences (case $m=1$)

Theorem 5 (Hodges, Molina, Schlather)

A homogeneous element of degree $d \geq 2$ can only be semi-regular if $n \leq 3 d$.

- For instance $\sigma_{2}\left(x_{1}, \ldots, x_{n}\right)$ (or any quadratic homogeneous polynomial) can only be semi-regular if $n \leq 6$.
- Is the bound $n=3 d$ sharp?

Existence of Semi-Regular Sequences (case $m=1$)

Theorem 6 (Hodges, Molina, Schlather)

Let $d \geq 2$, where $d=2^{k}$ I with I an odd number, and k a non-negative integer. Consider the elementary symmetric polynomial of degree d

$$
\sigma_{d, n}=\sum_{1 \leq i_{1}<\cdots<i_{d} \leq n} x_{i_{1}} \cdots x_{i_{d}}
$$

then
(a) If $I>1, \sigma_{d, n}$ is semi-regular if and only if $d \leq n \leq d+2^{k+1}-1$.
(b) If $I=1, \sigma_{d, n}$ is semi-regular if and only if $d \leq n \leq d+2^{k+1}$.

Existence of Semi-Regular Sequences (case $m=1$)

Theorem 6 (Hodges, Molina, Schlather)

Let $d \geq 2$, where $d=2^{k}$ I with I an odd number, and k a non-negative integer. Consider the elementary symmetric polynomial of degree d

$$
\sigma_{d, n}=\sum_{1 \leq i_{1}<\cdots<i_{d} \leq n} x_{i_{1}} \cdots x_{i_{d}}
$$

then
(a) If $I>1, \sigma_{d, n}$ is semi-regular if and only if $d \leq n \leq d+2^{k+1}-1$.
(b) If $I=1, \sigma_{d, n}$ is semi-regular if and only if $d \leq n \leq d+2^{k+1}$.

- In particular when $d=2^{k}, \sigma_{d, n}$ is semi-regular for all $d \leq n \leq 3 d$, thus establishing that the bound is sharp for infinitely many n.

$n \backslash d$	2	3	4	5	6	7	8	9	10	11	12	13	14
2	x												
3	x	x											
4	x	x	x										
5	x		x	x									
6	x		x	x	x								
7			x		x	x							
8			x		x	x	x						
9			x		x		x	x					
10			x				x	x	x				
11			x				x		x	x			
12			x				x		x	x	x		
13							x		x		x	x	
14							x				x	x	x

Table: Semi-Regularity of $\sigma_{d, n}$. The values when $\sigma_{d, n}$ is semi-regular are marked with an x

Example

- For $n=50$ variables the following elements are semi-regular:

Example

- For $n=50$ variables the following elements are semi-regular:
- Any element of degree $d=1, d=49$ or $d=50$ is trivially semi-regular.

Example

- For $n=50$ variables the following elements are semi-regular:
- Any element of degree $d=1, d=49$ or $d=50$ is trivially semi-regular.
- The elementary symmetric polynomial of degree $d, \sigma_{d}\left(x_{1}, \ldots, x_{50}\right)$ is semi-regular for $d=32,44,48$.
- We need to prove the observed fact that "most" quadratic sequences are semi-regular.
- We need to prove the observed fact that "most" quadratic sequences are semi-regular.
- Even the question of the existence of quadratic sequences of length n in n variables for all n remains open.

Thank you very much!

Thank you very much!

T. Hodges, S. Molina, J. Schlather, On the Existence of Semi-Regular Sequences. Available under http://arxiv.org/abs/1412.7865

