Key Recovery for LWE in Polynomial Time

Kim Laine and Kristin Lauter
UC Berkeley, Microsoft Research

DIMACS Workshop on The Mathematics of Post-Quantum Cryptography Rutgers University

January 16, 2015

Structure of this talk

1. Introduce the problem (search-)LWE
2. Polynomial time attack
3. Practical performance
4. Security implications
5. Conclusions

Definition of LWE

Learning With Errors (Regev, 2005) is a hard computational problem that several homomorphic cryptosystems are based on.
$q=2^{r}$ an integer modulus
n an integer, $\mathbf{s} \in \mathbb{Z}_{q}^{n}$ a secret vector chosen uniformly at random
$D_{\mathbb{Z}, \sigma}$ (error distribution) the discrete Gaussian distribution centered at 0 , with standard deviation σ

Definition 1 (LWE sample)

An LWE sample is a pair $(\mathbf{a}, t) \in \mathbb{Z}_{q}^{n} \times \mathbb{Z}_{q}$, where \mathbf{a} is sampled uniformly at random from $\mathbb{Z}_{q}^{n}, e \leftarrow D_{\mathbb{Z}, \sigma}$ and $t=[\langle\mathbf{a}, \mathbf{s}\rangle+e]_{q}=\langle\mathbf{a}, \mathbf{s}\rangle_{q}+e \in(-q / 2, q / 2)$.

Definition 2 (search-LWE ${ }_{n, r, d, \sigma}$)

Given d LWE samples $\left(\mathbf{a}_{i}, t_{i}\right)$, the problem search-LWE ${ }_{n, r, d, \sigma}$ is to recover the secret vector \mathbf{s}.

Security reductions

- When $q=\operatorname{poly}(n)$, polynomial time quantum reduction from worst-case GapSVP (Regev)
- When $q=\operatorname{poly}(n)$, polynomial time classical reduction from worst-case of an easier (less studied) variant of GapSVP (Peikert)
- When q is exponential in n, polynomial time classical reduction from worst-case GapSVP (Peikert)

In all cases the approximating factor is $\widetilde{O}(n q / \sigma)$. When the approximating factor is polynomial in n, there is no known algorithm for solving GapSVP in polynomial time.

Question 1: What happens in practice when q is exponential in n ?
Question 2: What happens in practice when q is "pretty large"?

Connection to lattices

Let Λ be the $(n+d)$-dimensional lattice generated by the rows of the matrix

$$
\left(\begin{array}{cccccccc}
q & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & q & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & 0 & 0 & 0 & \ddots & 0 \\
0 & 0 & \cdots & q & 0 & 0 & \cdots & 0 \\
\mathbf{a}_{0}[0] & \mathbf{a}_{1}[0] & \cdots & \mathbf{a}_{d-1}[0] & 1 / 2^{N} & 0 & \cdots & 0 \\
\mathbf{a}_{0}[1] & \mathbf{a}_{1}[1] & \cdots & \mathbf{a}_{d-1}[1] & 0 & 1 / 2^{N} & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\mathbf{a}_{0}[n-1] & \mathbf{a}_{1}[n-1] & \cdots & \mathbf{a}_{d-1}[n-1] & 0 & 0 & \cdots & 1 / 2^{N}
\end{array}\right)
$$

Easy to see:

$$
\begin{gathered}
\mathbf{v}=\left[\left\langle\mathbf{a}_{0}, \mathbf{s}\right\rangle_{q},\left\langle\mathbf{a}_{1}, \mathbf{s}\right\rangle_{q}, \ldots,\left\langle\mathbf{a}_{d-1}, \mathbf{s}\right\rangle_{q}, \mathbf{s}[0] / 2^{N}, \mathbf{s}[1] / 2^{N}, \ldots, \mathbf{s}[n-1] / 2^{N}\right] \in \Lambda \\
\mathbf{u}=\left[t_{0}, t_{1}, \ldots, t_{d-1}, 0, \ldots, 0\right] \notin \Lambda \text { but is close to } \mathbf{v} \text { if } N \text { is big }
\end{gathered}
$$

Connection to lattices

- Assumption: We have access to any number of LWE samples so d can be anything we want.
- "Simply" solve approx-CVP in Λ with input \mathbf{u} to find \mathbf{v} and \mathbf{s}.
- Method: Find a good basis for the lattice and use Babai's nearest planes method.
- $\operatorname{dim} \Lambda=n+d$ can be huge.
- We might not find the correct vector \mathbf{v}.

Problem: The approximation factor might have to be small so need very good basis (use BKZ-2.0 with large blocksize): exponential time?

Polynomial time attack

Claim: If q is large enough and d is chosen appropriately, need to solve CVP only up to exponential factor (in n)!

- So in certain cases: Run LLL (polynomial time in n) and use Babai's method to find candidate for \mathbf{v}.
- Recovered vector is almost certainly \mathbf{v}.

Explanation: If $q=2^{O(n)}$ and d chosen appropriately, probability of having a lattice vector within some large radius $<q=2^{O(n)}$ of \mathbf{u} can be made to be very small.

- This is a restriction on q.
- But we know there is one, namely \mathbf{v}.
- So even if LLL-Babai performs exponentially poorly, it will still find a close vector within this radius, which is very likely to be \mathbf{v}.

More precise claim:

Let $\delta=\left(1+(1 / 2) \log _{2} n\right) / n$ and suppose $r:=\log _{2} q>7(1 / 2+\delta) n$. Let

$$
d=\lceil\sqrt{(1 / 2+\delta)(r+1) n}\rfloor .
$$

Solve ℓ_{σ} from

$$
n d \sqrt{e} 2^{r-\ell_{\sigma}}=\sigma \exp \left(\frac{2^{2 r-2 \ell_{\sigma}-1}}{\sigma^{2}}\right) .
$$

If

$$
(1 / 2+\delta) n+2 \sqrt{(1 / 2+\delta)(r+1) n}<\ell_{\sigma}
$$

i.e. σ is small enough, then search-LWE $\mathrm{E}_{n, r, d, D_{Z, \sigma}}$ can be solved in probabilistic polynomial time in n by computing an LLL-reduced basis of the given basis of Λ and using Babai's nearest planes method to \mathbf{u}. The algorithm successfully returns \mathbf{v} with very high probability. The running time is polynomial in n.

Practical performance

Remarks:

- In the proof many very strong approximations are made to guarantee success.
- Does not tell much about practical performance.
- Input basis to LLL has very special form: Performance of LLL-Babai?

Here is a way of measuring the practical performance:

- Guaranteed approx factor in LLL-Babai is $2^{(n+d) / 2}$ (used in proof)
- Instead write $2^{\mu(n+d)}$ and go through the proof; get a formula for μ needed to succeed.
- Run examples and compute the required μ. Failed: effectively μ was larger; Succeeded: effectively μ was smaller.
- Gives an idea of how big effectively μ can be expected to be
- Extrapolate behavior of μ to larger examples (do they fail or succeed?)

Experimental results

For a particular experiment to succeed, the effective lower bound for μ that needs to be realized is given approximately by

$$
\mu_{\mathrm{eff}}:=\frac{1}{n+d}\left[-\frac{r n}{d}+r-1-\log _{2}(\lceil\sigma\rceil \sqrt{n+d})\right]
$$

Here are the results as a function of n :

Experimental results

Security implications

Ok, so what can be broken? Here are some examples:

n	d	r	σ	Time
80	320	16	3.233	1.6 h
100	400	20	6.346	6.8 h
128	572	23	3.097	24 h
160	540	27	3.077	1 d 5 h
200	550	31	3.049	2d 13 h

Security implications

What happens for larger n ? Here $\sigma=8 / \sqrt{2 \pi}$.

n	d	r	$\mu_{\text {eff }}$
512	1388	65	0.0171
1024	2576	120	0.0176
2048	5152	235	0.0184
4096	10104	465	0.0188

Will these succeed or fail?

Distinguishing attack

- Usually (e.g. Lindner-Peikert, van de Pol-Smart, Lepoint-Naehrig) recommended parameters based on hardness of the distinguishing attack, i.e. distinguishing of valid LWE samples from random data.

Theorem 3

Compute a basis with root-Hermite factor δ for a d-dimensional q-ary lattice. Valid LWE samples can be distinguished from random data with advantage (suppose $d>n$)

$$
\exp \left[-\pi\left(\frac{\delta^{d} \sqrt{2 \pi} \sigma}{q^{1-n / d}}\right)\right]
$$

- Nguyen-Stehle [LLL on the Average]: With LLL expect $\delta \approx 1.02$
- With $\delta \approx 1.02$ and r as large as in the examples above, distinguishing advantage is very high!
- So none of this is surprising: Distinguishing implies key recovery but in time proportional to q (huge!).
- The interesting result is that key recovery can actually be done so easily in these cases.

Security implications?

Therefore:

- At least with pure LLL the attack does not threaten commonly recommended secure parameters, but how significantly does performance improve if we improve the basis using other methods?
- In some special applications might want to evaluate very deep circuits homomorphically and need very large r, small σ.
- E.g. evaluating some block ciphers homomorphically.
- In these cases you really do need a large enough n.

Security of LWE based cryptosystems depends very strongly on the parameters.

Thank you!

