Key Recovery for LWE in Polynomial Time

Kim Laine and Kristin Lauter

UC Berkeley, Microsoft Research

DIMACS Workshop on The Mathematics of Post-Quantum Cryptography Rutgers University

January 16, 2015

Image: A math a math

- 1. Introduce the problem (search-)LWE
- 2. Polynomial time attack
- 3. Practical performance
- 4. Security implications
- 5. Conclusions

Image: A math a math

Definition of LWE

Learning With Errors (Regev, 2005) is a hard computational problem that several homomorphic cryptosystems are based on.

 $q = 2^r$ an integer modulus

n an integer, $\mathbf{s} \in \mathbb{Z}_a^n$ a secret vector chosen uniformly at random

 $D_{\mathbb{Z},\sigma}$ (error distribution) the discrete Gaussian distribution centered at 0, with standard deviation σ

Definition 1 (LWE sample)

An LWE sample is a pair $(\mathbf{a}, t) \in \mathbb{Z}_q^n \times \mathbb{Z}_q$, where \mathbf{a} is sampled uniformly at random from \mathbb{Z}_q^n , $e \leftarrow D_{\mathbb{Z},\sigma}$ and $t = [\langle \mathbf{a}, \mathbf{s} \rangle + e]_q = \langle \mathbf{a}, \mathbf{s} \rangle_q + e \in (-q/2, q/2)$.

Definition 2 (search-LWE_{n,r,d,σ})

Given *d* LWE samples (\mathbf{a}_i, t_i) , the problem search-LWE_{*n*,*r*,*d*, σ is to recover the secret vector **s**.}

< □ > < □ > < □ > < □ > < □ >

- When q = poly(n), polynomial time quantum reduction from worst-case GapSVP (Regev)
- When q = poly(n), polynomial time *classical reduction* from worst-case of an easier (less studied) variant of GapSVP (Peikert)
- When *q* is exponential in *n*, polynomial time *classical reduction* from worst-case GapSVP (Peikert)

In all cases the approximating factor is $\tilde{O}(nq/\sigma)$. When the approximating factor is polynomial in *n*, there is no known algorithm for solving GapSVP in polynomial time.

Question 1: What happens in practice when *q* is exponential in *n*? **Question 2:** What happens in practice when *q* is "pretty large"?

< □ > < □ > < □ > < □ > < □ >

Connection to lattices

Let Λ be the (n + d)-dimensional lattice generated by the rows of the matrix

$$\begin{pmatrix} q & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & q & \cdots & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & q & 0 & 0 & \cdots & 0 \\ \mathbf{a}_0[0] & \mathbf{a}_1[0] & \cdots & \mathbf{a}_{d-1}[0] & 1/2^N & 0 & \cdots & 0 \\ \mathbf{a}_0[1] & \mathbf{a}_1[1] & \cdots & \mathbf{a}_{d-1}[1] & 0 & 1/2^N & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\ \mathbf{a}_0[n-1] & \mathbf{a}_1[n-1] & \cdots & \mathbf{a}_{d-1}[n-1] & 0 & 0 & \cdots & 1/2^N \end{pmatrix}$$

Easy to see:

$$\mathbf{v} = \left[\langle \mathbf{a}_0, \mathbf{s} \rangle_q, \langle \mathbf{a}_1, \mathbf{s} \rangle_q, \dots, \langle \mathbf{a}_{d-1}, \mathbf{s} \rangle_q, \mathbf{s}[0]/2^N, \mathbf{s}[1]/2^N, \dots, \mathbf{s}[n-1]/2^N \right] \in \Lambda$$
$$\mathbf{u} = \left[t_0, t_1, \dots, t_{d-1}, 0, \dots, 0 \right] \notin \Lambda \text{ but is close to } \mathbf{v} \text{ if } N \text{ is big}$$

Image: A math a math

- Assumption: We have access to any number of LWE samples so *d* can be anything we want.
- "Simply" solve approx-CVP in Λ with input u to find v and s.
- Method: Find a good basis for the lattice and use Babai's *nearest planes* method.
- dim $\Lambda = n + d$ can be huge.
- We might not find the correct vector **v**.

Problem: The approximation factor might have to be small so need very good basis (use BKZ-2.0 with large blocksize): exponential time?

• • • • • • • • • • • •

Claim: If q is large enough and d is chosen appropriately, need to solve CVP only up to exponential factor (in n)!

- So in certain cases: Run LLL (polynomial time in n) and use Babai's method to find candidate for **v**.
- Recovered vector is almost certainly v.

Explanation: If $q = 2^{O(n)}$ and d chosen appropriately, probability of having a lattice vector within some large radius $< q = 2^{O(n)}$ of **u** can be made to be very small.

- This is a restriction on q.
- But we know there is one, namely **v**.
- So even if LLL-Babai performs exponentially poorly, it will still find a close vector within this radius, which is very likely to be **v**.

イロト イヨト イヨト イヨト

More precise claim:

Let $\delta = (1 + (1/2) \log_2 n)/n$ and suppose $r := \log_2 q > 7(1/2 + \delta)n$. Let $d = \left\lceil \sqrt{(1/2 + \delta)(r+1)n} \right\rceil.$

Solve ℓ_{σ} from

$$nd\sqrt{e} \, 2^{r-\ell_\sigma} = \sigma \, \exp\left(rac{2^{2r-2\ell_\sigma-1}}{\sigma^2}
ight) \, .$$

lf

$$(1/2+\delta)n+2\sqrt{(1/2+\delta)(r+1)n} < \ell_{\sigma}$$
,

i.e. σ is small enough, then *search*-LWE_{*n*,*r*,*d*,*D*_{Z, σ} can be solved in probabilistic polynomial time in *n* by computing an LLL-reduced basis of the given basis of Λ and using Babai's nearest planes method to **u**. The algorithm successfully returns **v** with very high probability. The running time is polynomial in *n*.}

イロト 不得 トイヨト イヨト

Remarks:

- In the proof many very strong approximations are made to guarantee success.
- Does not tell much about practical performance.
- Input basis to LLL has very special form: Performance of LLL-Babai?

Here is a way of measuring the practical performance:

- Guaranteed approx factor in LLL-Babai is $2^{(n+d)/2}$ (used in proof)
- Instead write $2^{\mu(n+d)}$ and go through the proof; get a formula for μ needed to succeed.
- Run examples and compute the required $\mu.$ Failed: effectively μ was larger; Succeeded: effectively μ was smaller.
- Gives an idea of how big effectively μ can be expected to be
- Extrapolate behavior of μ to larger examples (do they fail or succeed?)

< □ > < □ > < □ > < □ > < □ >

For a particular experiment to succeed, the effective lower bound for μ that needs to be realized is given approximately by

$$\mu_{\text{eff}} := \frac{1}{n+d} \left[-\frac{rn}{d} + r - 1 - \log_2(\lceil \sigma \rceil \sqrt{n+d}) \right]$$

Here are the results as a function of n:

Image: A math the second se

Experimental results

Ok, so what can be broken? Here are some examples:

n	d	r	σ	Time
80	320	16	3.233	1.6h
100	400	20	6.346	6.8h
128	572	23	3.097	24h
160	540	27	3.077	1d 5h
200	550	31	3.049	2d 13h

・ロト ・ 日 ・ ・ ヨ ・ ・

What happens for larger *n*? Here $\sigma = 8/\sqrt{2\pi}$.

п	d	r	μ_{eff}
512	1388	65	0.0171
1024	2576	120	0.0176
2048	5152	235	0.0184
4096	10104	465	0.0188

Will these succeed or fail?

・ロト ・回ト ・ヨト ・

Distinguishing attack

 Usually (e.g. Lindner-Peikert, van de Pol-Smart, Lepoint-Naehrig) recommended parameters based on hardness of the distinguishing attack, i.e. distinguishing of valid LWE samples from random data.

Theorem 3

Compute a basis with root-Hermite factor δ for a d-dimensional q-ary lattice. Valid LWE samples can be distinguished from random data with advantage (suppose d > n)

$$\exp\left[-\pi\left(\frac{\delta^d \sqrt{2\pi}\,\sigma}{q^{1-n/d}}\right)\right]$$

- Nguyen-Stehle [LLL on the Average]: With LLL expect $\delta \approx 1.02$
- With $\delta \approx 1.02$ and r as large as in the examples above, distinguishing advantage is very high!
- So none of this is surprising: *Distinguishing implies key recovery* but in time proportional to *q* (huge!).
- The interesting result is that key recovery can actually be done so easily in these cases.

Therefore:

- At least with pure LLL the attack does not threaten commonly recommended secure parameters, but how significantly does performance improve if we improve the basis using other methods?
- In some special applications might want to evaluate very deep circuits homomorphically and need very large r, small σ .
- E.g. evaluating some block ciphers homomorphically.
- In these cases you really do need a large enough n.

Security of LWE based cryptosystems depends very strongly on the parameters.

Thank you!

イロト イヨト イヨト イ