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Structure of this talk

1. Introduce the problem (search-)LWE

2. Polynomial time attack

3. Practical performance

4. Security implications

5. Conclusions
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Definition of LWE

Learning With Errors (Regev, 2005) is a hard computational problem that several
homomorphic cryptosystems are based on.

q = 2r an integer modulus

n an integer, s ∈ Zn
q a secret vector chosen uniformly at random

DZ,σ (error distribution) the discrete Gaussian distribution centered at 0, with
standard deviation σ

Definition 1 (LWE sample)

An LWE sample is a pair (a, t) ∈ Zn
q × Zq, where a is sampled uniformly at

random from Zn
q, e ← DZ,σ and t =

[
〈a, s〉+ e

]
q

= 〈a, s〉q + e ∈ (−q/2, q/2).

Definition 2 (search-LWEn,r ,d ,σ)

Given d LWE samples (ai , ti ), the problem search-LWEn,r ,d,σ is to recover the
secret vector s.
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Security reductions

- When q = poly(n), polynomial time quantum reduction from worst-case
GapSVP (Regev)

- When q = poly(n), polynomial time classical reduction from worst-case of an
easier (less studied) variant of GapSVP (Peikert)

- When q is exponential in n, polynomial time classical reduction from
worst-case GapSVP (Peikert)

In all cases the approximating factor is Õ(nq/σ). When the approximating factor
is polynomial in n, there is no known algorithm for solving GapSVP in polynomial
time.

Question 1: What happens in practice when q is exponential in n?

Question 2: What happens in practice when q is “pretty large”?
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Connection to lattices

Let Λ be the (n + d)-dimensional lattice generated by the rows of the matrix

q 0 · · · 0 0 0 · · · 0
0 q · · · 0 0 0 · · · 0
...

. . .
. . . 0 0 0

. . . 0
0 0 · · · q 0 0 · · · 0

a0[0] a1[0] · · · ad−1[0] 1/2N 0 · · · 0
a0[1] a1[1] · · · ad−1[1] 0 1/2N · · · 0

...
. . .

. . .
...

...
. . .

. . .
...

a0[n − 1] a1[n − 1] · · · ad−1[n − 1] 0 0 · · · 1/2N


.

Easy to see:

v =
[
〈a0, s〉q, 〈a1, s〉q, . . . , 〈ad−1, s〉q, s[0]/2N , s[1]/2N , . . . , s[n − 1]/2N

]
∈ Λ

u =
[
t0, t1, . . . , td−1, 0, . . . , 0

]
/∈ Λ but is close to v if N is big
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Connection to lattices

- Assumption: We have access to any number of LWE samples so d can be
anything we want.

- “Simply” solve approx-CVP in Λ with input u to find v and s.

- Method: Find a good basis for the lattice and use Babai’s nearest planes
method.

- dim Λ = n + d can be huge.

- We might not find the correct vector v.

Problem: The approximation factor might have to be small so need very
good basis (use BKZ-2.0 with large blocksize): exponential time?
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Polynomial time attack

Claim: If q is large enough and d is chosen appropriately, need to solve CVP
only up to exponential factor (in n)!

- So in certain cases: Run LLL (polynomial time in n) and use Babai’s method
to find candidate for v.

- Recovered vector is almost certainly v.

Explanation: If q = 2O(n) and d chosen appropriately, probability of having a
lattice vector within some large radius < q = 2O(n) of u can be made to be
very small.

- This is a restriction on q.

- But we know there is one, namely v.

- So even if LLL-Babai performs exponentially poorly, it will still find a close
vector within this radius, which is very likely to be v.
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More precise claim:

Let δ =
(
1 + (1/2) log2 n

)
/n and suppose r := log2 q > 7(1/2 + δ)n. Let

d =
⌈√

(1/2 + δ)(r + 1)n
⌋
.

Solve `σ from

nd
√
e 2r−`σ = σ exp

(
22r−2`σ−1

σ2

)
.

If
(1/2 + δ)n + 2

√
(1/2 + δ)(r + 1)n < `σ ,

i.e. σ is small enough, then search-LWEn,r ,d,DZ,σ can be solved in probabilistic
polynomial time in n by computing an LLL-reduced basis of the given basis of Λ
and using Babai’s nearest planes method to u. The algorithm successfully returns
v with very high probability. The running time is polynomial in n.
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Practical performance

Remarks:

- In the proof many very strong approximations are made to guarantee success.

- Does not tell much about practical performance.

- Input basis to LLL has very special form: Performance of LLL-Babai?

Here is a way of measuring the practical performance:

- Guaranteed approx factor in LLL-Babai is 2(n+d)/2 (used in proof)

- Instead write 2µ(n+d) and go through the proof; get a formula for µ needed to
succeed.

- Run examples and compute the required µ. Failed: effectively µ was larger;
Succeeded: effectively µ was smaller.

- Gives an idea of how big effectively µ can be expected to be

- Extrapolate behavior of µ to larger examples (do they fail or succeed?)
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Experimental results

For a particular experiment to succeed, the effective lower bound for µ that
needs to be realized is given approximately by

µeff :=
1

n + d

[
− rn

d
+ r − 1− log2(dσe

√
n + d)

]
Here are the results as a function of n:
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Experimental results
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Security implications

Ok, so what can be broken? Here are some examples:

n d r σ Time

80 320 16 3.233 1.6h
100 400 20 6.346 6.8h
128 572 23 3.097 24h
160 540 27 3.077 1d 5h
200 550 31 3.049 2d 13h

Kim Laine and Kristin Lauter (UC Berkeley, Microsoft Research DIMACS Workshop on The Mathematics of Post-Quantum CryptographyRutgers University)Key Recovery for LWE in Polynomial Time January 16, 2015 12 / 16



Security implications

What happens for larger n? Here σ = 8/
√

2π.

n d r µeff

512 1388 65 0.0171
1024 2576 120 0.0176
2048 5152 235 0.0184
4096 10104 465 0.0188

Will these succeed or fail?
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Distinguishing attack

- Usually (e.g. Lindner-Peikert, van de Pol-Smart, Lepoint-Naehrig)
recommended parameters based on hardness of the distinguishing attack, i.e.
distinguishing of valid LWE samples from random data.

Theorem 3
Compute a basis with root-Hermite factor δ for a d-dimensional q-ary lattice.
Valid LWE samples can be distinguished from random data with advantage
(suppose d > n)

exp

[
−π

(
δd
√

2π σ

q1−n/d

)]
.

- Nguyen-Stehle [LLL on the Average]: With LLL expect δ ≈ 1.02

- With δ ≈ 1.02 and r as large as in the examples above, distinguishing
advantage is very high!

- So none of this is surprising: Distinguishing implies key recovery but in time
proportional to q (huge!).

- The interesting result is that key recovery can actually be done so easily in
these cases.
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Security implications?

Therefore:

- At least with pure LLL the attack does not threaten commonly recommended
secure parameters, but how significantly does performance improve if we
improve the basis using other methods?

- In some special applications might want to evaluate very deep circuits
homomorphically and need very large r , small σ.

- E.g. evaluating some block ciphers homomorphically.

- In these cases you really do need a large enough n.

Security of LWE based cryptosystems depends very strongly on the
parameters.
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Thank you!
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