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Multivariate Public Key Cryptosystems

F a finite field with |F| = q

Fn {p1,...,pn}−−−−−−→ Fm

pi (x1, . . . , xn) ∈ F[x1, . . . , xn]/ 〈xq
1 − x1, . . . , x

q
n − xn〉 = Fun(Fn, F)

Solving

p1(x1, . . . , xn) = y1

...
...

pm(x1, . . . , xn) = ym

is a hard problem.

Problem

Design a trapdoor that retains this level of security.
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Hidden Field Systems: Matsumoto-Imai

Identify (secretly) Fn with an extension field K, where dimF K = n. So |K| = qn

The map P : K → K,
P(X ) = X θ

is invertible with inverse P−1(X ) = X s if gcd(θ, qn − 1) = 1,

For all 0 6= α ∈ K, αqn−1 = 1 by Lagrange’s Theorem. Since gcd(θ, qn − 1) = 1, then
there exist s, t ∈ Z such that θs + (qn − 1)t = 1 so

(αθ)s = α−(qn−1)t+1 = α−(qn−1)tα = α

Take q = 2t and θ = 1 + qs , P(X ) = X .X qs

is quadratic

K P−−−−−→ K

σ

x?? τ

??y
Fn {p1,...,pn}−−−−−−→ Fn

Private Key

Public Key

σ, τ invertible affine linear maps

Timothy Hodges (University of Cincinnati) Mathematical Problems in MPKC January 15, 2015 5 / 28



Hidden Field Systems: Matsumoto-Imai

Identify (secretly) Fn with an extension field K, where dimF K = n. So |K| = qn

The map P : K → K,
P(X ) = X θ

is invertible with inverse P−1(X ) = X s if gcd(θ, qn − 1) = 1,

For all 0 6= α ∈ K, αqn−1 = 1 by Lagrange’s Theorem. Since gcd(θ, qn − 1) = 1, then
there exist s, t ∈ Z such that θs + (qn − 1)t = 1 so

(αθ)s = α−(qn−1)t+1 = α−(qn−1)tα = α

Take q = 2t and θ = 1 + qs , P(X ) = X .X qs

is quadratic

K P−−−−−→ K

σ

x?? τ

??y
Fn {p1,...,pn}−−−−−−→ Fn

Private Key

Public Key

σ, τ invertible affine linear maps

Timothy Hodges (University of Cincinnati) Mathematical Problems in MPKC January 15, 2015 5 / 28



Hidden Field Systems: Matsumoto-Imai

Identify (secretly) Fn with an extension field K, where dimF K = n. So |K| = qn

The map P : K → K,
P(X ) = X θ

is invertible with inverse P−1(X ) = X s if gcd(θ, qn − 1) = 1,

For all 0 6= α ∈ K, αqn−1 = 1 by Lagrange’s Theorem. Since gcd(θ, qn − 1) = 1, then
there exist s, t ∈ Z such that θs + (qn − 1)t = 1 so

(αθ)s = α−(qn−1)t+1 = α−(qn−1)tα = α

Take q = 2t and θ = 1 + qs , P(X ) = X .X qs

is quadratic

K P−−−−−→ K

σ

x?? τ

??y
Fn {p1,...,pn}−−−−−−→ Fn

Private Key

Public Key

σ, τ invertible affine linear maps

Timothy Hodges (University of Cincinnati) Mathematical Problems in MPKC January 15, 2015 5 / 28



Hidden Field Systems: Matsumoto-Imai

Identify (secretly) Fn with an extension field K, where dimF K = n. So |K| = qn

The map P : K → K,
P(X ) = X θ

is invertible with inverse P−1(X ) = X s if gcd(θ, qn − 1) = 1,

For all 0 6= α ∈ K, αqn−1 = 1 by Lagrange’s Theorem. Since gcd(θ, qn − 1) = 1, then
there exist s, t ∈ Z such that θs + (qn − 1)t = 1 so

(αθ)s = α−(qn−1)t+1 = α−(qn−1)tα = α

Take q = 2t and θ = 1 + qs , P(X ) = X .X qs

is quadratic

K P−−−−−→ K

σ

x?? τ

??y
Fn {p1,...,pn}−−−−−−→ Fn

Private Key

Public Key

σ, τ invertible affine linear maps

Timothy Hodges (University of Cincinnati) Mathematical Problems in MPKC January 15, 2015 5 / 28



Hidden Field Systems: Matsumoto-Imai

Identify (secretly) Fn with an extension field K, where dimF K = n. So |K| = qn

The map P : K → K,
P(X ) = X θ

is invertible with inverse P−1(X ) = X s if gcd(θ, qn − 1) = 1,

For all 0 6= α ∈ K, αqn−1 = 1 by Lagrange’s Theorem. Since gcd(θ, qn − 1) = 1, then
there exist s, t ∈ Z such that θs + (qn − 1)t = 1 so

(αθ)s = α−(qn−1)t+1 = α−(qn−1)tα = α

Take q = 2t and θ = 1 + qs , P(X ) = X .X qs

is quadratic

K P−−−−−→ K

σ

x?? τ

??y
Fn {p1,...,pn}−−−−−−→ Fn

Private Key

Public Key

σ, τ invertible affine linear maps

Timothy Hodges (University of Cincinnati) Mathematical Problems in MPKC January 15, 2015 5 / 28



Hidden Field Systems: Matsumoto-Imai

Identify (secretly) Fn with an extension field K, where dimF K = n. So |K| = qn

The map P : K → K,
P(X ) = X θ

is invertible with inverse P−1(X ) = X s if gcd(θ, qn − 1) = 1,

For all 0 6= α ∈ K, αqn−1 = 1 by Lagrange’s Theorem. Since gcd(θ, qn − 1) = 1, then
there exist s, t ∈ Z such that θs + (qn − 1)t = 1 so

(αθ)s = α−(qn−1)t+1 = α−(qn−1)tα = α

Take q = 2t and θ = 1 + qs , P(X ) = X .X qs

is quadratic

K P−−−−−→ K

σ

x?? τ

??y
Fn {p1,...,pn}−−−−−−→ Fn

Private Key

Public Key

σ, τ invertible affine linear maps

Timothy Hodges (University of Cincinnati) Mathematical Problems in MPKC January 15, 2015 5 / 28



Patarin’s HFE System

P(X ) is

of low total degree, D (efficient
decryption).

quadratic over F so that pi (x1, . . . , xn)
are quadratic (efficient encryption)

K P(X )−−−−−→ K

σ

x?? τ

??y
Fn {p1,...,pn}−−−−−−→ Fn

P(X ) =
X

qi +qj≤D

aijX
qi +qj

+
X
qi≤D

biX
qi

+ c

where aij , bi , c ∈ K.
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Systems with a unique solution

Suppose the system

p1(x1, . . . , xn) = 0

p2(x1, . . . , xn) = 0

...

pn(x1, . . . , xn) = 0

If the system has the unique solution,

x1 = a1, x2 = a2, . . . , xn = an

then
(p1(x1, . . . , xn), . . . , pn(x1, . . . , xn)) = (x1 − a1, x2 − a2 . . . xn − an)

xi − ai =
nX

i−1

gj(x1, . . . , xn)pj(x1, . . . , xn)

So xi − ai can be found by exhaustive search of all combinations of the formPn
i−1 gj(x1, . . . , xn)pj(x1, . . . , xn) or by Gröbner basis algorithms.
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XL algorithm

Let A = F[X1, . . . , Xn]/(X q
1 − X1, . . . , X

q
n − Xn); set xi = X̄i .

Ak = {elements expressible as polynomials of degree ≤ k }

Let
I = (p1(x1, . . . , xn), . . . , p(x1, . . . , xn)) =

X
i

Api (x1, . . . , xn)

where deg pi = di . Note that dim A/I equals the number of solutions of the system.
Set

Jk =
X

i

Ak−di pi ⊂ Ak

Then
J1 ⊂ J2 ⊂ · · · ⊂ JN = I

When dim Ak − dim Jk < q we can find a univariate polynomial in Jk which can be solved
by univariate root-finding algorithms to find ai .
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Operational Degree of XL algorithm

Definition

The operational degree of the XL algorithm is the highest degree of polynomials that
occur in the calculations before the algorithm terminates

Conjecture (or Definition (Yang-Chen-Courtois))

If there are no non-trivial relations between the fi of degree less than or equal to k, then

dim Ak − dim Jk = [tk ]

 
(1− tq)n

(1− t)n+1

Y
i

(1− tdi )

(1− tdi q)

!

Rationale (m = 1, Jk = Ak−d f ): since (1− f q−1)f = f − f q = 0

0 → · · · → Ak−2qd
1−f q−1

−→ Ak−(q+1)d
f→ Ak−qd

1−f q−1

−→ Ak−d
f→ Ak → Ak/Jk → 0

So dim Ak/Jk =
P

j(dim Ak−jqd − dim Ak−(jq+1)d)
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Yang-Chen formula

Let

sd = [td ]

 
(1− tq)n

(1− t)n+1

Y
i

(1− tdi )

(1− tdi q)

!

Typical behavior for a set of 20 quadratic polynomials in 20 variables over F3.

d 0 1 2 3 4 5 6 7 8
dimAd 1 21 231 1771 10626 53110 229810 883410 2089395
dim Jd 0 0 20 420 4430 31030 161350 661030 2089394
dimAd − dim Jd 1 21 211 1331 5776 17480 33650 18470 1
sd 1 21 211 1331 5776 17480 33650 18470 -125740

Conjecture (Y-C-C)

The operational degree of the XL algorithm on the system f1, . . . , fm is at most

Ind

 
(1− tq)n

(1− t)n+1

Y
i

(1− tdi )

(1− tdi q)

!
= min{d | sd ≤ 0}
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Asymptotics of the Index

Definition

The index of a power series
P

i ai t
i , denoted Ind(

P
i ai t

i ) is the first k such that ak ≤ 0.

Problem

Understand the behavior of

Ind

 
(1− tq)n

(1− t)n+1

Y
i

(1− tdi )

(1− tdi q)

!

Theorem

(The case when q = 2, n = m and d1 = · · · = dn = 2). Asymptotically,

Ind

„
(1− t2)n

(1− t)n+1

„
(1− t2)

(1− t2q)

«n«
∼= .09n
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Conclusion and Applications to MPKC

Conclusion

If we assume the YCC Conjecture that the operational degree of XL is the index of the
series and we can understand the asymptotics of this index we can determine the
complexity of the algorithm on such systems.

Problem

Prove the YCC conjecture

Does this analysis give us useful information about applying the XL algorithm to
attacking systems of equations derived from MPKC’s like Matsumoto-Imai and HFE?

Not really

The systems of equations derived from such systems are qualitatively different from
the ones assumed to have as few relations between the fi ’s as possible.

In fact non-trivial relations occur much earlier and the XL algorithm will terminate
at a much lower degree.
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First Fall Degree

Definition

First Fall Degree: Lowest degree at which non-trivial “degree falls” occur.

deg

 X
i

gipi

!
< max{deg(gi ) + deg(pi )}

Trivial degree falls:
pq−1

i pi = pq
i = pi , pjpi − pipj = 0

Example

If q = 2 and p(x1, . . . , x6) = x1x2 + x3x4 + x5x6 + 1 then

x1x3x5(x1x2 + x3x4 + x5x6 + 1) = x1x2x3x5 + x1x3x4x5 + x1x3x5x6 + x1x3x5

is a non-trivial degree fall.
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First Fall Degree of Leading Terms

Let ph
i be the highest degree part of pi considered as an element of the truncated

polynomial ring

ph
i ∈

F[x1, . . . , xn]

〈xq
1 , . . . , xq

n 〉

First fall degree of ph
1 , . . . , p

h
n is first degree at which non-trivial relations occur.

deg

 X
i

fip
h
i

!
= 0

Trivial relations: (ph
i )

q−1ph
i = 0, ph

j p
h
i − ph

i p
h
j = 0

Then
Dff(p1, . . . , pn) = Dff(ph

1 , . . . , p
h
n)
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First-Fall Degree for HFE Systems

Theorem (Dubois-Gama)

Dff(ph
1 , . . . , p

h
n) ≤ Dff(ph

1 , . . . , p
h
j )

Recall that
P(X ) =

X
qi +qj≤D

aijX
qi +qj

+
X
qi≤D

biX
qi

+ c

Define
P0(X1, . . . , Xn) =

X
aijXiXj ∈ K[X1, . . . , Xn]/(X q

1 , . . . , X q
n )

Galois theory and filtered-graded arguments yield the key result:

Theorem

Dff(ph
1 , . . . , p

h
n) ≤ Dff(P0)
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Bounding the First-Fall Degree for HFE Systems

Lemma

Dff

 
P0 =

X
i,j

aijXiXj

!
≤ Rank(P0)(q − 1)

2
+ 2

where Rank(P0) is the rank of the quadratic form P0.

For instance
X q−1

1 X q−1
3 . . . X q−1

r−1 (X1X2 + X3X4 + ... + Xr−1Xr ) = 0

Theorem (Ding-Hodges)

The first fall degree of the system defined by P is bounded by

Dff(p1, . . . , pn) ≤
Rank(P0)(q − 1)

2
+ 2 ≤

(q − 1)(blogq(D − 1)c+ 1)

2
+ 2

if Rank(P0) > 1.
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Complexity of Grobner basis attack on HFE systems

For the sake of analysis of the complexity of attacks on HFE systems we usually assume
that D = O(nα).

Conclusion

If we assume that the first fall degree of a system is a good indicator of the operational
degree then we can conclude that the complexity of a Grobner basis attack on HFE
system is quasi-polynomial.

but...

Problem

Prove that the first fall degree of a system is a good indicator of the operational degree
in suitable situations.
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Higher Degree Analogs of HFE

Suppose that

P(X ) =
X

qi1 +···+qid≤D

aijX
qi1 +···+qid

+ lower degree terms

and let

P0(X1, . . . , Xn) =
X

qi1 +···+qid≤D

aijX1i . . . Xid ∈ K[X1, . . . , Xn]/ 〈X q
1 , . . . , X q

n 〉

Lemma

Dff(P0) ≤ (Rank(P0)(q − 1) + d + 2)/2

Theorem (Hodges-Petit-Schlather)

The first fall degree of the system defined by P is bounded by

Dff(p1, . . . , pn) ≤
(q − 1) logq(D − d + 1) + q + d + 1

2
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q − r

k 1 2 3 4 5 6

1 0 0 0 0 5 5
2 0 0 0 0 15 15
3 0 0 0 0 35 35
4 0 0 0 55 70 70
5 0 0 0 121 126 126
6 0 0 0 209 210 209
7 0 0 199 325 325 320
8 0 0 400 470 470 455
9 0 0 605 640 640 605

10 0 356 811 826 826 756
11 0 690 1010 1015 1015 889
12 0 980 1189 1190 1189 980
13 315 1204 1330 1330 1325 1005
14 594 1350 1420 1420 1405 950
15 811 1416 1451 1451 1416 811
16 950 1405 1420 1420 1350 594
17 1005 1325 1330 1330 1204 315
18 980 1189 1190 1189 980 0
19 889 1015 1015 1010 690 0
20 756 826 826 811 356 0
21 605 640 640 605 0 0
22 455 470 470 400 0 0
23 320 325 325 199 0 0
24 209 210 209 0 0 0
25 126 126 121 0 0 0
26 70 70 55 0 0 0
27 35 35 0 0 0 0
28 15 15 0 0 0 0
29 5 5 0 0 0 0
30 1 0 0 0 0 0

Timothy Hodges (University of Cincinnati) Mathematical Problems in MPKC January 15, 2015 21 / 28



Shifted difference of periodic sums of generalized binomial coefficients

Generalized binomial coefficients

(1 + z + · · ·+ zq−1)n =
1− zq

1− z
=
X

Cq(n, k)zk

Periodic or lacunary sums of generalized binomial coefficients

PCq(n, k, s) =
∞X

j=−∞

Cq(n, k + sj)

Shifted difference of periodic sums of generalized binomial coefficients

Γq(n, d , r , k) = PCq(n, k, dq)− PCq(n, k − rd , dq)
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An example of a Gamma function

20 40 60 80

-150 000

-100 000

-50 000

50 000

100 000

150 000

Figure: Γ17(6, 4, k)

Note: ((q − 1)n + d)/2 = (16.6 + 4)/2 = 50
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Discrete Fourier Transform

When q = 2, we have, for instance,

PC2(n, k, 4) =
2n−1 + 2n/2 cos(π

4
(n − 2k))

2

(Ramus, 1834)

If q is odd, PCq(n, k, r) is equal to

1

r

r−1X
m=0

0B@2

q−1
2X

j=1

cos

„
m(q − 2j + 1)π

r

«
+ 1

1CA
n

cos

„
mπ((q − 1)n − 2k)

r

«

(Hoggat and Alexanderson, 1976)
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Determinants with binomial coefficient entries

Problem: show that ˛̨̨̨
˛̨̨
`

r
k

´
. . .

`
r

k+s

´
...

...`
r+s
k

´
. . .

`
r+s
k+s

´
˛̨̨̨
˛̨̨

is non-zero mod p if r + s < p.

Theorem (Zeipel, 1870’s)˛̨̨̨
˛̨̨
`

r
k

´
. . .

`
r

k+s

´
...

...`
r+s
k

´
. . .

`
r+s
k+s

´
˛̨̨̨
˛̨̨ = `

r
k

´
. . .
`
r+s
k

´`
k
k

´
. . .
`
k+s
k

´
from: Sir Thomas Muir’s “The theory of determinants in the historical order of
development, Vol 3, Macmillan and Co., London, 1923”
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Semi-regular Sequences

Henceforth the base field will be F2.

Definition

A set λ1, . . . , λm ∈ B = F2[X1, . . . , Xn]/(X q
1 , . . . , X q

n ) is semi-regular if Dff(λ1, . . . , λm) is
as large as possible.

Theorem (Bardet-Faugere-Salvy)

The set λ1, . . . , λm is semi-regular if and only if

HSB/(λ1,...,λm)(z) =

»
(1 + z)nQm
i=1(1 + zdi )

–
In this case the operational degree of Grobner basis algorithms is the index of this series.

Here
[1 + 2t + 7t2 + 3t3 − 6t4 + t5 + . . . ] = 1 + 2t + 7t2 + 3t3
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Existence of semi-regular sequences

It is widely believed that in some sense “most” sequences are semi-regular.

n\m 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3 1 .8 1 1 1 1
4 .35 1 .75 .75 .3 .65 .85 .9 1 1 1 1 1 1
5 0 .85 .95 1 .9 .85 .75 .6 .2 .65 .7 .9 .9 1
6 .85 .7 .65 .9 1 1 1 .95 .95 .95 .75 .8 .5 .25
7 0 .85 1 .1 1 1 1 1 1 1 1 .95 1 1
8 .7 .45 1 1 .95 .1 1 1 1 1 1 1 1 1
9 0 .95 .7 1 1 1 1 .8 .9 1 1 1 1 1
10 0 .85 1 .35 1 1 1 1 1 1 .25 1 1 1
11 0 .95 1 1 1 1 1 1 1 1 1 1 1 .4
12 0 0 1 1 1 1 .9 1 1 1 1 1 1 1
13 0 0 1 1 1 1 1 1 1 1 1 1 1 1
14 0 0 0 1 1 1 1 1 1 1 1 1 1 1
15 0 0 0 1 1 1 1 1 1 1 1 1 .45 1

Table: Proportion of Samples of 20 Sets of m Homogeneous Quadratic Elements in n variables
that are Semi-Regular
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