Mathematical Problems in Multivariate Public Key Cryptography

Timothy Hodges
University of Cincinnati
January 15, 2015

Overview

(1) Multivariate Public Key Cryptosystems
(2) Solving Systems of Polynomial Equations
(3) First Fall Degree and HFE-systems
(4) Semi-regular systems

Outline

(1) Multivariate Public Key Cryptosystems

2 Solving Systems of Polynomial Equations
(3) First Fall Degree and HFE-systems

4 Semi-regular systems

Multivariate Public Key Cryptosystems

```
\(\mathbb{F}\) a finite field with \(|\mathbb{F}|=q\)
```

[^0]Design a trapdoor that retains this level of security.

Multivariate Public Key Cryptosystems

\mathbb{F} a finite field with $|\mathbb{F}|=q$

$$
\mathbb{F}^{n} \xrightarrow{\left\{p_{1}, \ldots, p_{n}\right\}} \mathbb{F}^{m}
$$

Multivariate Public Key Cryptosystems

\mathbb{F} a finite field with $|\mathbb{F}|=q$

$$
\mathbb{F}^{n} \xrightarrow{\left\{p_{1}, \ldots, p_{n}\right\}} \mathbb{F}^{m}
$$

$p_{i}\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right] /\left\langle x_{1}^{q}-x_{1}, \ldots, x_{n}^{q}-x_{n}\right\rangle=\operatorname{Fun}\left(\mathbb{F}^{n}, \mathbb{F}\right)$

Design a trapdoor that retains this level of security.

Multivariate Public Key Cryptosystems

\mathbb{F} a finite field with $|\mathbb{F}|=q$

$$
\mathbb{F}^{n} \xrightarrow{\left\{p_{1}, \ldots, p_{n}\right\}} \mathbb{F}^{m}
$$

$p_{i}\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right] /\left\langle x_{1}^{q}-x_{1}, \ldots, x_{n}^{q}-x_{n}\right\rangle=\operatorname{Fun}\left(\mathbb{F}^{n}, \mathbb{F}\right)$

Solving

$$
\begin{gathered}
p_{1}\left(x_{1}, \ldots, x_{n}\right)=y_{1} \\
\vdots \\
\vdots \\
p_{m}\left(x_{1}, \ldots, x_{n}\right)=y_{m}
\end{gathered}
$$

is a hard problem.

Design a trapdoor that retains this level of security.

Multivariate Public Key Cryptosystems

\mathbb{F} a finite field with $|\mathbb{F}|=q$

$$
\mathbb{F}^{n} \xrightarrow{\left\{p_{1}, \ldots, p_{n}\right\}} \mathbb{F}^{m}
$$

$p_{i}\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right] /\left\langle x_{1}^{q}-x_{1}, \ldots, x_{n}^{q}-x_{n}\right\rangle=\operatorname{Fun}\left(\mathbb{F}^{n}, \mathbb{F}\right)$
Solving

$$
\begin{gathered}
p_{1}\left(x_{1}, \ldots, x_{n}\right)=y_{1} \\
\vdots
\end{gathered} \vdots \vdots 子 \begin{gathered}
\\
p_{m}\left(x_{1}, \ldots, x_{n}\right)=
\end{gathered} y_{m}
$$

is a hard problem.

Problem

Design a trapdoor that retains this level of security.

Hidden Field Systems: Matsumoto-Imai

Identify (secretly) \mathbb{F}^{n} with an extension field \mathbb{K}, where $\operatorname{dim}_{\mathbb{F}} \mathbb{K}=n$. So $|\mathbb{K}|=q^{n}$
is invertible with inverse $P^{-1}(X)=X^{s}$ if $\operatorname{gcd}\left(\theta, q^{n}-1\right)=1$,

Hidden Field Systems: Matsumoto-Imai

Identify (secretly) \mathbb{F}^{n} with an extension field \mathbb{K}, where $\operatorname{dim}_{\mathbb{F}} \mathbb{K}=n$. So $|\mathbb{K}|=q^{n}$
The map $P: \mathbb{K} \rightarrow \mathbb{K}$,

$$
P(X)=X^{\theta}
$$

is invertible with inverse $P^{-1}(X)=X^{s}$ if $\operatorname{gcd}\left(\theta, q^{n}-1\right)=1$,

Hidden Field Systems: Matsumoto-Imai

Identify (secretly) \mathbb{F}^{n} with an extension field \mathbb{K}, where $\operatorname{dim}_{\mathbb{F}} \mathbb{K}=n$. So $|\mathbb{K}|=q^{n}$ The map $P: \mathbb{K} \rightarrow \mathbb{K}$,

$$
P(X)=X^{\theta}
$$

is invertible with inverse $P^{-1}(X)=X^{s}$ if $\operatorname{gcd}\left(\theta, q^{n}-1\right)=1$,
For all $0 \neq \alpha \in \mathbb{K}, \alpha^{q^{n}-1}=1$ by Lagrange's Theorem.

Hidden Field Systems: Matsumoto-Imai

Identify (secretly) \mathbb{F}^{n} with an extension field \mathbb{K}, where $\operatorname{dim}_{\mathbb{F}} \mathbb{K}=n$. So $|\mathbb{K}|=q^{n}$
The map $P: \mathbb{K} \rightarrow \mathbb{K}$,

$$
P(X)=X^{\theta}
$$

is invertible with inverse $P^{-1}(X)=X^{s}$ if $\operatorname{gcd}\left(\theta, q^{n}-1\right)=1$,
For all $0 \neq \alpha \in \mathbb{K}, \alpha^{q^{n}-1}=1$ by Lagrange's Theorem. Since $\operatorname{gcd}\left(\theta, q^{n}-1\right)=1$, then there exist $s, t \in \mathbb{Z}$ such that $\theta s+\left(q^{n}-1\right) t=1$

Hidden Field Systems: Matsumoto-Imai

Identify (secretly) \mathbb{F}^{n} with an extension field \mathbb{K}, where $\operatorname{dim}_{\mathbb{F}} \mathbb{K}=n$. So $|\mathbb{K}|=q^{n}$
The map $P: \mathbb{K} \rightarrow \mathbb{K}$,

$$
P(X)=X^{\theta}
$$

is invertible with inverse $P^{-1}(X)=X^{s}$ if $\operatorname{gcd}\left(\theta, q^{n}-1\right)=1$,
For all $0 \neq \alpha \in \mathbb{K}, \alpha^{q^{n}-1}=1$ by Lagrange's Theorem. Since $\operatorname{gcd}\left(\theta, q^{n}-1\right)=1$, then there exist $s, t \in \mathbb{Z}$ such that $\theta s+\left(q^{n}-1\right) t=1$ so

$$
\left(\alpha^{\theta}\right)^{s}=\alpha^{-\left(q^{n}-1\right) t+1}=\alpha^{-\left(q^{n}-1\right) t} \alpha=\alpha
$$

Hidden Field Systems: Matsumoto-Imai

Identify (secretly) \mathbb{F}^{n} with an extension field \mathbb{K}, where $\operatorname{dim}_{\mathbb{F}} \mathbb{K}=n$. So $|\mathbb{K}|=q^{n}$
The map $P: \mathbb{K} \rightarrow \mathbb{K}$,

$$
P(X)=X^{\theta}
$$

is invertible with inverse $P^{-1}(X)=X^{s}$ if $\operatorname{gcd}\left(\theta, q^{n}-1\right)=1$,
For all $0 \neq \alpha \in \mathbb{K}, \alpha^{q^{n}-1}=1$ by Lagrange's Theorem. Since $\operatorname{gcd}\left(\theta, q^{n}-1\right)=1$, then there exist $s, t \in \mathbb{Z}$ such that $\theta s+\left(q^{n}-1\right) t=1$ so

$$
\left(\alpha^{\theta}\right)^{s}=\alpha^{-\left(q^{n}-1\right) t+1}=\alpha^{-\left(q^{n}-1\right) t} \alpha=\alpha
$$

Take $q=2^{t}$ and $\theta=1+q^{s}, P(X)=X . X^{q^{s}}$ is quadratic

$$
\begin{array}{ccc}
\mathbb{K} & \xrightarrow{P} & \mathbb{K} \\
\sigma \uparrow & & \tau \downarrow
\end{array} \text { Private Key }
$$

σ, τ invertible affine linear maps

Patarin's HFE System

$P(X)$ is
 are quadratic (efficient encryption)

Patarin's HFE System

$P(X)$ is

- of low total degree, D (efficient decryption).

$$
\begin{array}{ccc}
\mathbb{K} & \xrightarrow{P(X)} & \mathbb{K} \\
\sigma \uparrow & & \tau \downarrow \\
\mathbb{F}^{n} \xrightarrow{\left\{p_{1}, \ldots, p_{n}\right\}} \\
\mathbb{F}^{n}
\end{array}
$$

Patarin's HFE System

$P(X)$ is

- of low total degree, D (efficient decryption).
- quadratic over \mathbb{F} so that $p_{i}\left(x_{1}, \ldots, x_{n}\right)$
$\mathbb{K} \xrightarrow{P(X)} \mathbb{K}$
are quadratic (efficient encryption)
$\sigma \uparrow \quad \tau$
$\mathbb{F}^{n} \xrightarrow{\left\{p_{1}, \ldots, p_{n}\right\}} \mathbb{F}^{n}$

Patarin's HFE System

$P(X)$ is

- of low total degree, D (efficient decryption).
- quadratic over \mathbb{F} so that $p_{i}\left(x_{1}, \ldots, x_{n}\right)$

$$
\mathbb{K} \xrightarrow{P(X)} \mathbb{K}
$$

are quadratic (efficient encryption)

$\mathbb{F}^{n} \xrightarrow{\left\{p_{1}, \ldots, p_{n}\right\}} \mathbb{F}^{n}$

$$
P(X)=\sum_{q^{i}+q^{j} \leq D} a_{i j} X^{q^{i}+q^{j}}+\sum_{q^{i} \leq D} b_{i} X^{q^{i}}+c
$$

where $a_{i j}, b_{i}, c \in \mathbb{K}$.

Outline

(1) Multivariate Public Key Cryptosystems
(2) Solving Systems of Polynomial Equations
(3) First Fall Degree and HFE-systems

4 Semi-regular systems

Systems with a unique solution

Suppose the system

$$
\begin{aligned}
& p_{1}\left(x_{1}, \ldots, x_{n}\right)=0 \\
& p_{2}\left(x_{1}, \ldots, x_{n}\right)=0
\end{aligned}
$$

$$
p_{n}\left(x_{1}, \ldots, x_{n}\right)=0
$$

If the system has the unique solution,

$$
x_{1}=a_{1}, x_{2}=a_{2}, \ldots, x_{n}=a_{n}
$$

So $x_{i}-a_{i}$ can be found by exhaustive search of all combinations of the form x_{n}) or by Gröbner basis algorithms.

Systems with a unique solution

Suppose the system

$$
\begin{aligned}
& p_{1}\left(x_{1}, \ldots, x_{n}\right)=0 \\
& p_{2}\left(x_{1}, \ldots, x_{n}\right)=0
\end{aligned}
$$

$$
p_{n}\left(x_{1}, \ldots, x_{n}\right)=0
$$

If the system has the unique solution,

$$
x_{1}=a_{1}, x_{2}=a_{2}, \ldots, x_{n}=a_{n}
$$

then

$$
\begin{gathered}
\left(p_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, p_{n}\left(x_{1}, \ldots, x_{n}\right)\right)=\left(x_{1}-a_{1}, x_{2}-a_{2} \ldots x_{n}-a_{n}\right) \\
x_{i}-a_{i}=\sum_{i-1}^{n} g_{j}\left(x_{1}, \ldots, x_{n}\right) p_{j}\left(x_{1}, \ldots, x_{n}\right)
\end{gathered}
$$

So $x_{i}-a_{i}$ can be found by exhaustive search of all combinations of the form x_{n}) or by Gröbner basis algorithms.

Systems with a unique solution

Suppose the system

$$
\begin{aligned}
& p_{1}\left(x_{1}, \ldots, x_{n}\right)=0 \\
& p_{2}\left(x_{1}, \ldots, x_{n}\right)=0
\end{aligned}
$$

$$
p_{n}\left(x_{1}, \ldots, x_{n}\right)=0
$$

If the system has the unique solution,

$$
x_{1}=a_{1}, x_{2}=a_{2}, \ldots, x_{n}=a_{n}
$$

then

$$
\begin{gathered}
\left(p_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, p_{n}\left(x_{1}, \ldots, x_{n}\right)\right)=\left(x_{1}-a_{1}, x_{2}-a_{2} \ldots x_{n}-a_{n}\right) \\
x_{i}-a_{i}=\sum_{i-1}^{n} g_{j}\left(x_{1}, \ldots, x_{n}\right) p_{j}\left(x_{1}, \ldots, x_{n}\right)
\end{gathered}
$$

So $x_{i}-a_{i}$ can be found by exhaustive search of all combinations of the form $\sum_{i-1}^{n} g_{j}\left(x_{1}, \ldots, x_{n}\right) p_{j}\left(x_{1}, \ldots, x_{n}\right)$ or by Gröbner basis algorithms.

XL algorithm

Let $A=\mathbb{F}\left[X_{1}, \ldots, X_{n}\right] /\left(X_{1}^{q}-X_{1}, \ldots, X_{n}^{q}-X_{n}\right)$; $A_{k}=\{$ elements expressible as polynomials of degree $\leq \mathrm{k}\}$

where $\operatorname{deg} p_{i}=d_{i}$. Note that $\operatorname{dim} A / /$ equals the number of solutions of the system. Set

Then

When $\operatorname{dim} A_{k}-\operatorname{dim} J_{k}<q$ we can find a univariate polynomial in J_{k} which can be solved by univariate root-finding algorithms to find a_{i}

XL algorithm

Let $A=\mathbb{F}\left[X_{1}, \ldots, X_{n}\right] /\left(X_{1}^{q}-X_{1}, \ldots, X_{n}^{q}-X_{n}\right)$; set $x_{i}=\bar{X}_{i}$.

$$
A_{k}=\{\text { elements expressible as polynomials of degree } \leq \mathrm{k}\}
$$

Let

$$
I=\left(p_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, p\left(x_{1}, \ldots, x_{n}\right)\right)=\sum_{i} A p_{i}\left(x_{1}, \ldots, x_{n}\right)
$$

where $\operatorname{deg} p_{i}=d_{i}$. Note that $\operatorname{dim} A / I$ equals the number of solutions of the system.

XL algorithm

Let $A=\mathbb{F}\left[X_{1}, \ldots, X_{n}\right] /\left(X_{1}^{q}-X_{1}, \ldots, X_{n}^{q}-X_{n}\right)$; set $x_{i}=\bar{X}_{i}$.

$$
A_{k}=\{\text { elements expressible as polynomials of degree } \leq \mathrm{k}\}
$$

Let

$$
I=\left(p_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, p\left(x_{1}, \ldots, x_{n}\right)\right)=\sum_{i} A p_{i}\left(x_{1}, \ldots, x_{n}\right)
$$

where $\operatorname{deg} p_{i}=d_{i}$. Note that $\operatorname{dim} A / I$ equals the number of solutions of the system. Set

$$
J_{k}=\sum_{i} A_{k-d_{i}} p_{i} \subset A_{k}
$$

Then

$$
J_{1} \subset J_{2} \subset \cdots \subset J_{N}=I
$$

When $\operatorname{dim} A_{k}-\operatorname{dim} J_{k}<q$ we can find a univariate polynomial in J_{k} which can be solved by univariate root-finding algorithms to find a_{i}.

Operational Degree of XL algorithm

Definition

The operational degree of the XL algorithm is the highest degree of polynomials that occur in the calculations before the algorithm terminates

Operational Degree of XL algorithm

Definition

The operational degree of the XL algorithm is the highest degree of polynomials that occur in the calculations before the algorithm terminates

Conjecture (or Definition (Yang-Chen-Courtois))

If there are no non-trivial relations between the f_{i} of degree less than or equal to k, then

$$
\operatorname{dim} A_{k}-\operatorname{dim} J_{k}=\left[t^{k}\right]\left(\frac{\left(1-t^{q}\right)^{n}}{(1-t)^{n+1}} \prod_{i} \frac{\left(1-t^{d_{i}}\right)}{\left(1-t^{d_{i} q}\right)}\right)
$$

Operational Degree of XL algorithm

Definition

The operational degree of the XL algorithm is the highest degree of polynomials that occur in the calculations before the algorithm terminates

Conjecture (or Definition (Yang-Chen-Courtois))

If there are no non-trivial relations between the f_{i} of degree less than or equal to k, then

$$
\operatorname{dim} A_{k}-\operatorname{dim} J_{k}=\left[t^{k}\right]\left(\frac{\left(1-t^{q}\right)^{n}}{(1-t)^{n+1}} \prod_{i} \frac{\left(1-t^{d_{i}}\right)}{\left(1-t^{d_{i} q}\right)}\right)
$$

Rationale $\left(m=1, J_{k}=A_{k-d} f\right)$: since $\left(1-f^{q-1}\right) f=f-f^{q}=0$

$$
0 \rightarrow \cdots \rightarrow A_{k-2 q d} \xrightarrow{1-f^{q-1}} A_{k-(q+1) d} \xrightarrow{f} A_{k-q d} \xrightarrow{1-f^{q-1}} A_{k-d} \xrightarrow{f} A_{k} \rightarrow A_{k} / J_{k} \rightarrow 0
$$

So $\operatorname{dim} A_{k} / J_{k}=\sum_{j}\left(\operatorname{dim} A_{k-j q d}-\operatorname{dim} A_{k-(j q+1) d}\right)$

Yang-Chen formula

Let

$$
s_{d}=\left[t^{d}\right]\left(\frac{\left(1-t^{q}\right)^{n}}{(1-t)^{n+1}} \prod_{i} \frac{\left(1-t^{d_{i}}\right)}{\left(1-t^{d_{i} q}\right)}\right)
$$

Typical behavior for a set of 20 quadratic polynomials in 20 variables over \mathbb{F}_{3}.

d	0	1	2	3	4	5	6	7	8
$\operatorname{dim} A_{d}$	1	21	231	1771	10626	53110	229810	883410	2089395
$\operatorname{dim} J_{d}$	0	0	20	420	4430	31030	161350	661030	2089394
$\operatorname{dim} A_{d}-\operatorname{dim} J_{d}$	1	21	211	1331	5776	17480	33650	18470	1
s_{d}	1	21	211	1331	5776	17480	33650	18470	-125740

The operational degree of the $X L$ algorithm on the system f_{1}, \ldots, f_{m} is at most

Yang-Chen formula

Let

$$
s_{d}=\left[t^{d}\right]\left(\frac{\left(1-t^{q}\right)^{n}}{(1-t)^{n+1}} \prod_{i} \frac{\left(1-t^{d_{i}}\right)}{\left(1-t^{d_{i} q}\right)}\right)
$$

Typical behavior for a set of 20 quadratic polynomials in 20 variables over \mathbb{F}_{3}.

d	0	1	2	3	4	5	6	7	8
$\operatorname{dim} A_{d}$	1	21	231	1771	10626	53110	229810	883410	2089395
$\operatorname{dim} J_{d}$	0	0	20	420	4430	31030	161350	661030	2089394
$\operatorname{dim} A_{d}-\operatorname{dim} J_{d}$	1	21	211	1331	5776	17480	33650	18470	1
s_{d}	1	21	211	1331	5776	17480	33650	18470	-125740

Yang-Chen formula

Let

$$
s_{d}=\left[t^{d}\right]\left(\frac{\left(1-t^{q}\right)^{n}}{(1-t)^{n+1}} \prod_{i} \frac{\left(1-t^{d_{i}}\right)}{\left(1-t^{d_{i} q}\right)}\right)
$$

Typical behavior for a set of 20 quadratic polynomials in 20 variables over \mathbb{F}_{3}.

d	0	1	2	3	4	5	6	7	8
$\operatorname{dim} A_{d}$	1	21	231	1771	10626	53110	229810	883410	2089395
$\operatorname{dim} J_{d}$	0	0	20	420	4430	31030	161350	661030	2089394
$\operatorname{dim} A_{d}-\operatorname{dim} J_{d}$	1	21	211	1331	5776	17480	33650	18470	1
s_{d}	1	21	211	1331	5776	17480	33650	18470	-125740

Yang-Chen formula

Let

$$
s_{d}=\left[t^{d}\right]\left(\frac{\left(1-t^{q}\right)^{n}}{(1-t)^{n+1}} \prod_{i} \frac{\left(1-t^{d_{i}}\right)}{\left(1-t^{d_{i} q}\right)}\right)
$$

Typical behavior for a set of 20 quadratic polynomials in 20 variables over \mathbb{F}_{3}.

d	0	1	2	3	4	5	6	7	8
$\operatorname{dim} A_{d}$	1	21	231	1771	10626	53110	229810	883410	2089395
$\operatorname{dim} J_{d}$	0	0	20	420	4430	31030	161350	661030	2089394
$\operatorname{dim} A_{d}-\operatorname{dim} J_{d}$	1	21	211	1331	5776	17480	33650	18470	1
s_{d}	1	21	211	1331	5776	17480	33650	18470	-125740

Conjecture (Y-C-C)

The operational degree of the $X L$ algorithm on the system f_{1}, \ldots, f_{m} is at most

$$
\operatorname{Ind}\left(\frac{\left(1-t^{q}\right)^{n}}{(1-t)^{n+1}} \prod_{i} \frac{\left(1-t^{d_{i}}\right)}{\left(1-t^{d_{i} q}\right)}\right)=\min \left\{d \mid s_{d} \leq 0\right\}
$$

Asymptotics of the Index

Definition

The index of a power series $\sum_{i} a_{i} t^{i}$, denoted $\operatorname{Ind}\left(\sum_{i} a_{i} t^{i}\right)$ is the first k such that $a_{k} \leq 0$.

Understand the behavior of

Asymptotics of the Index

Definition

The index of a power series $\sum_{i} a_{i} t^{i}$, denoted $\operatorname{Ind}\left(\sum_{i} a_{i} t^{i}\right)$ is the first k such that $a_{k} \leq 0$.

Problem

Understand the behavior of

$$
\operatorname{Ind}\left(\frac{\left(1-t^{q}\right)^{n}}{(1-t)^{n+1}} \prod_{i} \frac{\left(1-t^{d_{i}}\right)}{\left(1-t^{d_{i} q}\right)}\right)
$$

Asymptotics of the Index

Definition

The index of a power series $\sum_{i} a_{i} t^{i}$, denoted $\operatorname{Ind}\left(\sum_{i} a_{i} t^{i}\right)$ is the first k such that $a_{k} \leq 0$.

Problem

Understand the behavior of

$$
\operatorname{Ind}\left(\frac{\left(1-t^{q}\right)^{n}}{(1-t)^{n+1}} \prod_{i} \frac{\left(1-t^{d_{i}}\right)}{\left(1-t^{d_{i} q}\right)}\right)
$$

Theorem

(The case when $q=2, n=m$ and $d_{1}=\cdots=d_{n}=2$). Asymptotically,

$$
\operatorname{Ind}\left(\frac{\left(1-t^{2}\right)^{n}}{(1-t)^{n+1}}\left(\frac{\left(1-t^{2}\right)}{\left(1-t^{2 q}\right)}\right)^{n}\right) \cong .09 n
$$

Conclusion and Applications to MPKC

Conclusion

If we assume the YCC Conjecture that the operational degree of XL is the index of the series and we can understand the asymptotics of this index we can determine the complexity of the algorithm on such systems.
\square
Not really

Conclusion and Applications to MPKC

Conclusion

If we assume the YCC Conjecture that the operational degree of XL is the index of the series and we can understand the asymptotics of this index we can determine the complexity of the algorithm on such systems.

Problem

Prove the YCC conjecture
Does this analysis give us useful information about applying the XL algorithm to attacking systems of equations derived from MPKC's like Matsumoto-Imai and HFE?

Not really

Conclusion and Applications to MPKC

Conclusion

If we assume the YCC Conjecture that the operational degree of XL is the index of the series and we can understand the asymptotics of this index we can determine the complexity of the algorithm on such systems.

Problem

Prove the YCC conjecture
Does this analysis give us useful information about applying the XL algorithm to attacking systems of equations derived from MPKC's like Matsumoto-Imai and HFE?

Not really

Conclusion and Applications to MPKC

Conclusion

If we assume the YCC Conjecture that the operational degree of XL is the index of the series and we can understand the asymptotics of this index we can determine the complexity of the algorithm on such systems.

Problem

Prove the YCC conjecture
Does this analysis give us useful information about applying the XL algorithm to attacking systems of equations derived from MPKC's like Matsumoto-Imai and HFE?

Not really

- The systems of equations derived from such systems are qualitatively different from the ones assumed to have as few relations between the f_{i} 's as possible.
- In fact non-trivial relations occur much earlier and the XL algorithm will terminate at a much lower degree.

Outline

(1) Multivariate Public Key Cryptosystems

2 Solving Systems of Polynomial Equations
(3) First Fall Degree and HFE-systems

4 Semi-regular systems

First Fall Degree

Definition

First Fall Degree: Lowest degree at which non-trivial "degree falls" occur.

$$
\operatorname{deg}\left(\sum_{i} g_{i} p_{i}\right)<\max \left\{\operatorname{deg}\left(g_{i}\right)+\operatorname{deg}\left(p_{i}\right)\right\}
$$

Trivial degree falls:

$$
p_{i}^{q-1} p_{i}=p_{i}^{q}=p_{i}, \quad p_{j} p_{i}-p_{i} p_{j}=0
$$

First Fall Degree

Definition

First Fall Degree: Lowest degree at which non-trivial "degree falls" occur.

$$
\operatorname{deg}\left(\sum_{i} g_{i} p_{i}\right)<\max \left\{\operatorname{deg}\left(g_{i}\right)+\operatorname{deg}\left(p_{i}\right)\right\}
$$

Trivial degree falls:

$$
p_{i}^{q-1} p_{i}=p_{i}^{q}=p_{i}, \quad p_{j} p_{i}-p_{i} p_{j}=0
$$

Example

If $q=2$ and $p\left(x_{1}, \ldots, x_{6}\right)=x_{1} x_{2}+x_{3} x_{4}+x_{5} x_{6}+1$ then

$$
x_{1} x_{3} x_{5}\left(x_{1} x_{2}+x_{3} x_{4}+x_{5} x_{6}+1\right)=x_{1} x_{2} x_{3} x_{5}+x_{1} x_{3} x_{4} x_{5}+x_{1} x_{3} x_{5} x_{6}+x_{1} x_{3} x_{5}
$$

is a non-trivial degree fall.

First Fall Degree of Leading Terms

Let p_{i}^{h} be the highest degree part of p_{i} considered as an element of the truncated polynomial ring

$$
p_{i}^{h} \in \frac{\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]}{\left\langle x_{1}^{q}, \ldots, x_{n}^{q}\right\rangle}
$$

First fall degree of $p_{1}^{h}, \ldots, p_{n}^{h}$ is first degree at which non-trivial relations occur

First Fall Degree of Leading Terms

Let p_{i}^{h} be the highest degree part of p_{i} considered as an element of the truncated polynomial ring

$$
p_{i}^{h} \in \frac{\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]}{\left\langle x_{1}^{q}, \ldots, x_{n}^{G}\right\rangle}
$$

First fall degree of $p_{1}^{h}, \ldots, p_{n}^{h}$ is first degree at which non-trivial relations occur.

$$
\operatorname{deg}\left(\sum_{i} f_{i} p_{i}^{h}\right)=0
$$

Trivial relations: $\left(p_{i}^{h}\right)^{q-1} p_{i}^{h}=0, \quad p_{j}^{h} p_{i}^{h}-p_{i}^{h} p_{j}^{h}=0$

First Fall Degree of Leading Terms

Let p_{i}^{h} be the highest degree part of p_{i} considered as an element of the truncated polynomial ring

$$
p_{i}^{h} \in \frac{\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]}{\left\langle x_{1}^{q}, \ldots, x_{n}^{q}\right\rangle}
$$

First fall degree of $p_{1}^{h}, \ldots, p_{n}^{h}$ is first degree at which non-trivial relations occur.

$$
\operatorname{deg}\left(\sum_{i} f_{i} p_{i}^{h}\right)=0
$$

Trivial relations: $\left(p_{i}^{h}\right)^{q-1} p_{i}^{h}=0, \quad p_{j}^{h} p_{i}^{h}-p_{i}^{h} p_{j}^{h}=0$ Then

$$
D_{\mathrm{ff}}\left(p_{1}, \ldots, p_{n}\right)=D_{\mathrm{ff}}\left(p_{1}^{h}, \ldots, p_{n}^{h}\right)
$$

First-Fall Degree for HFE Systems

```
Theorem (Dubois-Gama)
Dff
```

Recall that

Galois theory and filtered-graded arguments yield the key result

First-Fall Degree for HFE Systems

Theorem (Dubois-Gama)

$D_{\mathrm{ff}}\left(p_{1}^{h}, \ldots, p_{n}^{h}\right) \leq D_{\mathrm{ff}}\left(p_{1}^{h}, \ldots, p_{j}^{h}\right)$

Recall that

$$
P(X)=\sum_{q^{i}+q^{j} \leq D} a_{i j} X^{q^{i}+q^{j}}+\sum_{q^{i} \leq D} b_{i} X^{q^{i}}+c
$$

Define

$$
P_{0}\left(X_{1}, \ldots, X_{n}\right)=\sum a_{i j} X_{i} X_{j} \in \mathbb{K}\left[X_{1}, \ldots, X_{n}\right] /\left(X_{1}^{q}, \ldots, X_{n}^{q}\right)
$$

Galois theory and filtered-graded arguments yield the key result:

First-Fall Degree for HFE Systems

Theorem (Dubois-Gama)

$D_{\mathrm{ff}}\left(p_{1}^{h}, \ldots, p_{n}^{h}\right) \leq D_{\mathrm{ff}}\left(p_{1}^{h}, \ldots, p_{j}^{h}\right)$

Recall that

$$
P(X)=\sum_{q^{i}+q^{j} \leq D} a_{i j} X^{q^{i}+q^{j}}+\sum_{q^{i} \leq D} b_{i} X^{q^{i}}+c
$$

Define

$$
P_{0}\left(X_{1}, \ldots, X_{n}\right)=\sum a_{i j} X_{i} X_{j} \in \mathbb{K}\left[X_{1}, \ldots, X_{n}\right] /\left(X_{1}^{q}, \ldots, X_{n}^{q}\right)
$$

Galois theory and filtered-graded arguments yield the key result:

Theorem

$D_{\mathrm{ff}}\left(p_{1}^{h}, \ldots, p_{n}^{h}\right) \leq D_{\mathrm{ff}}\left(P_{0}\right)$

Bounding the First-Fall Degree for HFE Systems

Lemma

$$
D_{\mathrm{ff}}\left(P_{0}=\sum_{i, j} a_{i j} X_{i} X_{j}\right) \leq \frac{\operatorname{Rank}\left(P_{0}\right)(q-1)}{2}+2
$$

where $\operatorname{Rank}\left(P_{0}\right)$ is the rank of the quadratic form P_{0}.

Bounding the First-Fall Degree for HFE Systems

Lemma

$$
D_{\mathrm{ff}}\left(P_{0}=\sum_{i, j} a_{i j} X_{i} X_{j}\right) \leq \frac{\operatorname{Rank}\left(P_{0}\right)(q-1)}{2}+2
$$

where $\operatorname{Rank}\left(P_{0}\right)$ is the rank of the quadratic form P_{0}.
For instance

$$
X_{1}^{q-1} X_{3}^{q-1} \ldots X_{r-1}^{q-1}\left(X_{1} X_{2}+X_{3} X_{4}+\ldots+X_{r-1} X_{r}\right)=0
$$

Bounding the First-Fall Degree for HFE Systems

Lemma

$$
D_{\mathrm{ff}}\left(P_{0}=\sum_{i, j} a_{i j} X_{i} X_{j}\right) \leq \frac{\operatorname{Rank}\left(P_{0}\right)(q-1)}{2}+2
$$

where $\operatorname{Rank}\left(P_{0}\right)$ is the rank of the quadratic form P_{0}.
For instance

$$
X_{1}^{q-1} X_{3}^{q-1} \ldots X_{r-1}^{q-1}\left(X_{1} X_{2}+X_{3} X_{4}+\ldots+X_{r-1} X_{r}\right)=0
$$

Theorem (Ding-Hodges)

The first fall degree of the system defined by P is bounded by

$$
D_{\mathrm{ff}}\left(p_{1}, \ldots, p_{n}\right) \leq \frac{\operatorname{Rank}\left(P_{0}\right)(q-1)}{2}+2 \leq \frac{(q-1)\left(\left\lfloor\log _{q}(D-1)\right\rfloor+1\right)}{2}+2
$$

if $\operatorname{Rank}\left(P_{0}\right)>1$.

Complexity of Grobner basis attack on HFE systems

For the sake of analysis of the complexity of attacks on HFE systems we usually assume that $D=O\left(n^{\alpha}\right)$.

Conclusion

If we assume that the first fall degree of a system is a good indicator of the operational degree then we can conclude that the complexity of a Grobner basis attack on HFE system is quasi-polynomial.
but...

Problem

Prove that the first fall degree of a system is a good indicator of the operational degree in suitable situations.

Higher Degree Analogs of HFE

Suppose that

$$
P(X)=\sum_{q^{i_{1}}+\cdots+q^{i_{d}} \leq D} a_{i j} X^{q^{i_{1}}+\cdots+q^{i d}}+\text { lower degree terms }
$$

and let

$$
P_{0}\left(X_{1}, \ldots, X_{n}\right)=\sum_{q^{i_{1}+\cdots+q^{i} d \leq D}} a_{i j} X_{1_{i}} \ldots X_{i_{d}} \in \mathbb{K}\left[X_{1}, \ldots, X_{n}\right] /\left\langle X_{1}^{q}, \ldots, X_{n}^{q}\right\rangle
$$

Higher Degree Analogs of HFE

Suppose that

$$
P(X)=\sum_{q^{i_{1}}+\cdots+q^{i_{d}} \leq D} a_{i j} X^{q^{i_{1}}+\cdots+q^{i d}}+\text { lower degree terms }
$$

and let

$$
P_{0}\left(X_{1}, \ldots, X_{n}\right)=\sum_{q^{i_{1}+\cdots+q^{i d} \leq D}} a_{i j} X_{1_{i}} \ldots X_{i_{d}} \in \mathbb{K}\left[X_{1}, \ldots, X_{n}\right] /\left\langle X_{1}^{q}, \ldots, X_{n}^{q}\right\rangle
$$

Lemma

$$
D_{\mathrm{ff}}\left(P_{0}\right) \leq\left(\operatorname{Rank}\left(P_{0}\right)(q-1)+d+2\right) / 2
$$

Higher Degree Analogs of HFE

Suppose that

$$
P(X)=\sum_{q^{i_{1}}+\cdots+q^{i^{d} \leq} \leq D} a_{i j} X^{q^{i_{1}}+\cdots+q^{i_{d}}}+\text { lower degree terms }
$$

and let

$$
P_{0}\left(X_{1}, \ldots, X_{n}\right)=\sum_{q^{i_{1}}+\cdots+q^{i^{d} \leq} \leq D} a_{i j} X_{1_{i}} \ldots X_{i_{d}} \in \mathbb{K}\left[X_{1}, \ldots, X_{n}\right] /\left\langle X_{1}^{q}, \ldots, X_{n}^{q}\right\rangle
$$

Lemma

$$
D_{\mathrm{ff}}\left(P_{0}\right) \leq\left(\operatorname{Rank}\left(P_{0}\right)(q-1)+d+2\right) / 2
$$

Theorem (Hodges-Petit-Schlather)

The first fall degree of the system defined by P is bounded by

$$
D_{\mathrm{ff}}\left(p_{1}, \ldots, p_{n}\right) \leq \frac{(q-1) \log _{q}(D-d+1)+q+d+1}{2}
$$

	$q-r$						
k	1	2	3	4	5	6	
1	0	0	0	0	5	5	
2	0	0	0	0	15	15	
3	0	0	0	0	35	35	
4	0	0	0	55	70	70	
5	0	0	0	121	126	126	
6	0	0	0	209	210	209	
7	0	0	199	325	325	320	
8	0	0	400	470	470	455	
9	0	0	605	640	640	605	
10	0	356	811	826	826	756	
11	0	690	1010	1015	1015	889	
12	0	980	1189	1190	1189	980	
13	315	1204	1330	1330	1325	1005	
14	594	1350	1420	1420	1405	950	
15	811	1416	1451	1451	1416	811	
16	950	1405	1420	1420	1350	594	
17	1005	1325	1330	1330	1204	315	
18	980	1189	1190	1189	980	0	
19	889	1015	1015	1010	690	0	
20	756	826	826	811	356	0	
21	605	640	640	605	0	0	
22	455	470	470	400	0	0	
23	320	325	325	199	0	0	
24	209	210	209	0	0	0	
25	126	126	121	0	0	0	
26	70	70	55	0	0	0	
27	35	35	0	0	0	0	
28	15	15	0	0	0	0	
29	5	5	0	0	0	0	
30	1	0	0	0	0	0	

Shifted difference of periodic sums of generalized binomial coefficients

Generalized binomial coefficients

$$
\left(1+z+\cdots+z^{q-1}\right)^{n}=\frac{1-z^{q}}{1-z}=\sum C_{q}(n, k) z^{k}
$$

Periodic or lacunary sums of generalized binomial coefficients

Shifted difference of periodic sums of generalized binomial coefficients

Shifted difference of periodic sums of generalized binomial coefficients

Generalized binomial coefficients

$$
\left(1+z+\cdots+z^{q-1}\right)^{n}=\frac{1-z^{q}}{1-z}=\sum C_{q}(n, k) z^{k}
$$

Periodic or lacunary sums of generalized binomial coefficients

$$
P C_{q}(n, k, s)=\sum_{j=-\infty}^{\infty} C_{q}(n, k+s j)
$$

Shifted difference of periodic sums of generalized binomial coefficients

Shifted difference of periodic sums of generalized binomial coefficients

Generalized binomial coefficients

$$
\left(1+z+\cdots+z^{q-1}\right)^{n}=\frac{1-z^{q}}{1-z}=\sum C_{q}(n, k) z^{k}
$$

Periodic or lacunary sums of generalized binomial coefficients

$$
P C_{q}(n, k, s)=\sum_{j=-\infty}^{\infty} C_{q}(n, k+s j)
$$

Shifted difference of periodic sums of generalized binomial coefficients

$$
\Gamma_{q}(n, d, r, k)=P C_{q}(n, k, d q)-P C_{q}(n, k-r d, d q)
$$

An example of a Gamma function

Figure: $\Gamma_{17}(6,4, k)$

Note: $((q-1) n+d) / 2=(16.6+4) / 2=50$

Discrete Fourier Transform

When $q=2$, we have, for instance,

$$
P C_{2}(n, k, 4)=\frac{2^{n-1}+2^{n / 2} \cos \left(\frac{\pi}{4}(n-2 k)\right)}{2}
$$

(Ramus, 1834)
If q is odd, $P C_{q}(n, k, r)$ is equal to
(Hoggat and Alexanderson, 1976)

Discrete Fourier Transform

When $q=2$, we have, for instance,

$$
P C_{2}(n, k, 4)=\frac{2^{n-1}+2^{n / 2} \cos \left(\frac{\pi}{4}(n-2 k)\right)}{2}
$$

(Ramus, 1834)
If q is odd, $P C_{q}(n, k, r)$ is equal to

$$
\frac{1}{r} \sum_{m=0}^{r-1}\left(2 \sum_{j=1}^{\frac{q-1}{2}} \cos \left(\frac{m(q-2 j+1) \pi}{r}\right)+1\right)^{n} \cos \left(\frac{m \pi((q-1) n-2 k)}{r}\right)
$$

(Hoggat and Alexanderson, 1976)

Determinants with binomial coefficient entries

Problem: show that

$$
\left|\begin{array}{ccc}
\binom{r}{k} & \ldots & \binom{r}{k+s} \\
\vdots & & \vdots \\
\binom{r+s}{k} & \ldots & \binom{r+s}{k+s}
\end{array}\right|
$$

is non-zero $\bmod p$ if $r+s<p$.
from: Sir Thomas Muir's "The theory of determinants in the historical order of development, Vol 3, Macmillan and Co., London, 1923"

Determinants with binomial coefficient entries

Problem: show that

$$
\left|\begin{array}{ccc}
\binom{r}{k} & \ldots & \binom{r}{k+s} \\
\vdots & & \vdots \\
\binom{r+s}{k} & \cdots & \binom{r+s}{k+s}
\end{array}\right|
$$

is non-zero $\bmod p$ if $r+s<p$.
Theorem (Zeipel, 1870's)

$$
\left|\begin{array}{ccc}
\binom{r}{k} & \ldots & \binom{r}{k+s} \\
\vdots & & \vdots \\
\binom{r+s}{k} & \ldots & \binom{r+s}{k+s}
\end{array}\right|=\frac{\binom{r}{k} \ldots\binom{r+s}{k}}{\binom{k}{k} \ldots\binom{k+s}{k}}
$$

from: Sir Thomas Muir's "The theory of determinants in the historical order of development, Vol 3, Macmillan and Co., London, 1923"'

Outline

(1) Multivariate Public Key Cryptosystems

2 Solving Systems of Polynomial Equations
(3) First Fall Degree and HFE-systems

4 Semi-regular systems

Semi-regular Sequences

Henceforth the base field will be \mathbb{F}_{2}.

Definition

A set $\lambda_{1}, \ldots, \lambda_{m} \in B=\mathbb{F}_{2}\left[X_{1}, \ldots, X_{n}\right] /\left(X_{1}^{q}, \ldots, X_{n}^{q}\right)$ is semi-regular if $D_{\mathrm{ff}}\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ is as large as possible.

Theorem (Bardet-Faugere-Salvy)

The set $\lambda_{1}, \ldots, \lambda_{m}$ is semi-regular if and only if

$$
H S_{B /\left(\lambda_{1}, \ldots, \lambda_{m}\right)}(z)=\left[\frac{(1+z)^{n}}{\prod_{i=1}^{m}\left(1+z^{d_{i}}\right)}\right]
$$

In this case the operational degree of Grobner basis algorithms is the index of this series.
Here

$$
\left[1+2 t+7 t^{2}+3 t^{3}-6 t^{4}+t^{5}+\ldots\right]=1+2 t+7 t^{2}+3 t^{3}
$$

Existence of semi-regular sequences

It is widely believed that in some sense "most" sequences are semi-regular.

[^1] that are Semi-Regular

Existence of semi-regular sequences

It is widely believed that in some sense "most" sequences are semi-regular.

$n \backslash m$	2	3	4	5	6	7	8	9	10	11	12	13	14	15
3	1	.8	1	1	1	1								
4	.35	1	.75	.75	.3	.65	.85	.9	1	1	1	1	1	1
5	0	.85	.95	1	.9	.85	.75	.6	.2	.65	.7	.9	.9	1
6	.85	.7	.65	.9	1	1	1	.95	.95	.95	.75	.8	.5	.25
7	0	.85	1	.1	1	1	1	1	1	1	1	.95	1	1
8	.7	.45	1	1	.95	.1	1	1	1	1	1	1	1	1
9	0	.95	.7	1	1	1	1	.8	.9	1	1	1	1	1
10	0	.85	1	.35	1	1	1	1	1	1	.25	1	1	1
11	0	.95	1	1	1	1	1	1	1	1	1	1	1	.4
12	0	0	1	1	1	1	.9	1	1	1	1	1	1	1
13	0	0	1	1	1	1	1	1	1	1	1	1	1	1
14	0	0	0	1	1	1	1	1	1	1	1	1	1	1
15	0	0	0	1	1	1	1	1	1	1	1	1	.45	1

Table: Proportion of Samples of 20 Sets of m Homogeneous Quadratic Elements in n variables that are Semi-Regular

[^0]: is a hard problem.

[^1]: Proportion of Samples of 20 Sets of m Homogeneous Quadratic Elements in n variables

