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Abstract- Following work of Stroud and Saeger [2] and 
Anand et al. [1], we formulate a port of entry inspection 
sequencing task as a problem of finding an optimal binary 
decision tree for an appropriate Boolean decision function. We 
report on new algorithms that are more efficient computationally 
than those presented by Stroud and Saeger and Anand et al. We 
achieve these efficiencies through a combination of specific 
numerical methods for finding optimal thresholds for sensor 
functions and a novel binary decision tree search algorithm that 
operates on a space of potentially acceptable binary decision 
trees. 

I. INTRODUCTION 

As a stream of containers arrives at a port, a decision maker 
has to decide how to inspect them, which to subject to further 
inspection, which to allow to pass through with only minimal 
levels of inspection, etc. Stroud and Saeger [2] looked at this 
as a sequential decision making problem and formulated it in 
an important special case as a problem of finding an optimal 
binary decision tree for an appropriate binary decision 
function. Anand et al. [1] reported on experimental analysis of 
the Stroud-Saeger method that led to the conclusion that the 
optimal inspection strategy is remarkably insensitive to 
variations in the parameters needed to apply the method. 
 

Finding algorithms for sequential diagnosis that minimize 
the total "cost" of the inspection procedure, including the cost 
of false positives and false negatives, presents serious 
computational challenges that stand in the way of practical 
implementation. To make the problem precise, we imagine a 
stream of containers arriving at the port with the goal of 
classifying each of them into one of several categories. In the 
simplest case, these are "ok" (0) or "suspicious" (1). There are 
several possible tests that can be performed and an inspection 
scheme specifies which test to perform next based on 
outcomes of previous tests. We can think of the containers as 
having certain attributes, such as: Does the container's ship’s 
manifest set off an “alarm”? Is the neutron or Gamma 
emission count above threshold? Does a radiograph image 
come up positive? Does an induced fission test come up 

positive? We will think in the abstract of having a sensor to 
test for each attribute.  

In the simplest case, the attributes can be described as being 
in one of two states, either 0 ("absent") or 1 ("present"), and 
we can think of a container as corresponding to a binary 
attribute string such as 011001. Classification then 
corresponds to a binary decision function F that assigns each 
binary string to a category. If the category must be 0 or 1, as 
we shall assume, F is a Boolean decision function (BDF). 
Stroud and Saeger consider the problem of finding an optimal 
binary decision tree (BDT) for calculating F. In the BDT, the 
interior nodes correspond to sensors and the leaf nodes 
correspond to categories. Two arcs exit from each sensor node, 
labeled left and right. By convention, the left arc corresponds 
to a sensor outcome of 0 and the right arc corresponds to a 
sensor outcome of 1. Even if the Boolean function F is fixed, 
the problem of finding the “optimal” BDT for it is hard (NP-
complete). One can try to solve it by brute force enumeration. 
However, even if the number of attributes, n, is as small as 4, 
this is not practical. In present-day practice at busy US ports, 
we understand that n is of the order of 3 to 5, but this number 
is likely to grow as sensor technology becomes more 
advanced. Even under special assumptions, Stroud and Saeger 
were unable to produce feasible methods for finding optimal 
BDTs beyond the case n = 4. They ranked all trees formed 
from 3 or 4 sensors according to increasing tree costs using a 
measure of cost we describe in Section III. Anand et al. [1] 
described extensive sensitivity analysis showing that the 
Stroud-Saeger results were remarkably insensitive to wide-
ranging changes in values of underlying parameters. 

The purpose of this paper is to describe computational 
approaches to this problem that are more efficient than those 
developed to date. We describe approaches to the computation 
of sensor thresholds that seek to minimize the cost of 
inspection. We also modify the special assumptions of Stroud 
and Saeger to allow search through a larger number of 
possible BDFs, and introduce an algorithm for searching 
through the space of allowable BDTs that avoids searching 
through the Boolean decision functions entirely. We describe  



  

Figure 1.  A binary decision tree τ with 3 sensors. The individual sensors 
classify good and bad containers towards left and right respectively. 

experiments that parallel those of Stroud and Saeger’s work. 

II. COMPLETE, MONOTONE BOOLEAN FUNCTIONS 

The special assumptions Stroud and Saeger make in order to 
make computation more feasible are to limit consideration to 
so-called complete and monotone Boolean functions. A 
Boolean function F is monotone if, given two strings x1x2…xn, 
y1y2…yn with xi ≥ yi for all i, F(x1x2…xn) ≥ F(y1y2…yn). F is 
incomplete if it can be calculated by finding at most n-1 
attributes and knowing the value of the input string on those 
attributes. Stroud and Saeger enumerate all complete, 
monotone Boolean functions and then calculate the least 
expensive corresponding BDTs under assumptions about 
various costs associated with the trees. Their method is 
practical for n up to 4, but not n = 5. The problem is 
exacerbated by the number of BDFs. For example, for n = 4, 
there are 114 complete, monotone Boolean functions and 
11,808 distinct corresponding BDTs. By comparison, for 
unrestricted Boolean functions on four variables, there exist 
1,079,779,602 BDTs! For n = 5, there are 6,894 complete, 
monotone Boolean functions and 263,515,920 corresponding 
BDTs. For the unrestricted case, the number of BDTs is 
approximately 5 x 1018 [2]. 

III. COST OF A BDT 

Following Anand et al. [1] and Stroud and Saeger [2], we 
assume the cost of a binary decision tree comprises two 
components: (i) the cost of utilization of the tree and (ii) the 
cost of misclassification. The cost of utilization of a tree is 
computed probabilistically by performing a summation over 
the cost of each sensor in the tree times the fraction of 
containers inspected by that particular sensor. We compute the 
cost of misclassification for a tree by adding the probabilities 
of false positive and false negative misclassifications by the 
tree and multiplying by their respective costs. Costs (i) and (ii) 
both depend on the distribution of the containers and the 
probabilities of misclassification of the individual sensors. For 
example, consider the decision tree τ in Fig. 1 with 3 sensors. 
The overall cost function to be optimized can be written as  
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Here, P0 and P1 are the prior probabilities of occurrence of 
“good” (ok or 0) and “bad” (suspicious or 1) containers, 
respectively (so P0 + P1 = 1). For any sensor s, Ps00 and Ps11 
are the probabilities of correct detection of good and bad 
containers respectively while Ps10, Ps01 are the probabilities of 
false negative and false positive detection respectively (so Ps00 
+ Ps01 = 1 and Ps11 + Ps10 = 1). These probabilities are 
calculated using the same complementary error function of 
threshold as described in detail in [1]. Cs is cost of utilization 
of sensor s, and CFN and CFP are the costs of a false negative 
and a false positive. (The notation here differs from that in [1].) 
In the above expression, the first and third terms on the right 
hand side together give the cost of utilization of the tree τ 
while the second and fourth terms represent the costs of 
negative and positive misclassifications. 

IV. SENSOR THRESHOLDS 

Sensors make errors. For sensors that produce a real-valued 
reading (e.g., Gamma radiation sensors), a natural approach to 
modeling sensor errors involves a threshold. With every 
sensor s, we associate a hard threshold, Ts. If the sensor 
reading for a container falls below Ts, then the output of that 
particular sensor in the tree is 0;it is 1 otherwise. The variation 
of sensor thresholds obviously impacts the overall cost of the 
tree. While sensor characteristics are a function of design and 
environmental conditions, the thresholds can, at least in 
principle, be set by the decision maker. Therefore, 
mathematically, a set of optimum thresholds for a given tree τ 
can be defined as a vector of threshold values that minimizes 
the overall cost function f(τ) for that tree.  

We model the design and environmental conditions by 
assuming that sensor values for good containers follow a 
particular Gaussian distribution and sensor values for bad 
containers follow a different Gaussian distribution. This model 
is described in detail in [1] and [2] along with approaches to 
finding optimal thresholds, based on assumptions about the 
parameters underlying the Gaussians. In particular, [1] 
describes the outcomes of experiments in which individual 
sensor thresholds are incremented in fixed-size steps in an 
exhaustive search for optimal threshold values, and trees of 
minimum cost are identified. For example, for n = 4, [1] 
reported 194,481 experiments leading to lowest cost trees, 
with the results being quite similar to those obtained in 
experiments in [2]. Unfortunately, the methods do not scale 
and quickly become infeasible as the number of sensors 
(different tests available) increases. 

V. OPTIMUM THRESHOLD COMPUTATION 

One of the aims of this paper is to calculate the optimum 
sensor thresholds for a tree more efficiently and avoid an 
exhaustive search over a large number of threshold values for 
every sensor. The exhaustive search method suffers from a lot 
of drawbacks like a large search step size and limited range of 
search. Apart from this, the exhaustive search algorithm grows 



 

Figure 2.  Pseudocode for gradient descent method 

exponentially in computational time with the number of 
sensors, hence making it practically infeasible to go beyond a 
very small number of sensors. To deal with these drawbacks, 
we implemented various standard algorithms for nonlinear 
optimization problems. We note that the objective function, f(τ) 
is expected to be multimodal with respect to the various sensor 
thresholds. We used random restarts to address this concern.  

A. Gradient Descent Method 
In this method we form a vector of thresholds by randomly 

picking a threshold value for each sensor within some fixed 
range. Further, we find the partial differentials of the total cost 
function f(τ), defined in Equation (1), with respect to each 
sensor threshold Ts, and form their vector ,∂f by evaluating 
each of those partial differentials at the threshold values 
selected above. Therefore 
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The threshold vector is then updated according to line 6 of 
the pseudocode in Fig 2. By doing this iteratively, we perform 
a gradient descent on the overall cost function, f(τ) towards its 
minimum. The pseudocode in Fig. 2, which depends on a 
parameter λ, summarizes this method. The method is quite 
effective at limiting the exponential growth of computation 
with increasing number of sensors. Also, it usually gives a 
minimum lower than the exhaustive search method due to 
much finer resolution in step size. For our experiments with 3 
and 4 sensor trees, λ=10-4 gave fairly good results with 
convergence achieved in a few hundred iterations. 

B. Newton’s Method 
To eliminate the problem of setting the value of λ 

heuristically, we try to search for the minimum cost by using 
Newton’s optimization method. In this method, the constant λ 
is replaced by the inverse of the Hessian matrix Hf(τ). The 
Hessian matrix is a square matrix of second order partial 
derivatives of the overall cost function f(τ). Since all the 
second derivatives of f(τ) are continuous over the sensor 
thresholds, the Hessian matrix for our problem is symmetric  
and is given by 

 

Figure 3.  Pseudocode for a combined method 
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To implement this method, we just need to compute Hf(τ) and 
replace line 6 of the pseudocode in Fig. 2 with the following 
line: 

6. assign Tstart:=Tstart – ( ) 1
f τ

−
⎡ ⎤ ∂⎣ ⎦H f . 

Though the computation of the Hessian matrix is a little 
expensive and tedious, the method quickly converges in fewer 
iterations than the gradient descent method. The convergence 
of this method depends largely on the starting vector Tstart. 
Since an absolute prior knowledge of the neighborhood of the 
minimum is absent, this method occasionally drifts in the 
wrong direction and hence fails to converge. 

C. A Combined Method 
Since the Hessian matrix Hf(τ) might not be a well-

conditioned, positive definite matrix, we explored alternative 
approaches to computing positive definite approximations to 
Hf(τ). These methods involve modified Cholesky 
decomposition schemes and have been nicely summarized by 
Fang and O’Leary [3]. For example, a naïve way to convert a 
non-positive definite matrix into a positive definite matrix is 
to decompose it to LDLT form and then make all the non-



positive elements of D positive. This crude approximation 
may result in the failure of factorization of the new matrix or 
make it very different from the original matrix. Therefore to 
address this issue more reasonably, we use a modified LDLT 
factorization method from Gill et al. [4] which incorporates 
small error terms in both L and D at every step of factorization. 
If the Hessian matrix Hf(τ) is ill-conditioned, we take small 
steps towards the minimum using the gradient descent method 
until it becomes well conditioned. In this way we try to 
combine the advantages of both gradient descent and 
Newton’s method. The pseudocode in Fig. 3 summarizes the 
final scheme for finding the optimum thresholds. 

VI.  SEARCHING THROUGH A GENERALIZED TREE SPACE 

A. Revisiting Completeness and Monotonicity 
As noted in Section II, Stroud and Saeger [2] limit their 

analysis to complete, monotone Boolean functions. We 
propose here definitions of monotonicity and completeness for 
trees themselves rather than limiting them to just the Boolean 
functions from which the trees are derived. We do this 
because unlike Boolean functions, binary decision trees may 
not necessarily consider all individual sensor outputs to give a 
final classification. For example, consider the decision tree of 
Figure 1. All the containers that follow the left-most branch of 
the tree do not depend upon the output of sensor c, since they 
are classified without considering c along with a and b. This 
type of example motivates the following definition of 
complete and monotonic trees. 

Complete Decision Trees 
A binary decision tree will be called complete if every 

sensor (attribute) occurs at least once in the tree and, at any 
non-leaf node in the tree, its left and right sub-trees are not 
identical. 

Monotonic Decision Trees 
A binary decision tree will be called monotonic if the final 

class assigned to any container (with mutually independent 
attributes) is the same as the independent decision based on 
the last attribute in the branch corresponding to the container. 
Note that it is possible to arrive at a complete binary decision 

tree from an incomplete Boolean function and likewise a 
monotonic tree from a non-monotonic Boolean function. For 
example, consider the incomplete Boolean function for 3 
sensors in Fig. 4, and the corresponding decision trees 
obtained from it. The Boolean function is incomplete in sensor 
a. However, trees (i) and (ii) are complete while trees (iii) and 
(iv) are incomplete in a. Similarly, consider the non-
monotonic Boolean function in Fig. 5 (non-monotonic in a) 
and the decision trees obtained from it. Tree (i) is monotonic 
while all the other trees are non-monotonic in a. It is not hard 
to show that we get 114 complete, monotonic binary trees 
with 3 sensors and 66,936 with 4 sensors. 

  

Figure 4.  A Boolean function incomplete in sensor a, and the corresponding 
decision trees obtained from it 

B. Tree Neighborhood and Tree Space 
As shown in [2], the number of binary decision trees 

corresponding to complete, monotone Boolean functions 
increases exponentially with addition of each new sensor. 
Expanding the space of trees in which to search for a cost-
minimizing tree to the space of complete, monotonic trees, 
CM tree space can be beneficial. While finding a cost-
minimizing tree in CM tree space also presents a significant 
computational challenge as the number of sensors increases, 
we are able to address this challenge via heuristic search 
strategies that build on notions of neighborhoods in this space. 
Also, while CM tree space includes all the trees arising from 
complete, monotonic Boolean functions, it includes some trees 
that do not arise from complete and monotonic Boolean 
functions but still correspond to viable and potentially useful 
inspection strategies.  

Chipman et al. [5] and Miglio and Soffritti [6] provide a 
comparison of various notions of neighborhood and proximity 
between trees. These methods can be classified roughly into 
classification-based and structure-based methods. Chipman et 
al. [7] describe methods to traverse the tree space. We modify 
these methods a little to define a notion of neighborhood that 
better suits our problem. Basically, we define the following 
four kinds of operations on a tree to get its neighboring trees. 
Fig. 6 gives an example of neighboring trees obtained from 
these operations for a particular tree. 

 

 

Figure 5.  A Boolean function non-monotonic in sensor a, and the 
corresponding decision trees obtained from it 



 Split: Pick a leaf node and replace it with a sensor that is 
not already present in that branch, and then insert arcs from 
that sensor to 0 and to 1. 

Swap: Pick a non-leaf node in the tree and swap it with its 
parent node such that the new tree is still monotonic and 
complete and no sensor occurs more than once in any branch. 

Merge: Pick a parent node of two leaf nodes and make it a 
leaf node by collapsing the two leaf nodes below it, or pick a 
parent node with one leaf node, collapse both of them and 
shift the sub-tree up in the tree by one level. 

Replace: Pick a node with a sensor occurring more than 
once in the tree and replace it with any other sensor such that 
no sensor occurs more than once in any branch. 

It is not hard to show that these moves generate an 
irreducible process in the sense that one can get from any tree 
in CM tree space to any other tree using a sequence of the 
moves. 

C. Tree Space Traversal 
We have explored alternate ways to search for a tree with 

minimum cost in the entire CM tree space. Our initial 
approach was a simple greedy search: randomly start at any 
tree in the space, find its neighboring trees using the above 
operations, move to the neighbor with the lowest cost, and 
then iterate. As expected, however, the cost function is 

multimodal and the greedy strategy gets stuck at local minima. 
For example, there are 9 modes in the entire space of 114 trees 
for 3 sensors and 193 modes in the space of 66,936 trees for 4 
sensors. To address the problem of getting stuck in a local 
minimum, we developed a stochastic search algorithm coupled 
with simulated annealing. The algorithm is stochastic insofar 
as it selects moves according to a probability distribution over 
neighboring trees. The simulated annealing aspect involves a 
so-called “temperature” t, initiated to one and lowered in 
discrete unequal steps after every m hops until we reach a 
minimum. Specifically, if we are at the ith tree τi, then the 
probability of going to its kth neighbor, denoted τik, is given by 
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where f(τi) and f(τij) are the costs of trees τi and τij, respectively 
and ni is the number of trees in the neighborhood of τi. 
Therefore, as the temperature is decreased, the probability of 
moving to the least expensive tree in the neighborhood 
increases. The pseudocode in Fig. 7 summarizes the stochastic 
search algorithm. 

 

Figure 6.  An example of notion of neighborhood 



 

Figure 7.  Pseudocode for stochastic search method and simulated annealing 
for finding a minimum cost tree 

VII. RESULTS FOR OPTIMIZING THRESHOLDS 

Our first set of experiments is described here. In these 
experiments, for any given tree, starting with some vector of 
sensor thresholds, we tried to reach a minimum cost in as few 
steps as possible. For comparison purposes, we did an 
exhaustive search for optimum thresholds with a fixed step 
size in a broad range for 3 and 4 sensors. Also, in all these 
experiments, the various sensor parameter values were kept 
the same as in the threshold variation experiments conducted 
in [1]. Both the misclassification costs and the prior 
probability of occurrence of a “bad” container were fixed as 
the respective averages of their minimum and maximum 
values suggested by Stroud and Saeger [2]. We did this for 
both the exhaustive search method and the optimization 
method described in Fig. 3, to maintain consistency 
throughout our experiments. With our new methods we were 
able reach a minimum every time with a modest number of 
iterations. For example, for 3 sensors, it took an average of 
13.02 iterations (as opposed to 9,261 iterations using 
exhaustive search) to converge to a minimum for all 114 trees 
with Tstart = [2 2 2]T as the starting point for every tree. Fig. 8 
shows the plots for minimum costs for all 114 trees for 3 
sensors using both the methods. In each case the minimum 
costs obtained using the optimization technique are equal to or 
less than those obtained using the exhaustive search. Also, 
many times the minimum obtained using the optimization 
method was considerably less than the one from the 
exhaustive search method. 

VIII. RESULTS FOR SEARCHING CM TREE SPACE 

For the second set of experiments, we utilized the notion of 
neighborhood around a tree using the four operations 
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Figure 8.  Minimum costs for all 114 trees for 3 sensors. To avoid confusion, 

dashed vertical lines join markers for the same tree. 

described earlier. We randomly started 10 times with some 
tree in the CM tree space of 66,936 trees for 4 sensors and 
then kept moving stochastically in the neighborhood of the 
current tree, forming a chain of trees, until we reached a 
minimum. The exponent 1/t was initialized to 1 and was 
incremented by 1 after every 10 hops in a chain. We found 
that the average number of trees evaluated for their costs for 
each chain for a set of 100 such experiments was 489. Table 1 
summarizes the results of these experiments. Each row in the 
table corresponds to the tree number that was obtained as the 
least cost tree along with its cost and frequency (out of 100). 
The last column in the table gives the rank of each of these 
tree minima among all the local minima in the entire tree 
space. For example, the algorithm was able to find the best 
tree (global minimum, as determined using the methods of 
Section VI, part C) 42 times, second best tree 15 times and so 
on. Thus, the algorithm was able to find one of the least cost 
trees most of the time. However, these trees are different from 
the lowest cost trees obtained in Anand et al. [1] and are in 
fact less costly than those trees. Another important 
observation is that although each of these four trees differ in 
structure, they still correspond to the same Boolean function, 
F(abcd) = 0001010101111111, where the ith digit gives 
F(abcd) for the ith binary string abcd if strings are arranged in 
lexicographically increasing order. Also, interestingly, this 
Boolean function is both complete and monotonic. Detailed 
understanding of the nature of the differences in the trees will 
require understanding of the relevant properties of trees and 
we defer this to future work. 

IX. DISCUSSION 

As we have already noted, the exhaustive search methods, 
both for finding the optimum thresholds for a given tree and 
for finding a minimum cost tree among all possible trees, 
become practically infeasible beyond a very small number of 
sensors. The various optimization  techniques discussed in this  



TABLE I 
SUMMARY OF RESULTS FOR STOCHASTIC SEARCH FOR 4 SENSOR TREE SPACE 

Tree Number 1 Cost 2 Frequency 3 Mode Rank 
30995 59.3364 42 1 
30959 59.3364 15 2 
31011 59.3364 25 3 
31043 60.1924 10 4 

1 Tree numbers differ from those used in Anand et al [1]. 
2 The costs of the first three trees differ only in the 14th place after the decimal, 
but all the trees are listed in the order of increasing costs. 
3 Frequency out of 100. 

paper provide faster and better methods to limit the search 
space and arrive at a minimum quite efficiently. Although we 
were able to obtain results for 5 sensors using the stochastic 
search method described above, we have not included them in 
this paper. The reason is that the number of complete and 
monotonic trees obtained for 5 sensors is of the order of a few 
million. Since, it is computationally very hard to obtain least-
cost trees using exhaustive search over all those trees, it is 
difficult to validate the results obtained from the stochastic 
search method. Also, since the notion of neighborhood that we 
use is structure-based, we allow only very short moves in the 
tree space while looking for the least cost tree. Although we 
tried to eliminate this problem by incorporating annealing, the 
results suggest that defining a better notion of neighborhood 
that aligns more to the sensor parameters will be a promising 
future direction of work. For example, if we could define 
“distance” between various sensors mathematically, we could 
use those distances to define the notion of overall distance 
between any two trees and hence define a neighborhood of a 
tree accordingly. Another possible direction of research could 
be the use of genetic algorithms or evolutionary techniques to 
build better decision trees from a given set of good trees. 
Examples of such methods can be found in [8] and [9]. 
References [10] and [11] describe applications where genetic 
and evolutionary algorithms successfully solved highly multi-
modal problems. While our methods have led to substantially 
more efficient algorithms, even trees involving just 5 sensors 
still present a computational challenge so there is still a great 
deal of work to do. 
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