

# for Detecting HEU in Seaborne Containers

DNDO Grant Project

Gary M. Gaukler Texas A&M University



# **TAMU DNDO Research**

- Effort combines
  - Nuclear detector research
  - Inverse and forward transportation calculation
  - Public Policy
  - Systems Engineering
- Systems Engineering Team
  - Dr. Gary M. Gaukler, Team Lead
  - Dr. Yu Ding
  - Chenhua Li, Postdoctoral Researcher
  - Rory Cannaday, Ph.D. Student





### **Research Focus**



- Establish a system to prevent terrorists f rom smuggling HEU into the United States
- Strategic level:
  - International transportation network
  - Nodes: e.g., foreign and domestic ports
- Tactical level:
  - Analyze specific node in the international network
  - Determine appropriate inspection policies to decide the level of scrutiny to use for any given shipment
- Initially, scope limited to commercial seaborne container shipping



## **Strategic Level**



- Given a limited budget, at which domestic and foreign ports should detectors be deployed? Which types of detection should be deployed?
- Threat origination:
  - Nuclear rogue state
  - Known HEU deposit sites
  - Unknown origination
- Target:
  - Probabilistically known





# **Detection Network**





- Each of these nodes requires a solution to the tactical problem
- We focus on the tactical problem first



# d Targeting System



Identify ±high-riskqcontainers

Your complimentary use period has ended. Thank you for using PDF Complete.

(ATS)

- Customs established criteria and automated targeting tools for identifying ±high-riskqshipments
- Ships are assessed for risk using general intelli gence information and advance mani fest data
- Treat ±high-riskqcontainers different from ±owriskqcontainers
  - e.g. different detection technology, requirement to passively scan at foreign port, etc.



# **General Nuclear Detection**

- Passive interrogation
  - Passively detect level of neutrons and gamma rays
- Active interrogation
  - X-ray: image cargo; detect shielding
  - Neutron/Photon: cause SNM to react and emit more neutrons/gamma rays
  - Drawback: time consuming, high level of false positive, possible activation to the material and exposure to persons in the container.
- Manual inspection
  - Multi-person team open a container and inspect manually
  - High cost of manual labor, time consuming
  - Residual risk







- Model current practice:
  - High-risk / low-risk containers in ATS
  - Escalation system of passive / active / manual
- Explore changes to the system:
  - Containers classified based on contents
  - Arbitrary detection technologies
  - Using BOL or imaging information
- Develop useful inspection policies:
  - Based on available detection technology, decide:
    - Which technology to use for which container
    - Sequence of detector use
    - Detector operational thresholds





# Model Input & Output

- Input:
  - Scenario parameter sets
    - Containers are classified based on the contents, denoted by scenario  $q_s$
  - Threshold  $t_{H}$ ,  $t_{p}$ ,  $t_{A}$
- Output:
  - Detection probability for each scenario
  - Overall detection probability
  - Sojourn time for each path
  - Queue length at each node

#### **Different Scenarios**







### **MCNP** Code

- General-purpose Monte Carlo N-Particle code
- Used for neutron, photon, electron, or coupled neutron/photon/electron transport
- Treats an arbitrary three-dimensional configuration of materials in geometric cells
- Suited to the needs performing radiation shielding, detector simulation studies, and etc.
- Input: Z value matrix
- Output: distribution of the amount of photons we expect to detect at given scenario q<sub>s</sub> with HEU and without HEU







#### Thank you for using PDF Complete. By Shielded HEU: Hardness Measure

- A scenario can be defined based on the X-ray image or BOL of a cargo container
- The hardness of detection is the probability of not being able to detect a certain amount of shielded HEU for a given scenario. The probability is calculated as in the following







Unlimited Pages and Expanded Feature



- Define a hardness measurement for each of the container scenario  $q_s$ , based on MCNP code
- Choose the threshold for hardness,  $t_H$ 
  - $h_s > t_{H'}$ , sent to A-node
  - $h_s < t_{H}$ , sent to P-node
- HC-node queue: M/M/C
  - Arrival rate  $\lambda$ : the arrival rate of the incoming containers
  - Service rate:  $\mu_x$
  - Number of servers:  $m_x$







- Set up threshold value (t<sub>P</sub>) to split the stream to A -node or L-node:
  - $X_i > t_{P'}$  -> sent to active node
  - $X_i < t_{P}$ , -> sent to loading node
- P-node queue: *M/M/C* 
  - Arrival rate  $\lambda_P = \lambda * (1 f_H)$
  - Service rate:  $\mu_P$
  - Number of passive servers: *m<sub>P</sub>*



Unimited Pages and Expanded Feature



- A-node receives two streams:
  - One directly from HC-node; the other from P-node
- Set up a threshold  $t_A$ , to split the stream:
  - $X_i > t_A$ , -> sent to M-node
  - $X_i < t_A$ , -> sent to L-node
- A-node queue: M/G/C
  - Arrival rate  $\lambda_A = \lambda * f_H + \lambda * (1 f_H) * f_P$
  - Service rate:  $\mu_A$
  - Number of active servers:  $m_A$









- Assumption: If HEU is present, it is detected at M -Node with probability 1.
  - For simplicity only; can incorporate any choice of residual risk
- M-node queue: G/G/C
  - Arrival rate  $\lambda_M = (\lambda * f_H + \lambda * (1 f_H) * f_P) * f_A$
  - Service rate:  $\mu_M$
  - Number of manual servers: m<sub>M</sub>
- Define q<sub>s</sub><sup>HEU</sup> to be a container scenario with a known quantity of HEU:

Scenario  $q_S^{HEU}$ 



• Detection probability =  $Pr\{q_s^{HEU} \text{ arrives at } M\}$ 



Unlimited Pages

Your complimentary use period has ended. Thank you for using PDF Complete.

# Time in System



- Path: e.g. P-node  $\rightarrow$  A-node  $\rightarrow$  L-node
- For each path, calculate the expected time in system:  $T_w$
- For each container scenario  $q_s$ , calculate the probability that the container follows any given path
- $\rightarrow$  Calculate expected time for a given scenario  $q_s$
- Model yields:
  - Expected time in system for a given container
  - Expected time in system for a %andom+container



Unlimited

Your complimentary use period has ended. Thank you for using PDF Complete.

# **Current Model Capabilities**

Can calculate:

- Expected queue lengths at nodes
- Detection probability

  - For each container type (scenario)
- Expected time in system
  - For ‰verage+containers
  - For each container type (scenario)





Unlimited

Your complimentary use period has ended. Thank you for using PDF Complete.

# **Optimizing the System**



For a given technology set:

- Choose operational thresholds  $t_{H}$ ,  $t_{P}$ ,  $t_{A}$
- Tradeoff between detection probability and time in system for containers
- Constrained optimization, or efficient frontier generation





Sojourn Time



# **Current and Future Research**

- Sensitivity Analysis
  - Impact of different detector technologies
  - Which technologies should we develop further?
  - Minimum set of detector technologies to reach a certain detection probability
  - Value of x-ray imaging vs. using BOL for scenario generation





# **Current and Future Research**

- Terrorist Decision
  - If the terrorist knows how our system is structured, what is his optimal response?
    - E.g. prefer high or low hardness containers to infiltrate?
    - Better chance for terrorist with containers that offer natural shielding, or those without?
  - Based on optimal terrorist behavior, can anticipate and strengthen our system





# **Current and Future Research**

- Strategic level
  - Once we deal with multiple nodes, what changes?
  - Detector type deployment: where to deploy what type of detectors
    - Passive at foreign ports, active at domestic ports?
  - Detector operational parameters
    - Thresholds, sensitivity
  - Potential to use container history
    - Prior measurements, detection results
    - Breach of containers





Click Here to upgrade to Unlimited Pages and Expanded Features



# **Questions?**