Optimization of Containers Inspection at Port-of-Entry

E. A. Elsayed, Christina Young, Yada Zhu Department of Industrial and Systems Engineering

> Mingyu Li, Minge Xie Department of Statistics

Rutgers University

Introduction

- Containers arrive at a port-of-entry for inspection
 - *n* attributes tested independently
- Sensors used to classify attributes of a container as safe (*d*=0) or suspicious (*d*=1) based on selected threshold values (*T_i* for station *i*)
- Overall accept/reject decision based on specified Boolean function of station decisions

Simple Container Inspection Procedure

Inspection Problem Description

- Threshold levels affect the decisions and probabilities of misclassification at each station
- Sequence of inspection stations affects the expected cost and time of inspection per container
- Inspection policy specifies sequence (S) and T_i values

Objective

Minimize expected cost of inspection, cost of container misclassifications, and expected inspection time

Decision Variables

Sensor threshold values and sequence of stations

Modeling Approach

- Assume the unit's true state (x) is 0 or 1
- A container attribute value comes from a mixture of two normal distributions, depending on the unit's true state
- Let *r* represent the sensor reading returned from a unit, assumed equal to the attribute value

• $r \mid x = 0 \square Norm(\mu_0, \sigma_0^2)$

- $r \mid x = 1 \square Norm(\mu_1, \sigma_1^2)$
- For some value *T_i* at station *i*
 - If measurement r_i > threshold level (T_i), then decision for station *i*, d_i =1
 - If $r_i \leq T_i$, $d_i=0$

Modeling Approach

- Assume prior distribution of suspicious containers is known: $\pi = P(x = 1) = 1 - P(x = 0)$
- Subscript *i* is used to indicate association with station *i*
- Assume parameters of the two normal distributions are known: μ_{0i} , μ_{1i} , σ_{0i} , σ_{1i}

Probabilities of Error

Cost of Misclassification

- The individual results of stations are combined according to defined system Boolean function to reach an overall inspection decision to accept or reject a container
- This system decision *D* may or may not agree with the container's true status
- Probability of false accept, PFA = P(D = 0 | x = 1)
- Probability of false reject, PFR = P(D = 1 | x = 0)
- Two sources of container misclassification cost:
 - *c*_{FA} = cost of false acceptance (undesired cargo)
 - c_{FR} = cost of false rejection (manual unpack)
- Total cost: $C_F = \pi PFA c_{FA} + (1 \pi)PFR c_{FR}$

Cost of Inspection

- $c_i = \text{cost of using } i^{th} \text{ sensor}$
- Expected cost of inspection depends on probability of passing (or failing) sensor *i*:
- $p_i = P(d_i = 0) = P(d_i = 0 | x = 0)(1 \pi) + P(d_i = 0 | x = 1)\pi$ = $(1 - \pi)\Phi\left(\frac{T_i - \mu_{0i}}{\sigma_{0i}}\right) + \pi\Phi\left(\frac{T_i - \mu_{1i}}{\sigma_{1i}}\right)$
- $q_i = 1 p_i = P(d_i = 1 | x = 0)(1 \pi) + P(d_i = 1 | x = 1)\pi$ = $(1 - \pi) \left\{ 1 - \Phi\left(\frac{T_i - \mu_{0i}}{\sigma_{0i}}\right) \right\} + \pi \left\{ 1 - \Phi\left(\frac{T_i - \mu_{1i}}{\sigma_{1i}}\right) \right\}$

Optimum Inspection Sequence

- The sequence in which stations are visited affects the expected cost of inspection
 - A sequence which minimizes this cost is known as an optimum sequence
- **Theorem 1:** For a **series** Boolean decision function, inspecting attributes *i*, i = 1, 2, ..., n in sequential order is optimum (minimizes expected inspection cost) if and only if: $c_1 / q_1 \le c_2 / q_2 \le ... c_n / q_n$.
- A container is suspicious if decision for any station *i* is 1. In other words:

$$F(d_1, d_2, ..., d_n) = (d_1 \lor d_2 \lor ... d_n)$$

Optimum Inspection Sequence

 Theorem 2: For a parallel Boolean decision function, inspecting attributes *i*, *i* = 1,2,...,*n* in sequential order is optimum (minimizes expected inspection cost) if and only if:

 $c_1 / p_1 \le c_2 / p_2 \le ... c_n / p_n$

In other words:

$$F(d_1, d_2, \dots, d_n) = \left(d_1 \wedge d_2 \wedge \dots d_n\right)$$

Total Expected Cost

- Example: parallel Boolean decision function
- Cost of misclassifications:

$$C_{F} = (\text{False acceptance cost}) + (\text{False rejection cost})$$
$$= \pi C_{FA} \left[1 - \prod_{i=1}^{n} \left\{ 1 - \Phi \left(\frac{T_{i} - \mu_{1i}}{\sigma_{1i}} \right) \right\} \right] + (1 - \pi) C_{FR} \prod_{i=1}^{n} \left\{ 1 - \Phi \left(\frac{T_{i} - \mu_{0i}}{\sigma_{0i}} \right) \right\}$$

Total Expected Cost

- Example: parallel Boolean decision function
- Cost of inspection:

$$C_{j} = c_{1} + \sum_{i=2}^{n} \left[\prod_{j=1}^{i-1} q_{j} \right] c_{j}$$

= $c_{1} + \sum_{i=2}^{n} c_{i} \prod_{j=1}^{i-1} \left[(1 - \pi) \left\{ 1 - \Phi \left(\frac{T_{j} - \mu_{0j}}{\sigma_{0j}} \right) \right\} + \pi \left\{ 1 - \Phi \left(\frac{T_{j} - \mu_{1j}}{\sigma_{1j}} \right) \right\} \right]$

Total expected cost:

 $C_{total} = C_l + C_F$

Inspection Time

- Time for a container to complete inspection at station *i* denoted t_i
- Optimum sequence with regard to total expected inspection time can be found with similar method to cost

Inspection Time

 t_i could be a function of threshold T_i , approximated from data

Multi-Objective Problem

- Objectives $\min_{Sequence, Threshold} \{c_{total}, t_{total}\}$
 - Minimize the total expected cost including inspection cost and misclassification cost, $c_{total} = C_l + C_F$
 - Minimize the total expected inspection time t_{total}
- Some trade-off between objectives
- Goal: find solutions located along Pareto front
- Find min of weighted objective function $f_{w_1,w_2}(S,T) = w_1c_{total} + w_2t_{total}$, $w_2 = 1-w_1$ for various weights
 - Each solution is a Pareto optimal point for multiobjective problem
- Take advantage of optimal sequence theorem to improve efficiency of algorithms

Optimum Sequence for Weighted Objective

- Given fixed weights, optimum sequence theorem can be adapted
 - Change objective from c_i to $w_1c_i+w_2t_i$
- For parallel Boolean, minimum sequence condition:

$$\frac{W_1C_1 + W_2t_1}{p_1} \le \frac{W_1C_2 + W_2t_2}{p_2} \le \dots \le \frac{W_1C_n + W_2t_n}{p_n}$$

Condition for series Boolean:

$$\frac{W_1C_1 + W_2t_1}{Q_1} \le \frac{W_1C_2 + W_2t_2}{Q_2} \le \dots \le \frac{W_1C_n + W_2t_n}{Q_n}$$

Modified Weighted Sum Algorithm

- Computationally expensive to solve minimization of weighted objective function
 - Easier if sequence is known
- Apply optimum sequence given thresholds to compute $f_{w_1,w_2}(T) = \min_{S} f_{w_1,w_2}(S,T)$
- Solve $\min_{T} f_{w_1,w_2}(T)$
- Avoiding consideration of all potential sequences improves the efficiency of the algorithm

Solution Methods

- Three methods developed and implemented to compare optimality of results
- Grid search- complete enumeration of discrete threshold values
- Two methods involve repetitions with various weights to solve $\min_{\tau} f_{w_1,w_2}(T)$ and generate

Pareto-optimal solutions

- Matlab fmincon function
- Genetic algorithm
- Output graphed (Pareto frontier)
 - Time vs. cost expectations

Numerical Example

- Three station system using parallel Boolean decision function
- Cost fixed for each station, $c_i = 1$
- Prior $\pi = 0.0002$
- Distribution parameters $\mu_0 = [0 \ 0 \ 0]$ $\mu_1 = [1 \ 1 \ 1]$ $\sigma_0 = [0.16 \ 0.2 \ 0.22]$ $\sigma_1 = [0.3 \ 0.2 \ 0.26]$
- Cost parameters

c_{FA} = 100000

Time related

a = [20 20 20]

c_{FR} = 500

b = [-3 -3 -3]

Comparison of Three Solution Methods

Pareto-Optimal Solutions

- Output:
 - Graph of time vs. cost trade-off curve
 - Optimal sequence of sensors
 - Threshold level for each sensor
- Examples of solutions

T ₁	T ₂	T ₃	Sequence	Cost	Time
0.2	0.75	0.35	2-3-1	9.03	1.16

Conclusions

- Port-of-entry container inspection problem was formulated to determine optimum threshold levels of sensors by minimizing total expected cost and time
 - Estimate threshold-dependent probabilities of false accept and false reject to calculate expected cost of false classification
 - Sequence of inspection affects expected cost and time of inspection but not probabilities of error
- Compare three approaches to multi-objective problem
 - GA provides dependable set of Pareto solutions

Acknowledgment and Website

- This research is conducted with partial support from ONR grant numbers N00014-05-1-0237, N00014-07-1-029 and NSF grant number NSFSES 05-18543 to Rutgers University
- For further information and related papers, please visit the DIMACS website

http://dimacs.rutgers.edu/Workshops/PortofEntry