## Optimal Sensor Sequencing for Container Inspection

Endre Boros, Paul Kantor, Noam Goldberg, Jonathan Word Rutgers University, SCILS and RUTCOR

Paul.kantor@rutgers.edu Endre.Boros@rutcor.rutgers.edu

Research Supported by: DHS DNDO#CBET-0735910







School of Communication, Information and Library Studies



Center for Discrete Mathematics & Theoretical Computer Science Founded as a National Science Foundation Science and Technology Center



#### **The Problem:**

There are many tests that can be applied (document checks, passive sensors of several kinds, active sensors). *Find the "optimal" detection policy based on these tests!* 



#### **Assumptions**:

Randomness arises from the enormous variability in contents, screening and background, not in the sensors themselves. Therefore, a **repeat reading** with a sensor **gives** the same value.

**Sensors are stochastically independent**. So the probability of any collection of readings or signals, given the TRUTH, is the product of the probabilities for the individual readings

## Background

- Complete enumeration (Stroud and Saeger, 2003)
- Linear programming model (Boros, Fedzhora, Kantor, Stroud, and Saeger, 2006)
- Threshold optimization (Zhang, Schroepfer, Elsayed, 2006)
- Heuristic search (Madigan, Mittal, Roberts, 2007)
- 3-sensor cost-time model (Young, Li, Zhu, Xie, Elsayed, and Asamov, 2008)
- Dynamic programming (Boros, Kantor, Goldberg and Word, 2008)

# Move to a decision support model:

#### Minimize total damage over all available policies

 $\operatorname{Min}_{P} C(P) + \pi K(1 - \Delta(P))$ 

 $\Delta(P)$ , C(P) - detection rate, and operating cost of policy P  $\pi$  (~0), K (~very large) - a priori probability of a "bomb", and expected cost of false negative





# **Improve computational efficiency:**

- Move from signal space to ROC space
- Dynamic programming algorithm
  - Sensor fusion (multi-knapsack model)
  - **Bottom up enumeration**
  - Large number of channels (threshold optimization)
- Effective approximation of concave envelop

## Move from signal space to ROC space:



## **Dynamic Programming:** Sensor Fusion

## Given a set of policies and an additional sensor, what is the best set of policies that we can construct?



## **Dynamic Programming:** Sensor Fusion

Fusing sensor k on top of the given policies optimally is a multi-knapsack problem that can be solved by a modified greedy algorithm:



### **Dynamic Programming: common concave envelope**

We then merge the given policies with the best combination of them with sensor k on top – and generate the common concave envelope of all these policies



## **Dynamic Programming:** enumeration

- For each subset S of sensors and element k in S we fuse sensor k on top of the best policies constructible from S\{k}
- Do it in order of increasing sizes of subsets S



## Dynamic Programming: Summary

- We build the concave envelope of best possible policies constructible from the given set of N tests.
- We solve  $N2^N$  sensor fusion problems (for up to  $N \le 20$ )
- Each Sensor Fusion can be solved in O(P\*B+Plog(P)) time, where B is the number of channels of the top sensor, and P is the number of pure strategies being considered

## Approximating the input

| Epsilon | Total Error | Points | Time (s) | Number of | <sup>f</sup> Channels | of the Give | en Sensors |
|---------|-------------|--------|----------|-----------|-----------------------|-------------|------------|
| 1.00%   | 3.94%       | 1567   | 8.10     | 8         | 14                    | 6           | 3          |
| 0.90%   | 3.55%       | 1589   | 8.26     | 8         | 14                    | 6           | 3          |
| 0.80%   | 3.16%       | 1683   | 8.97     | 8         | 15                    | 6           | 3          |
| 0.70%   | 2.77%       | 2004   | 11.11    | 9         | 16                    | 6           | 3          |
| 0.60%   | 2.38%       | 2341   | 15.53    | 9         | 17                    | 7           | 3          |
| 0.50%   | 1.99%       | 2811   | 22.05    | 10        | 19                    | 7           | 3          |
| 0.40%   | 1.59%       | 5635   | 55.09    | 11        | 21                    | 8           | 4          |
| 0.30%   | 1.19%       | 8710   | 118.10   | 13        | 24                    | 9           | 4          |
| 0.20%   | 0.80%       | 13905  | 311.66   | 15        | 29                    | 11          | 4          |
| 0.10%   | 0.40%       | 52477  | 3998.13  | 21        | 40                    | 15          | 6          |

# What about approximating the output in each step?

| Saeger and Stroud Sensors (4 sensors) |                         |                          |  |  |  |  |
|---------------------------------------|-------------------------|--------------------------|--|--|--|--|
| Time (sec)                            | Number of<br>Strategies | Maximum Relative Error % |  |  |  |  |
| 1.5                                   | 695                     | 7.76%                    |  |  |  |  |
| 3                                     | 1677                    | 5.1%                     |  |  |  |  |
| 5                                     | 2283                    | 3.16%                    |  |  |  |  |
| 114                                   | 13845                   | 2.38%                    |  |  |  |  |
| 1440                                  | 52319                   | 0.8%                     |  |  |  |  |
| 1441                                  | 68                      | 0.81%                    |  |  |  |  |



#### Detection = **81.527%**

Cost = 0.1977826 units = \$11.867 (<\$13+)

