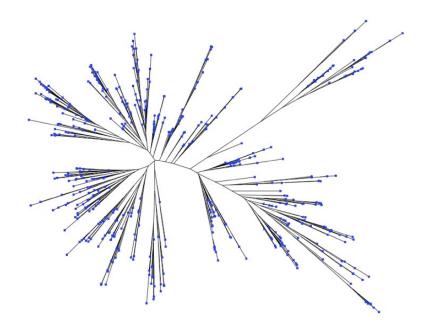
DIMACS Tutorial on Phylogenetic Trees and Rapidly Evolving Pathogens



Thanks to the DIMACS Staff

- Linda Casals
- Walter Morris
- Nicole Clark

Tutorial Outline

- Day 1: Introduction to Phylogenetic Reconstruction
- Day 2: Applications to Rapidly Evolving Pathogens

Tutorial Outline

- Day 1: Introduction to Phylogenetic Reconstruction
 - Overview: Katherine St. John, CUNY
 - Parsimony Reconstruction of Phylogenetic Trees: Trevor Bruen, McGill University
 - Using Maximum Likelihood for Phylogenetic Tree Reconstruction: Rachel Bevan, McGill University
 - Hands-on Session: Constructing Trees Katherine St. John
- Day 2: Applications to Rapidly Evolving Pathogens

Tutorial Outline

- Day 1: Intro to Phylogenetic Reconstruction
- Day 2: Applications to Rapidly Evolving Pathogens
 - Statistical Overview: Alexei Drummond, University of Auckland
 - Tricks for trees: Having reconstructed trees, what can we do with them? Mike Steel, University of Canterbury
 - Hands-on Session: Katherine St. John

• Overview

- Overview
- Constructing Trees

- Overview
- Constructing Trees
- Constructing Networks

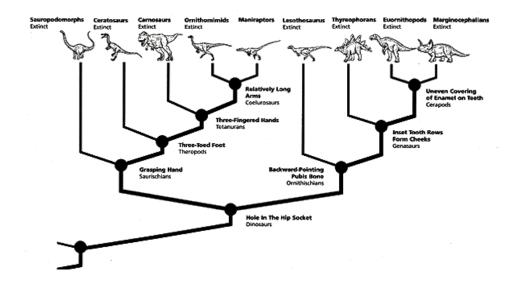
- Overview
- Constructing Trees
- Constructing Networks
- Comparing Reconstruction Methods

- Overview
- Constructing Trees
- Constructing Networks
- Comparing Reconstruction Methods
- Evaluating the Results

Talk Outline

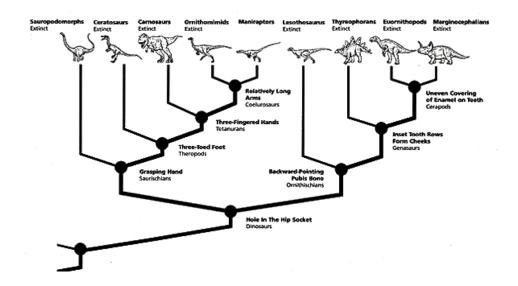
- Overview
- Constructing Trees
- Constructing Networks
- Comparing Reconstruction Methods
- Evaluating the Results

Goal: Reconstruct the Evolutionary History



(www.amnh.org/education/teacherguides/dinosaurs)

Goal: Reconstruct the Evolutionary History



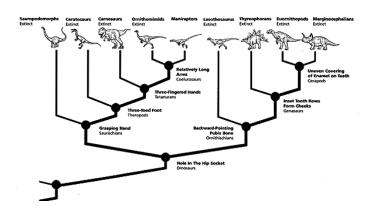
(www.amnh.org/education/teacherguides/dinosaurs)

The evolutionary process not only determines relationships among taxa, but allows prediction of structural, physiological, and biochemical properties.

Process for Reconstruction: Input Data

Start with information about the taxa. For example:

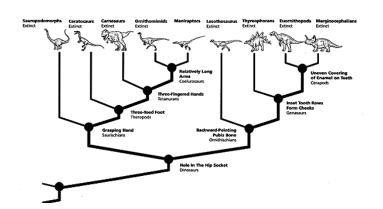
Morphological Characters



Process for Reconstruction: Input Data

Start with information about the taxa. For example:

Morphological Characters



Biomolecular Sequences

- A GTTAGAAGGCGGCCAGCGAC...
- B CATTTGTCCTAACTTGACGG...
- C CAAGAGGCCACTGCAGAATC...
- D CCGACTTCCAACCTCATGCG...
- E ATGGGGCACGATGGATATCG...
- F TACAAATACGCGCAAGTTCG...

(Other: molecular markers (ie SNPs), gene order, etc.)

Input Data

- A GTTAGAAGGC...
- B CATTTGTCCT...
- C CAAGAGGCCA...
- D CCGACTTCCA...
- E ATGGGGCACG...
- F TACAAATACG...

Input Data

- A GTTAGAAGGC...
- B CATTTGTCCT...
- C CAAGAGGCCA...
- D CCGACTTCCA...
- E ATGGGGCACG...
- F TACAAATACG...

Reconstruction Algorithms

Maximum Parsimony Maximum Likelihood Distance Methods: NJ, Quartet-Based, Fast Convering,

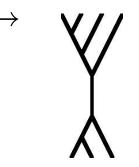
÷

Input Data

- A GTTAGAAGGC...
- B CATTTGTCCT...
- C CAAGAGGCCA...
- D CCGACTTCCA...
- E ATGGGGCACG...
- F TACAAATACG...

Reconstruction Algorithms

Maximum Parsimony Maximum Likelihood Distance Methods: NJ, Quartet-Based, Fast Convering, Output Tree



In addition to finding the evolutionary history of species, phylogeny is also used for:

In addition to finding the evolutionary history of species, phylogeny is also used for:

• drug discovery: used to determine structural and biochemical properties of potential drugs

In addition to finding the evolutionary history of species, phylogeny is also used for:

- drug discovery: used to determine structural and biochemical properties of potential drugs
- multiple sequence alignment

In addition to finding the evolutionary history of species, phylogeny is also used for:

- drug discovery: used to determine structural and biochemical properties of potential drugs
- multiple sequence alignment
- origin of virus and bacteria strains

Talk Outline

- Overview
- Constructing Trees
- Constructing Networks
- Comparing Reconstruction Methods
- Evaluating the Results

Input Data

- A GTTAGAAGGC...
- B CATTTGTCCT...
- C CAAGAGGCCA...
- D CCGACTTCCA...
- E ATGGGGCACG...
- F TACAAATACG...

Reconstruction Algorithms

Maximum Parsimony Maximum Likelihood Distance Methods: NJ, Quartet-Based, Fast Convering, Output Tree

 \rightarrow

• Most optimization criteria are hard:

- Most optimization criteria are hard:
 - Maximum Parsimony: (NP-hard: Foulds & Graham '82)
 find the tree that can explain the observed sequences with a minimal number of substitutions.

- Most optimization criteria are hard:
 - Maximum Parsimony: (NP-hard: Foulds & Graham '82)
 find the tree that can explain the observed sequences with a minimal number of substitutions.
 - Maximum Likelihood Estimation: find the tree with the maximum likelihood: P(data|tree).

- Most optimization criteria are hard:
 - Maximum Parsimony: (NP-hard: Foulds & Graham '82)
 find the tree that can explain the observed sequences with a minimal number of substitutions.
 - Maximum Likelihood Estimation: find the tree with the maximum likelihood: P(data|tree).
- More on these later today...

• Exact answers are often wanted, but hard to find.

- Exact answers are often wanted, but hard to find.
- But approximate is often good enough:

- Exact answers are often wanted, but hard to find.
- But approximate is often good enough:
 - drug design: predicting function via similarity

- Exact answers are often wanted, but hard to find.
- But approximate is often good enough:
 - drug design: predicting function via similarity
 - sequence alignment: guide trees for alignment

- Exact answers are often wanted, but hard to find.
- But approximate is often good enough:
 - drug design: predicting function via similarity
 - sequence alignment: guide trees for alignment
 - use as priors or starting points for expensive searches

Approximation Algorithms

• Since calculating the exact answer is hard, algorithms that estimate the answer have been developed.

Approximation Algorithms

- Since calculating the exact answer is hard, algorithms that estimate the answer have been developed.
 - Heuristics for maximum parsimony and maximum likelihood estimation
 (use clever ways to limit the number of trees checked, while still

sampling much of "tree-space")

Approximation Algorithms

- Since calculating the exact answer is hard, algorithms that estimate the answer have been developed.
 - Heuristics for maximum parsimony and maximum likelihood estimation

(use clever ways to limit the number of trees checked, while still sampling much of "tree-space")

Polynomial-time methods, often based on the distance between taxa

• These methods calculate the distance between taxa:

	В	D	А	С	F	E
В	0	0.496505	0.496505	0.444519	0.375798	0.268166
D	0.496505	0	0.496505	0.375798	0.275673	0.279728
A	0.496505	0.496505	0	0.362124	0.323812	0.496505
C	0.444519	0.375798	0.362124	0	0.496505	0.496505
F	0.375798	0.275673	0.323812	0.496505	0	0.496505
E	0.268166	0.279728	0.496505	0.496505	0.496505	0

and then determine the tree using the distance matrix.

• These methods calculate the distance between taxa:

	В	D	А	С	F	E
В	0	0.496505	0.496505	0.444519	0.375798	0.268166
D	0.496505	0	0.496505	0.375798	0.275673	0.279728
A	0.496505	0.496505	0	0.362124	0.323812	0.496505
C	0.444519	0.375798	0.362124	0	0.496505	0.496505
F	0.375798	0.275673	0.323812	0.496505	0	0.496505
E	0.268166	0.279728	0.496505	0.496505	0.496505	0

and then determine the tree using the distance matrix.

• One way to calculate distance is to take differences divided by the length (the normalized Hamming distance).

Popular distance based methods include

Popular distance based methods include

 Neighbor Joining (Saitou & Nei '87) which repeatedly joins the "nearest neighbors" to build a tree, and

Popular distance based methods include

- Neighbor Joining (Saitou & Nei '87) which repeatedly joins the "nearest neighbors" to build a tree, and
- UPGMA ("Unweighted Pair Group Method with Arithmetic Mean") (Sneath & Snokal '73) similarly clusters close taxa, assuming the rate of evolution is the same across lineages.

Popular distance based methods include

- Neighbor Joining (Saitou & Nei '87) which repeatedly joins the "nearest neighbors" to build a tree, and
- UPGMA ("Unweighted Pair Group Method with Arithmetic Mean") (Sneath & Snokal '73) similarly clusters close taxa, assuming the rate of evolution is the same across lineages.
- Quartet-based methods that decide the topology for every 4 taxa and then assemble them to form a tree (Berry *et al.* 1999, 2000, 2001).

Other Distance-Based Methods

• Weighbor (Bruno *et al.* '00) is a weighted version of Neighbor Joining, that combines based on a likelihood function of the distances.

Other Distance-Based Methods

- Weighbor (Bruno *et al.* '00) is a weighted version of Neighbor Joining, that combines based on a likelihood function of the distances.
- Disk Covering Method (Warnow *et al.* '98, '99, '04)- a divide-and-conquer approach of theoretical interest that has been combined with many other methods.

Other Distance-Based Methods

- Weighbor (Bruno *et al.* '00) is a weighted version of Neighbor Joining, that combines based on a likelihood function of the distances.
- Disk Covering Method (Warnow *et al.* '98, '99, '04)— a divide-and-conquer approach of theoretical interest that has been combined with many other methods.

• [Saitou & Nei 1987]: very popular and fast: $O(n^3)$.

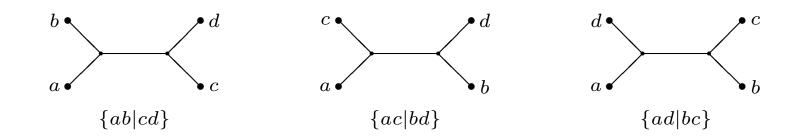
- [Saitou & Nei 1987]: very popular and fast: $O(n^3)$.
 - Based on the distance between nodes, join *neighboring leaves*, replace them by their parent, calculate distances to this node, and repeat.

- [Saitou & Nei 1987]: very popular and fast: $O(n^3)$.
 - Based on the distance between nodes, join *neighboring leaves*, replace them by their parent, calculate distances to this node, and repeat.
 - This process eventually returns a binary (fully resolved) tree.

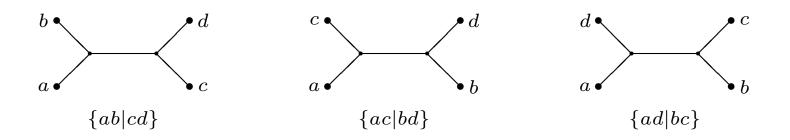
- [Saitou & Nei 1987]: very popular and fast: $O(n^3)$.
 - Based on the distance between nodes, join *neighboring leaves*, replace them by their parent, calculate distances to this node, and repeat.
 - This process eventually returns a binary (fully resolved) tree.
 - Joining the leaves with the minimal distance does not suffice, so subtract the averaged distances to compensate for long edges.

- [Saitou & Nei 1987]: very popular and fast: $O(n^3)$.
 - Based on the distance between nodes, join *neighboring leaves*, replace them by their parent, calculate distances to this node, and repeat.
 - This process eventually returns a binary (fully resolved) tree.
 - Joining the leaves with the minimal distance does not suffice, so subtract the averaged distances to compensate for long edges.
 - Experimental work shows that NJ trees are reasonably accurate, given a rate of evolution is neither too low nor too high.

• A *quartet* is an unrooted binary tree on four taxa:



• A *quartet* is an unrooted binary tree on four taxa:



• Let Q(T) = all quartets that agree with T. [Erdős *et al.* 1997]: T can be reconstructed from Q(T) in polynomial time.

• Quartet-based methods operate in two phases:

- Quartet-based methods operate in two phases:
 - Construct quartets on all four taxa sets.

- Quartet-based methods operate in two phases:
 - Construct quartets on all four taxa sets.
 - Combine these quartets into a tree.

- Quartet-based methods operate in two phases:
 - Construct quartets on all four taxa sets.
 - Combine these quartets into a tree.
- Running time:
 - For most optimizations, determining a quartet is fast.

- Quartet-based methods operate in two phases:
 - Construct quartets on all four taxa sets.
 - Combine these quartets into a tree.
- Running time:
 - For most optimizations, determining a quartet is fast.
 - There are $\Theta(n^4)$ quartets, giving $\Omega(n^4)$ running time.

- Quartet-based methods operate in two phases:
 - Construct quartets on all four taxa sets.
 - Combine these quartets into a tree.
- Running time:
 - For most optimizations, determining a quartet is fast.
 - There are $\Theta(n^4)$ quartets, giving $\Omega(n^4)$ running time.
 - In practice, the input quality is insufficient to ensure that all quartets are accurately inferred.

- Quartet-based methods operate in two phases:
 - Construct quartets on all four taxa sets.
 - Combine these quartets into a tree.
- Running time:
 - For most optimizations, determining a quartet is fast.
 - There are $\Theta(n^4)$ quartets, giving $\Omega(n^4)$ running time.
 - In practice, the input quality is insufficient to ensure that all quartets are accurately inferred.
 - Quartet methods have to handle incorrect quartets.

Popular Quartet Methods

• Q* or Naive Method [Berry & Gascuel '97, Buneman '71]: Only add edges that agree with all input quartets.

Doesn't tolerate errors- outputs conservative, but unresolved tree.

Popular Quartet Methods

- Q* or Naive Method [Berry & Gascuel '97, Buneman '71]: Only add edges that agree with all input quartets.
 Doesn't tolerate errors- outputs conservative, but unresolved tree.
- Quartet Cleaning (QC) [Berry *et al.* 1999]: Add edges with a small number of errors proportional to q_e .

Many variants: all handle a small number of errors.

Popular Quartet Methods

- Q* or Naive Method [Berry & Gascuel '97, Buneman '71]: Only add edges that agree with all input quartets.
 Doesn't tolerate errors- outputs conservative, but unresolved tree.
- Quartet Cleaning (QC) [Berry *et al.* 1999]: Add edges with a small number of errors proportional to q_e .

Many variants: all handle a small number of errors.

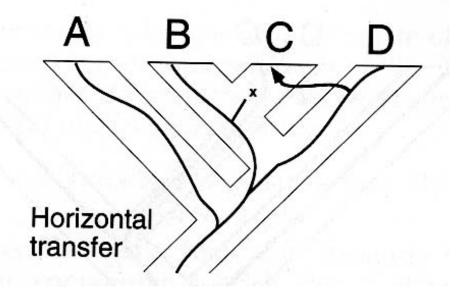
• Quartet Puzzling [Strimmer & von Haeseler 1996]: "Order taxa randomly, greedily add edges, repeat 1000 times." Output majority tree.

Most popular with biologists.

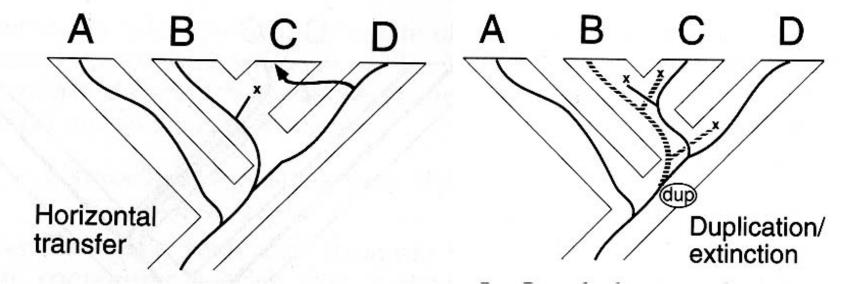
• What if evolution isn't tree-like?

• What if evolution isn't tree-like? For example:

• What if evolution isn't tree-like? For example:



What if evolution isn't tree-like?
 For example:



(from W.P. Maddison, *Systematic Biology* '97)

Katherine St. John City University of New York

Network Methods

 Split Decomposition (Bandelt & Dress '92) decomposes the distance matrix into sums of "split" metrics and small residue, yielding a set of splits (bipartitions of taxa).

Network Methods

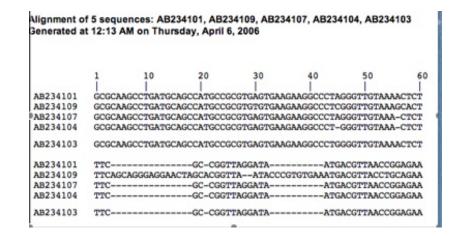
- Split Decomposition (Bandelt & Dress '92) decomposes the distance matrix into sums of "split" metrics and small residue, yielding a set of splits (bipartitions of taxa).
- NeighborNet (Bryant & Moulton '02) is an agglomerative clustering algorithm that uses splits to produce networks.

Network Methods

- Split Decomposition (Bandelt & Dress '92) decomposes the distance matrix into sums of "split" metrics and small residue, yielding a set of splits (bipartitions of taxa).
- NeighborNet (Bryant & Moulton '02) is an agglomerative clustering algorithm that uses splits to produce networks.
- TCS (Posada & Crandall '01) estimates gene phylogenies based on statistical parsimony method.

Input to Reconstruction Algorithms

• Almost all assume that the data is aligned:



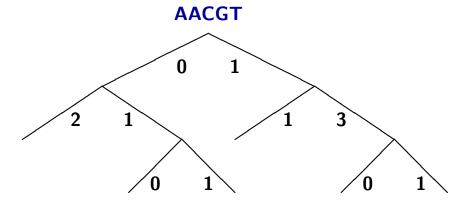
(Alignment of bacterial genes by Geneious (Drummond '06).)

• Many assume corrections have been made for the underlying model of evolution.

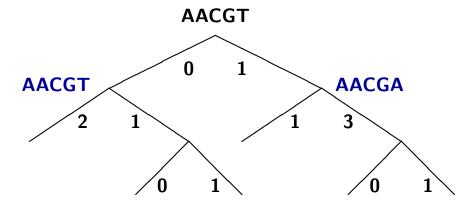
Models of Evolution

• The *Jukes-Cantor* (JC) model is the simplest Markov model of biomolecular sequence evolution.

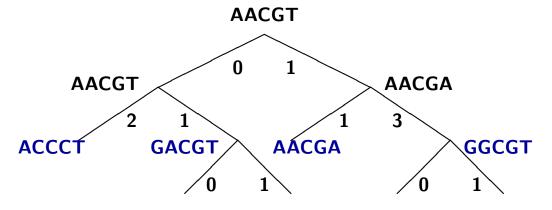
- The *Jukes-Cantor* (JC) model is the simplest Markov model of biomolecular sequence evolution.
- A DNA sequence (a string over $\{A, C, T, G\}$) at the root evolves down a rooted binary tree T.



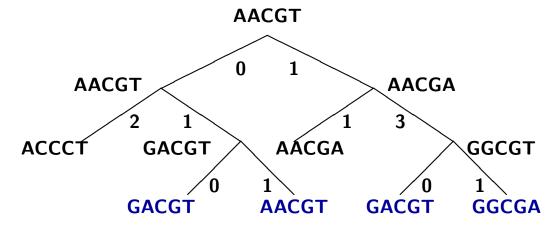
- The *Jukes-Cantor* (JC) model is the simplest Markov model of biomolecular sequence evolution.
- A DNA sequence (a string over $\{A, C, T, G\}$) at the root evolves down a rooted binary tree T.



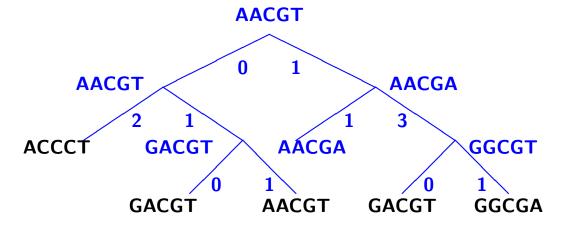
- The *Jukes-Cantor* (JC) model is the simplest Markov model of biomolecular sequence evolution.
- A DNA sequence (a string over $\{A, C, T, G\}$) at the root evolves down a rooted binary tree T.



- The *Jukes-Cantor* (JC) model is the simplest Markov model of biomolecular sequence evolution.
- A DNA sequence (a string over $\{A, C, T, G\}$) at the root evolves down a rooted binary tree T.



- The *Jukes-Cantor* (JC) model is the simplest Markov model of biomolecular sequence evolution.
- A DNA sequence (a string over $\{A, C, T, G\}$) at the root evolves down a rooted binary tree T.



- The *Jukes-Cantor* (JC) model is the simplest Markov model of biomolecular sequence evolution.
- A DNA sequence (a string over $\{A, C, T, G\}$) at the root evolves down a rooted binary tree T.

{ACCCT, GACGT, AACGT, GACGT, GGCGA}

- The *Jukes-Cantor* (JC) model is the simplest Markov model of biomolecular sequence evolution.
- A DNA sequence (a string over $\{A, C, T, G\}$) at the root evolves down a rooted binary tree T.
- The assumptions of the model are:
 - 1. the sites (i.e., the positions within the sequences) evolve independently and identically
 - 2. if a site changes state it changes with equal probability to each of the remaining states, and
 - 3. the number of changes of each site on an edge e is a Poisson random variable with expectation $\lambda(e)$ (this is also called the "length" of the edge e).

How Methods Use Models of Evolution

• As an explicit part of the algorithm: for example, maximum likelihood, weighbor.

How Methods Use Models of Evolution

- As an explicit part of the algorithm: for example, maximum likelihood, weighbor.
- Indirectly, via assumptions on the data or by inputting data that has been corrected under a certain model.

• How accurate are the methods at reconstructing trees?

- How accurate are the methods at reconstructing trees?
- In biological applications, the true, historical tree is almost never known, which makes assessing the quality of phylogenetic reconstruction methods problematic.

- How accurate are the methods at reconstructing trees?
- In biological applications, the true, historical tree is almost never known, which makes assessing the quality of phylogenetic reconstruction methods problematic.

- How accurate are the methods at reconstructing trees?
- In biological applications, the true, historical tree is almost never known, which makes assessing the quality of phylogenetic reconstruction methods problematic.
- Simulation is used instead to evaluate methods, given a model of evolution.

1. Construct a "model" tree.

1. Construct a 2. "Evolve" "model" tree.

sequences down

the tree.

- GTTAGAAGGCGGCCA... А
- В CATTTGTCCTAACTT...
- C CAAGAGGCCACTGCA...
- D CCGACTTCCAACCTC...
- E ATGGGGCACGATGGA...
- F TACAAATACGCGCAA...

1. Construct a "model" tree. "Evolve"
 sequences down
 the tree.

3. Reconstruct the tree using method.

- A GTTAGAAGGCGGCCA...
- B CATTTGTCCTAACTT...
- C CAAGAGGCCACTGCA...
- D CCGACTTCCAACCTC...
- E ATGGGGCACGATGGA...
- F TACAAATACGCGCAA...

1. Construct a "model" tree. "Evolve"
 sequences down
 the tree.

Reconstruct
 the tree using
 method.

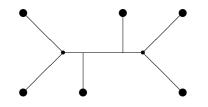
- A GTTAGAAGGCGGCCA...
- B CATTTGTCCTAACTT...
- C CAAGAGGCCACTGCA...
- D CCGACTTCCAACCTC...
- E ATGGGGCACGATGGA...
- F TACAAATACGCGCAA...

1. Construct a "model" tree. "Evolve"
 sequences down
 the tree.

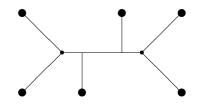
Reconstruct
 the tree using
 method.

- A GTTAGAAGGCGGCCA...
- B CATTTGTCCTAACTT...
- C CAAGAGGCCACTGCA...
- D CCGACTTCCAACCTC...
- E ATGGGGCACGATGGA...
- F TACAAATACGCGCAA...

• Usually chosen from a random distribution on trees: Uniform, or Yule-Harding (birth-death trees)

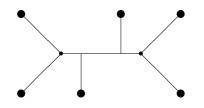


• Usually chosen from a random distribution on trees: Uniform, or Yule-Harding (birth-death trees)



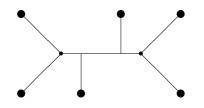
• Can view this as two different random processes:

• Usually chosen from a random distribution on trees: Uniform, or Yule-Harding (birth-death trees)



- Can view this as two different random processes:
 - generate the tree shape, and then

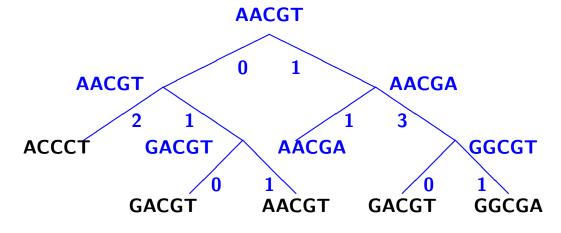
• Usually chosen from a random distribution on trees: Uniform, or Yule-Harding (birth-death trees)



- Can view this as two different random processes:
 - generate the tree shape, and then
 - assign weights or branch lengths to the shape.

Simulating Data: Evolving Sequences

- The *Jukes-Cantor* (JC) model is the simplest Markov model of biomolecular sequence evolution.
- A DNA sequence (a string over $\{A, C, T, G\}$) at the root evolves down a rooted binary tree T.



Simulating Data: Evolving Sequences

- The *Jukes-Cantor* (JC) model is the simplest Markov model of biomolecular sequence evolution.
- A DNA sequence (a string over $\{A, C, T, G\}$) at the root evolves down a rooted binary tree T.

{ACCCT, GACGT, AACGT, GACGT, GGCGA}

1. Construct a "model" tree. "Evolve"
 sequences down
 the tree.

3. Reconstruct the tree using method.

- A GTTAGAAGGCGGCCA...
- B CATTTGTCCTAACTT...
- C CAAGAGGCCACTGCA...
- D CCGACTTCCAACCTC...
- E ATGGGGCACGATGGA...
- F TACAAATACGCGCAA...

1. Construct a "model" tree. "Evolve"
 sequences down
 the tree.

Reconstruct
 the tree using
 method.

- A GTTAGAAGGCGGCCA...
- B CATTTGTCCTAACTT...
- C CAAGAGGCCACTGCA...
- D CCGACTTCCAACCTC...
- E ATGGGGCACGATGGA...
- F TACAAATACGCGCAA...

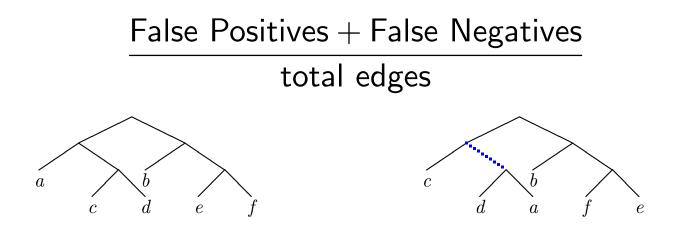
1. Construct a "model" tree. "Evolve"
 sequences down
 the tree.

Reconstruct
 the tree using
 method.

- A GTTAGAAGGCGGCCA...
- B CATTTGTCCTAACTT...
- C CAAGAGGCCACTGCA...
- D CCGACTTCCAACCTC...
- E ATGGGGCACGATGGA...
- F TACAAATACGCGCAA...

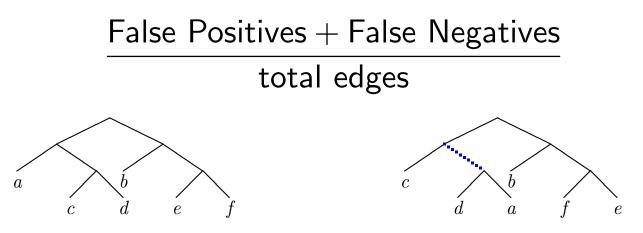
Evaluating Accuracy

• To compare reconstructed tree to model tree, the *Robinson-Foulds Score* is often used:



Evaluating Accuracy

• To compare reconstructed tree to model tree, the *Robinson-Foulds Score* is often used:



If there are many possible answers, choose the one with the best *parsimony score*: the sum of the number of site changes acrosss the edges in the tree.

Talk Outline

- Overview
- Constructing Trees
- Constructing Networks
- Comparing Reconstruction Methods
- Evaluating the Results

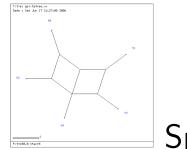
Talk Outline

- Overview
- Constructing Trees
- Constructing Networks
- Comparing Reconstruction Methods
- Evaluating the Results

Analyzing & Visualizing Sets of Trees

- Visualizing single trees
- Comparing pairs of trees
- Handling Large Sets of Trees

Visualizing Single or Pairs of Trees

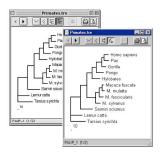


SplitsTree (Huson *et al.*)

Visualizing Single or Pairs of Trees

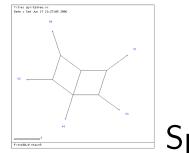


SplitsTree (Huson *et al.*)

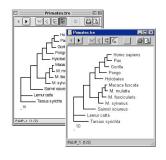


TreeView (Page *et al.*)

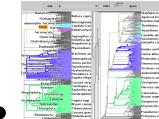
Visualizing Single or Pairs of Trees



SplitsTree (Huson *et al.*)

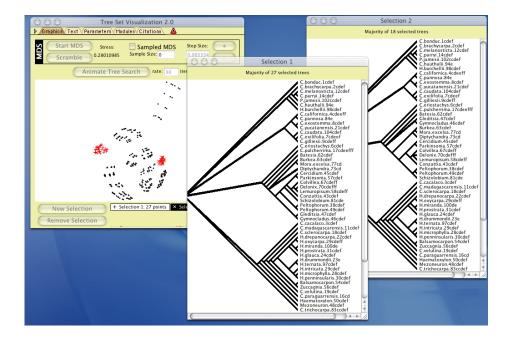


TreeView (Page *et al.*)

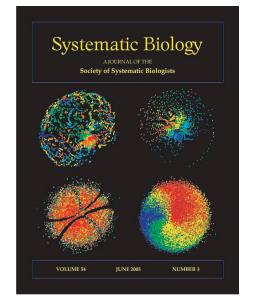


TLreeJuxtaposer (Munzner *et al.*)

Analyzing & Visualizing Sets of Trees



Amenta & Klingner, InfoVis '02



Hillis, Heath, & St. John, Sys. Biol. '05

Evaluating the Results

• Often, a search will result in many (often thousands) of trees with the same score.

Evaluating the Results

• Often, a search will result in many (often thousands) of trees with the same score.

Input		Reconstruction	Output
Data		Algorithms	Tree
A	GTTAGAAGGC	Maximum Parsimony	\rightarrow
B	CATTTGTCCT	Maximum Likelihood	
C	CAAGAGGCCA	→ Distance Methods: NJ,	
D	CCGACTTCCA	Quartet-Based,	
E	ATGGGGCACG	Fast Convering,	
F	TACAAATACG	:	

Evaluating the Results

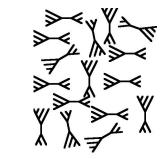
• Often, a search, will result in many (often thousands) of trees with the same score.

Input Data A GTTAGAAGGC... B CATTTGTCCT... C CAAGAGGCCA... D CCGACTTCCA... \rightarrow E ATGGGGCACG...

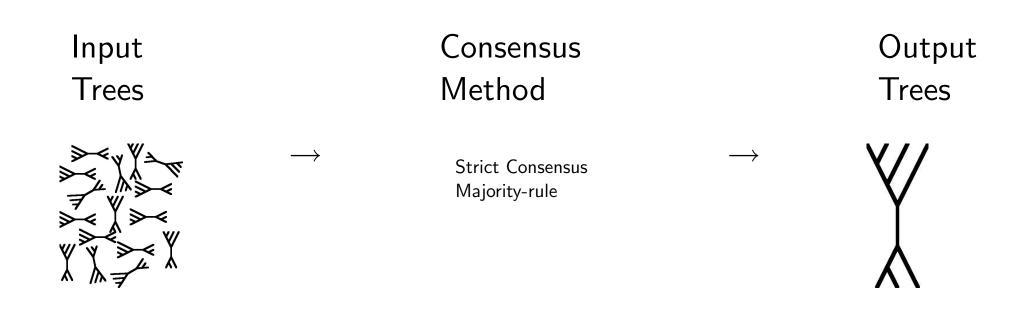
F TACAAATACG...

Reconstruction Algorithms

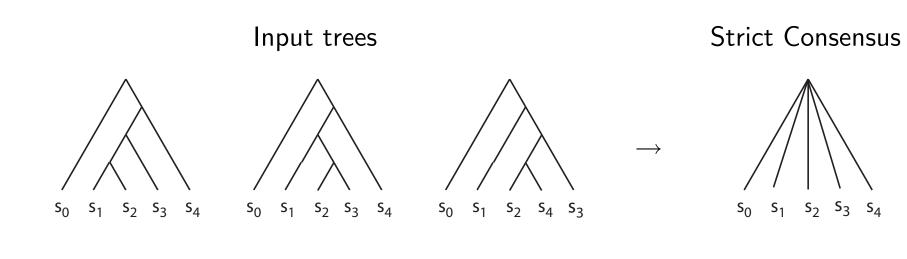
Maximum Parsimony Maximum Likelihood Output Trees



Summarizing Trees

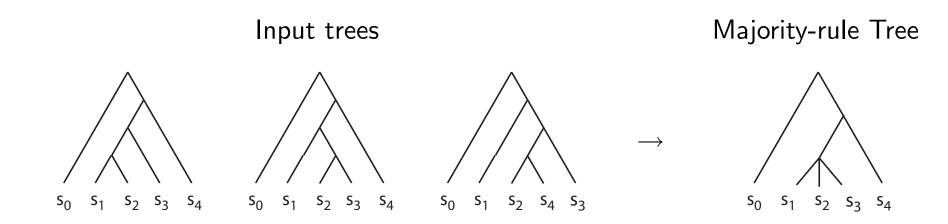


Strict Consensus Tree



O(nt) running time: Day '85.

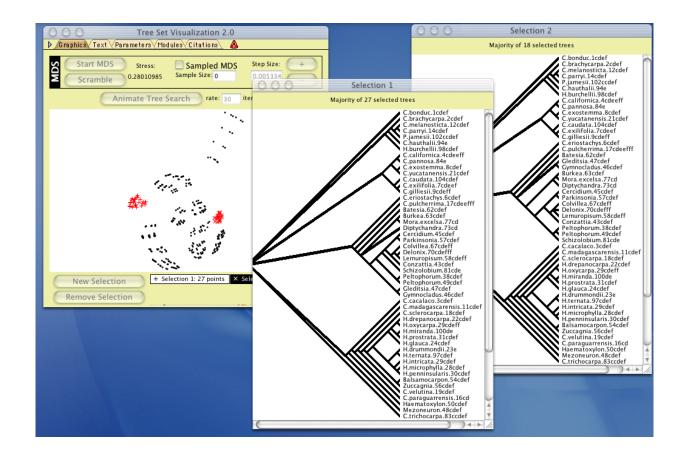
Majority-rule Tree



Includes splits found in a majority of trees Can be 2/3 majority, etc.

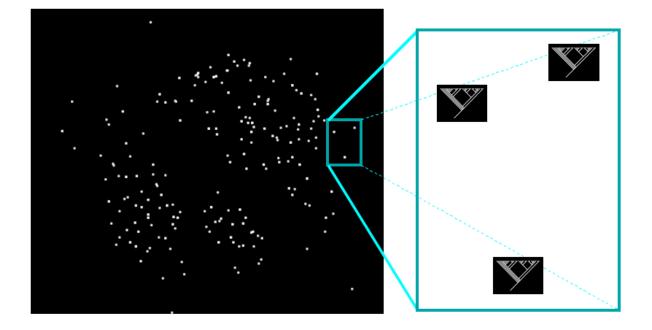
O(nt) randomized running time: Amenta, Clark, & S. '03.

Visualizing Sets of Trees



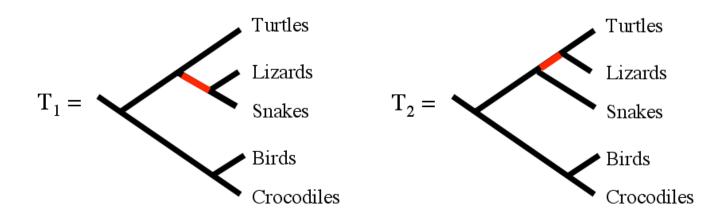
Efficiency is important for real-time visualization.

Multidimensional Scaling (MDS)



- Each point represents a tree.
- Points for similar trees are displayed near one another.

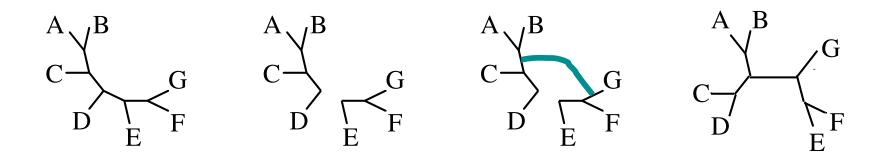
Distances Between Trees



- Robinson-Foulds distance: # of edges that occur in only one tree.
- Calculate in O(n) time using Day's Algorithm (1985).
- Extends naturally to weighted trees.

Other Natural Metrics

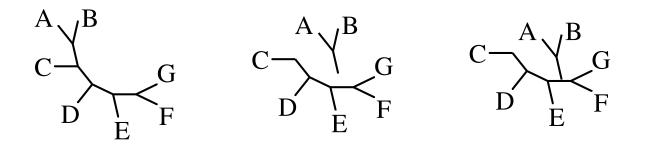
• Tree-bisection-reconnect (TBR):



- TBR is NP-hard. (Allen & Steel '01)
- Many attempts, but no approximations with provable bounds.

Other Natural Metrics

• Subtree-prune-regraft (SPR):



- NP-hard for rooted trees (Bordewich & Semple '05).
- 5-approximation for rooted trees (Bonet, Amenta, Mahindru, & S.).

Summary

- Constructing Trees
- Constructing Networks
- Comparing Reconstruction Methods:
- Evaluating the Results:

Tutorial Outline

- Day 1: Introduction to Phylogenetic Reconstruction
 - Overview: Katherine St. John, CUNY
 - Parsimony Reconstruction of Phylogenetic Trees: Trevor Bruen, McGill University
 - Using Maximum Likelihood for Phylogenetic Tree Reconstruction: Rachel Bevan, McGill University
 - Hands-on Session: Constructing Trees Katherine St. John
- Day 2: Applications to Rapidly Evolving Pathogens

Tutorial Outline

- Day 1: Intro to Phylogenetic Reconstruction
- Day 2: Applications to Rapidly Evolving Pathogens
 - Statistical Overview: Alexei Drummond, University of Auckland
 - Tricks for trees: Having reconstructed trees, what can we do with them? Mike Steel, University of Canterbury
 - Hands-on Session: Katherine St. John