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Tutorial Outline
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• Day 2: Applications to Rapidly Evolving Pathogens
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Tutorial Outline

• Day 1: Introduction to Phylogenetic Reconstruction

– Overview: Katherine St. John, CUNY

– Parsimony Reconstruction of Phylogenetic Trees: Trevor

Bruen, McGill University

– Using Maximum Likelihood for Phylogenetic Tree

Reconstruction: Rachel Bevan, McGill University

– Hands-on Session: Constructing Trees Katherine St. John

• Day 2: Applications to Rapidly Evolving Pathogens
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Tutorial Outline

• Day 1: Intro to Phylogenetic Reconstruction

• Day 2: Applications to Rapidly Evolving Pathogens

– Statistical Overview: Alexei Drummond, University of Auckland

– Tricks for trees: Having reconstructed trees, what can we do

with them? Mike Steel, University of Canterbury

– Hands-on Session: Katherine St. John
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Talk Outline

• Overview

• Constructing Trees

• Constructing Networks

• Comparing Reconstruction Methods

• Evaluating the Results
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Goal: Reconstruct the Evolutionary History

(www.amnh.org/education/teacherguides/dinosaurs)



Goal: Reconstruct the Evolutionary History

(www.amnh.org/education/teacherguides/dinosaurs)

The evolutionary process not only determines

relationships among taxa, but allows prediction of

structural, physiological, and biochemical properties.
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Process for Reconstruction: Input Data

Start with information about the taxa. For example:

Morphological

Characters



Process for Reconstruction: Input Data

Start with information about the taxa. For example:

Morphological

Characters

Biomolecular

Sequences

A GTTAGAAGGCGGCCAGCGAC. . .
B CATTTGTCCTAACTTGACGG. . .
C CAAGAGGCCACTGCAGAATC. . .
D CCGACTTCCAACCTCATGCG. . .
E ATGGGGCACGATGGATATCG. . .
F TACAAATACGCGCAAGTTCG. . .

(Other: molecular markers (ie SNPs), gene order, etc.)
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Process for Reconstruction

Input

Data

A GTTAGAAGGC. . .
B CATTTGTCCT. . .
C CAAGAGGCCA. . .
D CCGACTTCCA. . .
E ATGGGGCACG. . .
F TACAAATACG. . .

→

Reconstruction

Algorithms

Maximum Parsimony
Maximum Likelihood
Distance Methods: NJ,
Quartet-Based,
Fast Convering,
...

→

Output

Tree
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Applications

In addition to finding the evolutionary history of species,

phylogeny is also used for:

• drug discovery: used to determine structural and

biochemical properties of potential drugs

• multiple sequence alignment

• origin of virus and bacteria strains
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Talk Outline

• Overview

• Constructing Trees

• Constructing Networks

• Comparing Reconstruction Methods

• Evaluating the Results
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Process for Reconstruction

Input

Data

A GTTAGAAGGC. . .
B CATTTGTCCT. . .
C CAAGAGGCCA. . .
D CCGACTTCCA. . .
E ATGGGGCACG. . .
F TACAAATACG. . .

→

Reconstruction

Algorithms

Maximum Parsimony
Maximum Likelihood
Distance Methods: NJ,
Quartet-Based,
Fast Convering,
...

→

Output

Tree
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Algorithms for Reconstruction

• Most optimization criteria are hard:

– Maximum Parsimony: (NP-hard: Foulds & Graham ‘82)

find the tree that can explain the observed sequences with a

minimal number of substitutions.

– Maximum Likelihood Estimation: find the tree with the

maximum likelihood: P(data|tree).

• More on these later today...
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Approximating Trees

• Exact answers are often wanted, but hard to find.

• But approximate is often good enough:

– drug design: predicting function via similarity

– sequence alignment: guide trees for alignment

– use as priors or starting points for expensive searches
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Approximation Algorithms

• Since calculating the exact answer is hard, algorithms

that estimate the answer have been developed.

– Heuristics for maximum parsimony and maximum

likelihood estimation

(use clever ways to limit the number of trees checked, while still

sampling much of “tree-space”)

– Polynomial-time methods, often based on the

distance between taxa
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Distance-Based Methods

• These methods calculate the distance between taxa:

B D A C F E

B 0 0.496505 0.496505 0.444519 0.375798 0.268166
D 0.496505 0 0.496505 0.375798 0.275673 0.279728
A 0.496505 0.496505 0 0.362124 0.323812 0.496505
C 0.444519 0.375798 0.362124 0 0.496505 0.496505
F 0.375798 0.275673 0.323812 0.496505 0 0.496505
E 0.268166 0.279728 0.496505 0.496505 0.496505 0

and then determine the tree using the distance matrix.



Distance-Based Methods

• These methods calculate the distance between taxa:

B D A C F E

B 0 0.496505 0.496505 0.444519 0.375798 0.268166
D 0.496505 0 0.496505 0.375798 0.275673 0.279728
A 0.496505 0.496505 0 0.362124 0.323812 0.496505
C 0.444519 0.375798 0.362124 0 0.496505 0.496505
F 0.375798 0.275673 0.323812 0.496505 0 0.496505
E 0.268166 0.279728 0.496505 0.496505 0.496505 0

and then determine the tree using the distance matrix.

• One way to calculate distance is to take differences

divided by the length (the normalized Hamming distance).
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Distance-Based Methods

Popular distance based methods include

• Neighbor Joining (Saitou & Nei ‘87) which repeatedly joins the

“nearest neighbors” to build a tree, and

• UPGMA (“Unweighted Pair Group Method with Arithmetic

Mean”) (Sneath & Snokal ‘73 ) similarly clusters close taxa,

assuming the rate of evolution is the same across lineages.

• Quartet-based methods that decide the topology for every 4 taxa

and then assemble them to form a tree (Berry et al. 1999, 2000,

2001).
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• Weighbor (Bruno et al. ‘00) is a weighted version of Neighbor
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• Weighbor (Bruno et al. ‘00) is a weighted version of Neighbor

Joining, that combines based on a likelihood function of the

distances.

• Disk Covering Method (Warnow et al. ‘98, ‘99, ‘04)– a

divide-and-conquer approach of theoretical interest that has been

combined with many other methods.
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Neighbor Joining (NJ)

• [Saitou & Nei 1987]: very popular and fast: O(n3).

– Based on the distance between nodes, join neighboring leaves,

replace them by their parent, calculate distances to this node,

and repeat.

– This process eventually returns a binary (fully resolved) tree.

– Joining the leaves with the minimal distance does not suffice, so

subtract the averaged distances to compensate for long edges.

– Experimental work shows that NJ trees are reasonably accurate,

given a rate of evolution is neither too low nor too high.
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Quartet Methods

• A quartet is an unrooted binary tree on four taxa:
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Quartet Methods

• A quartet is an unrooted binary tree on four taxa:

t
t

t
t

r r
�

�
�

@
@
@

@
@

@

�
�

�

a

b

c

d

{ab|cd}

t
t

t
t

r r
�

�
�

@
@
@

@
@

@

�
�

�

a

c

b

d

{ac|bd}

t
t

t
t

r r
�

�
�

@
@
@

@
@

@

�
�

�

a

d

b

c

{ad|bc}

• Let Q(T ) = all quartets that agree with T .

[Erdős et al. 1997]: T can be reconstructed from Q(T ) in

polynomial time.
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Quartet Methods

• Quartet-based methods operate in two phases:
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Quartet Methods

• Quartet-based methods operate in two phases:

– Construct quartets on all four taxa sets.

– Combine these quartets into a tree.

• Running time:

– For most optimizations, determining a quartet is fast.

– There are Θ(n4) quartets, giving Ω(n4) running time.

– In practice, the input quality is insufficient to ensure that all

quartets are accurately inferred.

– Quartet methods have to handle incorrect quartets.
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Popular Quartet Methods

• Q∗ or Naive Method [Berry & Gascuel ‘97, Buneman ‘71]:

Only add edges that agree with all input quartets.

Doesn’t tolerate errors– outputs conservative, but unresolved tree.
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Popular Quartet Methods

• Q∗ or Naive Method [Berry & Gascuel ‘97, Buneman ‘71]:

Only add edges that agree with all input quartets.

Doesn’t tolerate errors– outputs conservative, but unresolved tree.

• Quartet Cleaning (QC) [Berry et al. 1999]: Add edges with a

small number of errors proportional to qe.

Many variants: all handle a small number of errors.

• Quartet Puzzling [Strimmer & von Haeseler 1996]: “Order

taxa randomly, greedily add edges, repeat 1000 times.” Output

majority tree.

Most popular with biologists.
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Constructing Networks

• What if evolution isn’t tree-like?

For example:

(from W.P. Maddison, Systematic Biology ‘97)
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Network Methods

• Split Decomposition (Bandelt & Dress ‘92)

decomposes the distance matrix into sums of “split”

metrics and small residue, yielding a set of splits

(bipartitions of taxa).
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Network Methods

• Split Decomposition (Bandelt & Dress ‘92)

decomposes the distance matrix into sums of “split”

metrics and small residue, yielding a set of splits

(bipartitions of taxa).

• NeighborNet (Bryant & Moulton ‘02) is an

agglomerative clustering algorithm that uses splits to

produce networks.

• TCS (Posada & Crandall ‘01) estimates gene

phylogenies based on statistical parsimony method.
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Input to Reconstruction Algorithms

• Almost all assume that the data is aligned:

(Alignment of bacterial genes by Geneious (Drummond ‘06).)

• Many assume corrections have been made for the

underlying model of evolution.
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Models of Evolution

• The Jukes-Cantor (JC) model is the simplest Markov model of

biomolecular sequence evolution.



Models of Evolution

• The Jukes-Cantor (JC) model is the simplest Markov model of

biomolecular sequence evolution.

• A DNA sequence (a string over {A,C, T, G}) at the root evolves

down a rooted binary tree T .
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Models of Evolution

• The Jukes-Cantor (JC) model is the simplest Markov model of

biomolecular sequence evolution.

• A DNA sequence (a string over {A,C, T, G}) at the root evolves

down a rooted binary tree T .
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Models of Evolution

• The Jukes-Cantor (JC) model is the simplest Markov model of

biomolecular sequence evolution.

• A DNA sequence (a string over {A,C, T, G}) at the root evolves

down a rooted binary tree T .
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Models of Evolution

• The Jukes-Cantor (JC) model is the simplest Markov model of

biomolecular sequence evolution.

• A DNA sequence (a string over {A,C, T, G}) at the root evolves

down a rooted binary tree T .
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Models of Evolution

• The Jukes-Cantor (JC) model is the simplest Markov model of

biomolecular sequence evolution.

• A DNA sequence (a string over {A,C, T, G}) at the root evolves

down a rooted binary tree T .
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Models of Evolution

• The Jukes-Cantor (JC) model is the simplest Markov model of

biomolecular sequence evolution.

• A DNA sequence (a string over {A,C, T, G}) at the root evolves

down a rooted binary tree T .

{ACCCT, GACGT, AACGT, GACGT, GGCGA}
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Models of Evolution

• The Jukes-Cantor (JC) model is the simplest Markov model of

biomolecular sequence evolution.

• A DNA sequence (a string over {A,C, T, G}) at the root evolves

down a rooted binary tree T .

• The assumptions of the model are:

1. the sites (i.e., the positions within the sequences) evolve independently and
identically

2. if a site changes state it changes with equal probability to each of the
remaining states, and

3. the number of changes of each site on an edge e is a Poisson random
variable with expectation λ(e) (this is also called the “length” of the edge e).

Katherine St. John City University of New York 33



How Methods Use Models of Evolution

• As an explicit part of the algorithm: for example, maximum

likelihood, weighbor.



How Methods Use Models of Evolution

• As an explicit part of the algorithm: for example, maximum

likelihood, weighbor.

• Indirectly, via assumptions on the data or by inputting data that

has been corrected under a certain model.
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Testing Methods Empirically

• How accurate are the methods at reconstructing trees?

• In biological applications, the true, historical tree is almost never

known, which makes assessing the quality of phylogenetic

reconstruction methods problematic.

• Simulation is used instead to evaluate methods, given a model of

evolution.
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Simulating Data: Choosing Trees

• Usually chosen from a random distribution on trees: Uniform, or

Yule-Harding (birth-death trees)
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Simulating Data: Choosing Trees

• Usually chosen from a random distribution on trees: Uniform, or

Yule-Harding (birth-death trees)
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• Can view this as two different random processes:

– generate the tree shape, and then

– assign weights or branch lengths to the shape.
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Simulating Data: Evolving Sequences

• The Jukes-Cantor (JC) model is the simplest Markov model of

biomolecular sequence evolution.

• A DNA sequence (a string over {A,C, T, G}) at the root evolves

down a rooted binary tree T .
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Simulating Data: Evolving Sequences

• The Jukes-Cantor (JC) model is the simplest Markov model of

biomolecular sequence evolution.

• A DNA sequence (a string over {A,C, T, G}) at the root evolves

down a rooted binary tree T .

{ACCCT, GACGT, AACGT, GACGT, GGCGA}
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Simulation Studies

1. Construct a

“model” tree.

2. “Evolve”

sequences down

the tree.

A GTTAGAAGGCGGCCA. . .
B CATTTGTCCTAACTT. . .
C CAAGAGGCCACTGCA. . .
D CCGACTTCCAACCTC. . .
E ATGGGGCACGATGGA. . .
F TACAAATACGCGCAA. . .

3. Reconstruct

the tree using

method.

4. Evaluate the accuracy of the constructed tree.
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Evaluating Accuracy

• To compare reconstructed tree to model tree, the Robinson-Foulds

Score is often used:

False Positives + False Negatives

total edges
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Evaluating Accuracy

• To compare reconstructed tree to model tree, the Robinson-Foulds

Score is often used:

False Positives + False Negatives

total edges
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If there are many possible answers, choose the one with the best

parsimony score: the sum of the number of site changes acrosss

the edges in the tree.
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Talk Outline

• Overview

• Constructing Trees

• Constructing Networks

• Comparing Reconstruction Methods

• Evaluating the Results
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Talk Outline

• Overview

• Constructing Trees

• Constructing Networks

• Comparing Reconstruction Methods

• Evaluating the Results
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Analyzing & Visualizing Sets of Trees

• Visualizing single trees

• Comparing pairs of trees

• Handling Large Sets of Trees
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Visualizing Single or Pairs of Trees

• SplitsTree (Huson et al.)



Visualizing Single or Pairs of Trees

• SplitsTree (Huson et al.)
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Visualizing Single or Pairs of Trees

• SplitsTree (Huson et al.)

• TreeView (Page et al.)

• TLreeJuxtaposer (Munzner et al.)
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Analyzing & Visualizing Sets of Trees

Amenta & Klingner, InfoVis ‘02

Hillis, Heath, &

St. John, Sys. Biol. ‘05
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Evaluating the Results

• Often, a search will result in many (often thousands) of trees with

the same score.



Evaluating the Results

• Often, a search will result in many (often thousands) of trees with

the same score.
Input
Data

A GTTAGAAGGC. . .
B CATTTGTCCT. . .
C CAAGAGGCCA. . .
D CCGACTTCCA. . .
E ATGGGGCACG. . .
F TACAAATACG. . .

→

Reconstruction
Algorithms

Maximum Parsimony
Maximum Likelihood
Distance Methods: NJ,
Quartet-Based,
Fast Convering,
...

→

Output
Tree
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Evaluating the Results

• Often, a search, will result in many (often thousands) of trees

with the same score.
Input
Data

A GTTAGAAGGC. . .
B CATTTGTCCT. . .
C CAAGAGGCCA. . .
D CCGACTTCCA. . .
E ATGGGGCACG. . .
F TACAAATACG. . .

→

Reconstruction
Algorithms

Maximum Parsimony
Maximum Likelihood →

Output
Trees
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Summarizing Trees

Input

Trees

→

Consensus

Method

Strict Consensus
Majority-rule

→

Output

Trees
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Strict Consensus Tree

Input trees Strict Consensus

s0 s1 s2 s3 s4 s0 s1 s2 s3 s4 s0 s1 s2 s3s4

→

s0 s1 s2 s3 s4

s1s2 | s0s3s4 s2s3 | s0s1s4 s2s4 | s0s1s3

s1s2s3 | s0s4 s1s2s3 | s0s4 s2s3s4 | s0s1

O(nt) running time: Day ‘85.
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Majority-rule Tree

Input trees Majority-rule Tree

s0 s1 s2 s3 s4 s0 s1 s2 s3 s4 s0 s1 s2 s3s4

→

s0 s1 s2 s3 s4

Includes splits found in a majority of trees

Can be 2/3 majority, etc.

O(nt) randomized running time: Amenta, Clark, & S. ‘03.
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Visualizing Sets of Trees

Efficiency is important for real-time visualization.
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Multidimensional Scaling (MDS)

• Each point represents a tree.

• Points for similar trees are displayed near one another.
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Distances Between Trees

• Robinson-Foulds distance: # of edges that occur in only one tree.

• Calculate in O(n) time using Day’s Algorithm (1985).

• Extends naturally to weighted trees.
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Other Natural Metrics

• Tree-bisection-reconnect (TBR):
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A B
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A B
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A B BA

C
D

E
F

G

• TBR is NP-hard. (Allen & Steel ‘01)

• Many attempts, but no approximations with provable bounds.

Katherine St. John City University of New York 58



Other Natural Metrics

• Subtree-prune-regraft (SPR):

F
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D

C

A B A B

F
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A B

F

G

E
D

C

• NP-hard for rooted trees (Bordewich & Semple ‘05).

• 5-approximation for rooted trees (Bonet, Amenta, Mahindru, & S.).
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Summary

• Constructing Trees

• Constructing Networks

• Comparing Reconstruction Methods:

• Evaluating the Results:
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Tutorial Outline

• Day 1: Introduction to Phylogenetic Reconstruction

– Overview: Katherine St. John, CUNY

– Parsimony Reconstruction of Phylogenetic Trees: Trevor

Bruen, McGill University

– Using Maximum Likelihood for Phylogenetic Tree

Reconstruction: Rachel Bevan, McGill University

– Hands-on Session: Constructing Trees Katherine St. John

• Day 2: Applications to Rapidly Evolving Pathogens
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Tutorial Outline

• Day 1: Intro to Phylogenetic Reconstruction

• Day 2: Applications to Rapidly Evolving Pathogens

– Statistical Overview: Alexei Drummond, University of Auckland

– Tricks for trees: Having reconstructed trees, what can we do

with them? Mike Steel, University of Canterbury

– Hands-on Session: Katherine St. John
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