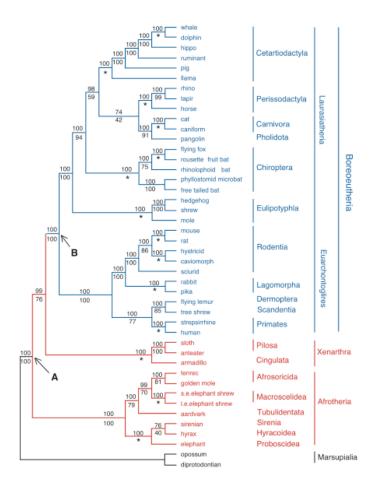
Hands-on Session I: Constructing Trees

Katherine St. John Lehman College and the Graduate Center City University of New York stjohn@lehman.cuny.edu

Session Organization

- Goal: To be comfortable building trees from real data
- Lecture:
 - Standard Software Packages
 - Details on Web-based Software
 - Motivating Problem
- Lab:
 - Organized so you can use the DIMACS lab, or your own laptop
 - Welcome to work singly or in groups

• Motivating Problem


- Motivating Problem
- Building Trees Overview

- Motivating Problem
- Building Trees Overview
- Software

- Motivating Problem
- Building Trees Overview
- Software
- Sequence & Tree Formats

- Motivating Problem
- Building Trees Overview
- Software
- Sequence & Tree Formats
- Analyzing & Visualizing the Results

Murphy *et al.* "Resolution of the Early Placental Mammal Radiation Using Bayesian Phylogenetics," *Science* '01

 Murphy et al., Science '01, data set: 44 taxa: (42 placentals + 2 marsupial for outgroups) 22 genes: 19 nuclear + 3 mitochondrial

- Murphy *et al.*, *Science* '01, data set: 44 taxa: (42 placentals + 2 marsupial for outgroups) 22 genes: 19 nuclear + 3 mitochondrial
- Well-studied data set for underlying problem as well as methodology questions (over 300 citations).

- Murphy *et al.*, *Science* '01, data set: 44 taxa: (42 placentals + 2 marsupial for outgroups) 22 genes: 19 nuclear + 3 mitochondrial
- Well-studied data set for underlying problem as well as methodology questions (over 300 citations).
- For example: (Hillis et al., Sys Bio, 2005), is it better
 - to build trees on each gene sequence and take the consensus, or
 - concatenate the sequences and look at those trees?

- For example: (Hillis et al., Sys Bio, 2005), is it better
 - to build trees on each gene sequence and take the consensus, or
 - concatenate the sequences and look at those trees?
- More tractable:
 - which of these genes co-evolved?
 - focus on several, or try all of them

1. Get data (from wet lab, authors, genBank, etc).

- 1. Get data (from wet lab, authors, genBank, etc).
- 2. Align and/or filter data.

- 1. Get data (from wet lab, authors, genBank, etc).
- 2. Align and/or filter data.
- 3. If needed, choose the appropriate model of evolution.

- 1. Get data (from wet lab, authors, genBank, etc).
- 2. Align and/or filter data.
- 3. If needed, choose the appropriate model of evolution.
- 4. Use software program(s) to build trees.

- 1. Get data (from wet lab, authors, genBank, etc).
- 2. Align and/or filter data.
- 3. If needed, choose the appropriate model of evolution.
- 4. Use software program(s) to build trees.
- 5. Analyze Results.

- 1. Get data (from wet lab, authors, genBank, etc).
- 2. Align and/or filter data.
- 3. If needed, choose the appropriate model of evolution.
- 4. Use software program(s) to build trees.
- 5. Analyze Results.

We'll focus on the last two today.

• Can make a significant difference when constructing trees.

- Can make a significant difference when constructing trees.
 - Jukes-Cantor (JC): simplest, all sites iid, equally likely, only parameter is the substitution rate

- Can make a significant difference when constructing trees.
 - Jukes-Cantor (JC): simplest, all sites iid, equally likely, only parameter is the substitution rate
 - Kimura-2-Parameter (K2P): distinguishes between the transition $(A \leftrightarrow G \text{ and } C \leftrightarrow T)$ and transversion $(A \leftrightarrow C \text{ and } G \leftrightarrow T)$ rates all nucleotides occur at equal frequencies

- Can make a significant difference when constructing trees.
 - Jukes-Cantor (JC): simplest, all sites iid, equally likely, only parameter is the substitution rate
 - Kimura-2-Parameter (K2P): distinguishes between the transition (A↔G and C↔T) and tranversion (A↔C and G↔T) rates all nucleotides occur at equal frequencies
 - Hasegawa-Kishono-Yano (HKY): nucleotides occur at different frequencies

- Can make a significant difference when constructing trees.
 - Jukes-Cantor (JC): simplest, all sites iid, equally likely, only parameter is the substitution rate
 - Kimura-2-Parameter (K2P): distinguishes between the transition $(A \leftrightarrow G \text{ and } C \leftrightarrow T)$ and transversion $(A \leftrightarrow C \text{ and } G \leftrightarrow T)$ rates all nucleotides occur at equal frequencies
 - Hasegawa-Kishono-Yano (HKY): nucleotides occur at different frequencies
 - General Time Reversible (GTR): assume symmetric substitution matrix (ie A changes to C at the same rate C changes to A).

	Preferred model	Base frequencies				Relative substitution rates					Proportion		
Gene		А	С	G	Т	AC	AG	AT	CG	CT	GT	invariant sites	Alpha
Preferr	red model and estima	ated base f	requencie	s for each	gene	Model	substitu	tion and	d rate he	terogenei	ity para	meters for e	ach gene
ADORA3	K2P	0.25	0.25	0.25	0.25	1	3	1	1	3	¹ 1	0	-
ADRB2	HKY+I+G	0.2	0.33	0.25	0.22	1	5.75	1	1	5.75	1	0.46	1.05
APP	GTR+I+G	0.25	0.24	0.18	0.33	1.6	3.66	0.47	0.72	2.65	1	0	0.78
ATP7A	GTR+I+G	0.33	0.21	0.19	0.19	1.11	5.33	0.68	0.92	4.43	1	0.2	1.56
BDNF	HKY+I+G	0.21	0.33	0.28	0.17	1	4.73	1	1	4.73	1	0.42	0.61
BMI1	GTR+I+G	0.29	0.15	0.16	0.4	2.35	7.08	0.64	1.77	5.71	1	0.14	0.82
CNR1	GTR+I+G	0.18	0.32	0.25	0.24	3.43	14	1.3	2.13	14.6	1	0.53	0.7
CREM	GTR+I+G	0.21	0.24	0.28	0.27	1.68	3.44	0.55	0.8	2.97	1	0.18	1.6
EDG1	HKY+I+G	0.17	0.36	0.27	0.2	1	4.93	1	1	4.93	1	0.44	0.72
PLCB4	GTR+I+G	0.3	0.27	0.19	0.24	0.94	2.77	0.59	0.56	2.33	1	0.04	2.88
PNOC	GTR+I+G	0.23	0.33	0.31	0.12	0.9	2.73	0.86	0.38	4.14	1	0.15	1.09
RAG1	GTR+I+G	0.21	0.3	0.29	0.19	2.04	5.59	1.01	0.67	9.09	1	0.49	1.07
RAG2	HKY+I+G	0.28	0.24	0.22	0.27	1	6	1	1	6	1	0.35	1.63
TYR	GTR+I+G	0.24	0.26	0.25	0.25	2.18	7.86	1.3	0.93	8.76	1	0.32	1.27
ZFX	HKY+I+G	0.35	0.23	0.18	0.23	1	7.94	1	1	7.94	1	0.49	1.24
VWF	HKY+I+G	0.2	0.34	0.28	0.18	1	4.41	1	1	4.41	1	0.15	0.92
BRCA1	GTR+I+G	0.33	0.22	0.23	0.22	1.15	4.38	0.75	1.17	4.75	1	0.04	3.4
IRBP	GTR+I+G	0.21	0.3	0.3	0.18	1.5	4.91	1.34	0.83	5.8	1	0.18	1.04
A2AB	GTR+I+G	0.17	0.34	0.3	0.18	1.02	3.59	0.93	0.62	3.71	1	0.3	1.29
mtRNA	GTR+I+G	0.34	0.2	0.21	0.25	5.86	14	3.85	0.58	29.3	1	0.41	0.53

APPENDIX 2. Model parameters for the genes studied by Murphy et al. (2000):

(From Hillis *et al.* '05.)

Tree Building Software

Some Packages that perform multiple methods:

- Phylogenetic Analysis Using Parsimony (PAUP 4.0): Swofford '02
- Phylogenetic Inference Package (Phylip 3.6): Felsenstein '06
- Molecular Evolutionary Genetic Analysis (MEGA 3.1): Kumar, Tamura, & Nei '04
- SplitsTree 4: Huson & Bryant '06

Tree Building Software

Some specialized software:

- MrBayes 3.1: Bayesan inference of phylogeny, Huelsenbeck *et al.* '05
- Bayesian Evolutionary Analysis Sampling Trees (BEAST): Drummond & Rambaut '03
- Quartet Puzzling: Strimmer & Von Haeseler '96

Software with Web Interface

Web access available for:

- At the Pasteur Institute http://bioweb.pasteur.fr/intro-uk.html: Phylip, Quartet Puzzling, Weighbor, etc.
- SplitsTree (older version: 3.2) at:

http://bibiserv.techfak.uni-bielefeld.de/splits/submission.html

Software for Today:

- Suggested that you use on-line software (quicker to get started, but will run slower)
- Or, you can download most programs to your laptops:
 - most freely available (notable exception: PAUP)
 - newer ones in Java and machine independent
 - most run on Unix (Linux & OS X), some run on Windows

- PAUP:
- Phylip:
- FASTA:
- Can use the program READSEQ to convert from one to another.

- PAUP:
- Phylip:
- FASTA:
- Can use the program READSEQ to convert from one to another. And EXTRACTSEQ (EMBOSS) to extract a region.

PAUP:

#NEXUS

Begin data;						
Dimensions ntax=44 nchar=17028;						
Format datatype=d	na interleave gap=-;					
Matrix						
Opossum	TGCCTCTTCCGTTCAGTAATGAGGATGGACTACATGGTCTATTTCAGCTT					
Diprotodontian	TGCCGCTTCCGCTCAGTTATGAGGATGGACTACATGGTCTATTTCAGCTT					
Sloth	TGCAAATTCAGTTCCGTCATGAGAATGGACTACATGGTCTACTTCAGTTT					
Armadillo	TGCAAATTCACTTCCGTCATGAGGATGGACTACATGGTGTACTTCAGTTT					
Anteater	TGCAAATTCAGTTCCGTTGTGAGGATGGACTACATGGTCTACTTCAGTTT					
Hedgehog	TGCCAATTCCGTTCTGTTGTGAGAATGGACTACATGGTGTTCTTCAGCTT					
Mole	TGCAAGTTCCGCACAGTCGTGAGGATGGACTACATGGTCTACTTCAGCTT					
Shrew	TGCCAGTTCCGCTCTGTGGTGAGGATGGACTACATGGTCTACTTCAGCTT					
Tenrecid	TGCAAATTCCGTTCTACTATGAGAATGGACTACATGGTCTACTTCAGCTT					
GoldenMole	TGCCAATTTCGTTCCGTAATGAGGATGGACTATATGGTCTACTTCAGCTT					
• • •						

Phylip:

. . .

44 17028					
Opossum	TGCCTCTTCC	GTTCAGTAAT	GAGGATGGAC	TACATGGTCT	ATTTCAGCTT
Diprotodon	TGCCGCTTCC	GCTCAGTTAT	GAGGATGGAC	TACATGGTCT	ATTTCAGCTT
Sloth	TGCAAATTCA	GTTCCGTCAT	GAGAATGGAC	TACATGGTCT	ACTTCAGTTT
Armadillo	TGCAAATTCA	CTTCCGTCAT	GAGGATGGAC	TACATGGTGT	ACTTCAGTTT
Anteater	TGCAAATTCA	GTTCCGTTGT	GAGGATGGAC	TACATGGTCT	ACTTCAGTTT
Hedgehog	TGCCAATTCC	GTTCTGTTGT	GAGAATGGAC	TACATGGTGT	TCTTCAGCTT
Mole	TGCAAGTTCC	GCACAGTCGT	GAGGATGGAC	TACATGGTCT	ACTTCAGCTT
Shrew	TGCCAGTTCC	GCTCTGTGGT	GAGGATGGAC	TACATGGTCT	ACTTCAGCTT
Tenrecid	TGCAAATTCC	GTTCTACTAT	GAGAATGGAC	TACATGGTCT	ACTTCAGCTT
GoldenMole	TGCCAATTTC	GTTCCGTAAT	GAGGATGGAC	TATATGGTCT	ACTTCAGCTT

FASTA:

Visualizing Trees

Web access available for:

- Phylip: Felsenstein
- SplitsTree: Bryant & Huson
- Mesquite: Wayne & David Maddison

• Download the sequences to your machine.

- Download the sequences to your machine.
- Choose the subset you would like to analyze

- Download the sequences to your machine.
- Choose the subset you would like to analyze (The PAUP file has the endpoints for each gene.)

- Download the sequences to your machine.
- Choose the subset you would like to analyze (The PAUP file has the endpoints for each gene.)
- Choose the methods you would like to apply

- Download the sequences to your machine.
- Choose the subset you would like to analyze (The PAUP file has the endpoints for each gene.)
- Choose the methods you would like to apply (Then convert sequences into the needed format.)

- Download the sequences to your machine.
- Choose the subset you would like to analyze (The PAUP file has the endpoints for each gene.)
- Choose the methods you would like to apply (Then convert sequences into the needed format.)
- Look at the resulting trees— do they support your hypothesis?

Helpful Websites

• Dataset for this tutorial:

http://comet.lehman.cuny.edu/stjohn/dimacsTutorial

• The Pasteur Institute:

http://bioweb.pasteur.fr/intro-uk.html:

• SplitsTree: at:

http://bibiserv.techfak.uni-bielefeld.de/splits/submission.html