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Introduction

Gilchrist and Sasaki (2002) introduced a very nice
framework to discuss co-evolution of virulence and
resistance without invoking hypothetical trade-offs.

Aspects I aimed at addressing:

(Slightly) more complex models of virus–immune
system interactions not limited to short-term after
infection.

Reinfection of already infected hosts (to deal with
issues like super-infection.

Variability of hosts (not genetically determined).
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Models for virus-immune system, 1

P pathogen load

I specific immunity level

{

P ′ = rP − cIP

I ′ = aIP
(Gilchrist-Sasaki, 2002)

with I(0) = I0 > 0, P (0) = P0 > 0.
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Models for virus-immune system, 1

P pathogen load

I specific immunity level

{

P ′ = rP − cIP

I ′ = aIP
(Gilchrist-Sasaki, 2002)

with I(0) = I0 > 0, P (0) = P0 > 0.
Infection grows (if r > cI0) and then is cleared by immune
system.

Some computations are easier since it is
Kermack-McKendrick model disguised. Hence one obtains

P = Φ(I) :=
r

a
log(I) − I + I0 + P0.
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Models for virus-immune system, 2

{

P ′ = rP − cIP

I ′ = aIP
(Gilchrist-Sasaki, 2002)

{

P ′ = rP − cIP

I ′ = βI
(André-Gandon, 2006)

Equations can be solved to have

P (t) = P0 exp

{

rt +
cI0

β
(1 − eβt)

}

.
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Models for virus-immune system, 3

{

P ′ = rP − cIP

I ′ = aIP
(Gilchrist-Sasaki, 2002)

{

P ′ = rP − cIP

I ′ = βI
(André-Gandon, 2006)

All infections are eventually cleared.

{

P ′ = rP − cIP

I ′ = kP − δI + h
(Mohtashemi-Levins, 2002)

If an infection can occur (r > ch
δ ), then system always goes

to an equilibrium, generally after several infection cycles.
DIMACS workshop on Host-Parasite Coevolution, October 9-11 2006 – p.5/26



Proposed model for within-host dynamics

Several other models in Nowak-May (2002) share this
feature:

If an infection is possible, it is never cleared completely
(at least, in the deterministic model).
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Proposed model for within-host dynamics

Several other models in Nowak-May (2002) share this
feature:

If an infection is possible, it is never cleared completely
(at least, in the deterministic model).

An extension with functional response in immune cells-virus
interaction:

{

P ′ = rP −
cI

1+kcP
P −

m
1+kmP P

I ′ = aP
1+kaP I − δI + h

m level (activity) of aspecific immunity.
kc and km modulate functional response.

ka allows for different rules of immune response.
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Behaviour of within-host model

If r small, no internal equilibria. Infection is cleared
completely.
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Behaviour of within-host model

If r small, no internal equilibria. Infection is cleared
completely.

If r intermediate, 2 internal equilibria. Infection is either
cleared, or it goes to equilibrium (or limit cycle).

If r large (r > m + ch/δ), 1 internal equilibrium. Infection
always goes to equilibrium (or limit cycle).

Moreover, for r + δ > a/ka, solutions may diverge to infinity

(immune system does not control infection)
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Question

Into which qualitative regime will the parameters (especially

the replication rate r) evolve?
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Epidemic dynamics

i(t, P, I) infectives of immune-level I and pathogen load
P

S susceptibles
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Epidemic dynamics

i(t, P, I) infectives of immune-level I and pathogen load
P

S susceptibles

∂

∂t
i(t, P, I) +

∂

∂P
( f(P, I) i(t, P, I)) +

∂

∂I
( g(P, I) i(t, P, I))

= −(µ + α(P, I))i(t, P, I)

DIMACS workshop on Host-Parasite Coevolution, October 9-11 2006 – p.12/26



Epidemic dynamics

i(t, P, I) infectives of immune-level I and pathogen load
P

S susceptibles

∂

∂t
i(t, P, I) +

∂

∂P
( f(P, I) i(t, P, I)) +

∂

∂I
( g(P, I) i(t, P, I))

= −(µ + α(P, I))i(t, P, I)

where
P ′ = f(P, I)

and
I ′ = g(P, I)
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Epidemic dynamics

i(t, P, I) infectives of immune-level I and pathogen load
P

S susceptibles

∂

∂t
i(t, P, I) +

∂

∂P
( f(P, I) i(t, P, I)) +

∂

∂I
( g(P, I) i(t, P, I))

= −(µ + α(P, I))i(t, P, I)

α disease-induced mortality
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Epidemic dynamics

i(t, P, I) infectives of immune-level I and pathogen load
P

S susceptibles

∂

∂t
i +

∂

∂P
(fi) +

∂

∂I
(gi) = −(µ + α(P, I))i(t, P, I)
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Epidemic dynamics

i(t, P, I) infectives of immune-level I and pathogen load
P

S susceptibles

∂

∂t
i +

∂

∂P
(fi) +

∂

∂I
(gi) = −(µ + α(P, I))i(t, P, I)

and

S′(t) = Λ − (µ + λ(t))S(t)

aP0i(t, 1) = λ(t)S(t)

λ(t) = β

∫

Pi(t, P, I) dP dI

α(P, I) = k1aIP + k2rP
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Epidemic dynamics

i(t, P, I) infectives of immune-level I and pathogen load
P

S susceptibles

∂

∂t
i +

∂

∂P
(fi) +

∂

∂I
(gi) = −(µ + α(P, I))i(t, P, I)

λ infection rate α disease-induced mortality

S′(t) = Λ − (µ + λ(t))S(t)

aP0i(t, 1) = λ(t)S(t)

λ(t) = β

∫

Pi(t, P, I) dP dI

α(P, I) = k1aIP + k2rP
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Age-of-infection setting

Since P and I are deterministic function P (θ), I(θ) of time
since infection, one can rewrite it as

DIMACS workshop on Host-Parasite Coevolution, October 9-11 2006 – p.14/26



Age-of-infection setting

Since P and I are deterministic function P (θ), I(θ) of time
since infection, one can rewrite it as



















∂
∂tu(t, θ) + ∂

∂θu(t, θ) = −(µ + α(P (θ), I(θ))u(t, θ)

u(t, 0) = λ(t)S(t)

λ(t) = β
∫

∞

0
P (θ)u(t, θ) dθ

S′(t) = Λ − (µ + λ(t))S(t)

with u(t, θ) related to i(t, P (θ), B(θ))
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Age-of-infection setting

Since P and I are deterministic function P (θ), I(θ) of time
since infection, one can rewrite it as



















∂
∂tu(t, θ) + ∂

∂θu(t, θ) = −(µ + α(P (θ), I(θ))u(t, θ)

u(t, 0) = λ(t)S(t)

λ(t) = β
∫

∞

0
P (θ)u(t, θ) dθ

S′(t) = Λ − (µ + λ(t))S(t)

with u(t, θ) related to i(t, P (θ), B(θ))

This system is in the class considered by Thieme and

Castillo-Chavez for AIDS.
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R0

The behaviour of the system is mainly determined by R0:

R0 = Λ
µ β

∫

∞

0

P (θ)

× exp

{

−(µθ + k1

θ
∫

0

k1aI(s)P (s) + k2rP (s) ds

}

dθ.
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R0

The behaviour of the system is mainly determined by R0:

R0 = Λ
µ β

∫

∞

0

P (θ)

× exp
{

−(µθ + k1

∫ θ

0
k1aI(s)P (s) + k2rP (s) ds

}

dθ.

Pathogen level at time θ since infection
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R0

The behaviour of the system is mainly determined by R0:

R0 = Λ
µ β

∫

∞

0

P (θ)

× exp
{

−(µθ + k1

∫ θ

0
k1aI(s)P (s) + k2rP (s) ds

}

dθ.

Survival probability to time θ
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R0

The behaviour of the system is mainly determined by R0:

R0 = Λ
µ β

∫

∞

0

P (θ)

× exp
{

−(µθ + k1

∫ θ

0
k1aI(s)P (s) + k2rP (s) ds

}

dθ.

Population at disease-free equilibrium
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R0

The behaviour of the system is mainly determined by R0:

R0 = Λ
µ β

∫

∞

0

P (θ)
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R0. II

If R0 < 1, disease-free equilibrium is globally stable
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R0. II

If R0 < 1, disease-free equilibrium is globally stable

If R0 > 1, there exists a unique positive equilibrium:










S̄ = Λ
µR0

λ̄ = µ(R0 − 1)

ū(θ) = λ̄S̄ . . .
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R0. II

If R0 < 1, disease-free equilibrium is globally stable

If R0 > 1, there exists a unique positive equilibrium:










S̄ = Λ
µR0

λ̄ = µ(R0 − 1)

ū(θ) = λ̄S̄ . . .

If two strains compete, with complete cross-immunity,
the strain with the highest R0 outcompetes the other
(Bremermann-Thieme, 1989).
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Graph of R0
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Maximum at an intermediate r. All graphs look like this (no

proof!).
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Optimal r for fixed a
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If host evolution of a is slower than pathogen’s, move along

the red curve to the maximum of the blue.
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Lower costs of immune response
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Higher survival, but still a rather lethal infection.
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Effect of innate immunity
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Survival lower than without.
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Host variability and pathogen evolution

Assume the values of a in the host population follow some
distribution (with average 1):
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Comparison of fixed vs. distributeda
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Adding innate immunity
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Adding innate immunity
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Host variation, and pathogen virulence

Should variation in host immunity levels select for lower
virulence? why?
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Conclusions

The nested approach (Gilchrist-Sasaki, 2002) provides
a very nice framework. Some complications can be
introduced, since one has to resort to numericals,
anyway.
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Conclusions

The nested approach (Gilchrist-Sasaki, 2002) provides
a very nice framework. Some complications can be
introduced, since one has to resort to numericals,
anyway.

It seems that pathogen selection on replication rate
always brings to the level in which host survivorship is
affected (and in the parameter region where the
within-host dynamics has one positive equilibrium).

Host variability (which could be due to age, nutritional
status, . . . ) seems always to select for lower pathogen
virulence. What does that mean for host evolution?

Modelling superinfection within this framework is rather
complex, and perhaps pointless. There may be better
ways of tackling within-host competition.
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Thanks

The within-host model was set up and analysed with
Alberto Gandolfi (IASI - Roma).

Thanks to DIMACS for providing the support and the
smooth organization for this workshop...

... and to you for your attention.
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