Models of Host Immune Response, and the(co)Evolution of Virulence: limited and preliminary extensions on Gilchrist-Sasaki

Andrea Pugliese

Dept. of Mathematics, Univ. of Trento

Gilchrist and Sasaki (2002) introduced a very nice framework to discuss co-evolution of virulence and resistance without invoking hypothetical trade-offs.

Aspects I aimed at addressing:

Gilchrist and Sasaki (2002) introduced a very nice framework to discuss co-evolution of virulence and resistance without invoking hypothetical trade-offs.

Aspects I aimed at addressing:

(Slightly) more complex models of virus—immune system interactions not limited to short-term after infection.

Gilchrist and Sasaki (2002) introduced a very nice framework to discuss co-evolution of virulence and resistance without invoking hypothetical trade-offs.

Aspects I aimed at addressing:

- (Slightly) more complex models of virus—immune system interactions not limited to short-term after infection.
- Reinfection of already infected hosts (to deal with issues like super-infection.

Gilchrist and Sasaki (2002) introduced a very nice framework to discuss co-evolution of virulence and resistance without invoking hypothetical trade-offs.

Aspects I aimed at addressing:

- (Slightly) more complex models of virus—immune system interactions not limited to short-term after infection.
- Reinfection of already infected hosts (to deal with issues like super-infection.
- Variability of hosts (not genetically determined).

- *P* pathogen load
- I specific immunity level

$$\begin{cases} P' = rP - cIP \\ I' = aIP \end{cases}$$
 (Gilchrist-Sasaki, 2002)

with
$$I(0) = I_0 > 0$$
, $P(0) = P_0 > 0$.

- P pathogen load
- I specific immunity level

$$\begin{cases} P' = rP - cIP \\ I' = aIP \end{cases}$$
 (Gilchrist-Sasaki, 2002)

with $I(0) = I_0 > 0$, $P(0) = P_0 > 0$. Infection grows (if $r > cI_0$) and then is cleared by immune system.

Some computations are easier since it is Kermack-McKendrick model disguised. Hence one obtains

$$P = \Phi(I) := \frac{r}{a} \log(I) - I + I_0 + P_0.$$

$$\begin{cases} P' = rP - cIP \\ I' = aIP \end{cases}$$

(Gilchrist-Sasaki, 2002)

$$\begin{cases} P' = rP - cIP \\ I' = aIP \end{cases}$$

(Gilchrist-Sasaki, 2002)

$$\begin{cases} P' = rP - cIP \\ I' = \beta I \end{cases}$$

$$\begin{cases} P' = rP - cIP \\ I' = aIP \end{cases}$$
 (Gilchrist-Sasaki, 2002)
$$\begin{cases} P' = rP - cIP \\ I' = \beta I \end{cases}$$
 (André-Gandon, 2006)

Equations can be solved to have

$$P(t) = P_0 \exp\left\{rt + \frac{cI_0}{\beta}(1 - e^{\beta t})\right\}.$$

$$\begin{cases} P' = rP - cIP \\ I' = aIP \end{cases}$$

(Gilchrist-Sasaki, 2002)

$$\begin{cases} P' = rP - cIP \\ I' = aIP \end{cases}$$
 (Gilchrist-Sasaki, 2002)
$$\begin{cases} P' = rP - cIP \\ I' = \beta I \end{cases}$$
 (André-Gandon, 2006)

All infections are eventually cleared.

$$\begin{cases} P' = rP - cIP \\ I' = aIP \end{cases}$$
 (Gilchrist-Sasaki, 2002)
$$\begin{cases} P' = rP - cIP \\ I' = \beta I \end{cases}$$
 (André-Gandon, 2006)

All infections are eventually cleared.

$$\begin{cases} P' = rP - cIP \\ I' = kP - \delta I + h \end{cases}$$
 (Mohtashemi-Levins, 2002)

$$\begin{cases} P' = rP - cIP \\ I' = aIP \end{cases}$$
 (Gilchrist-Sasaki, 2002)
$$\begin{cases} P' = rP - cIP \\ I' = \beta I \end{cases}$$
 (André-Gandon, 2006)

All infections are eventually cleared.

$$\begin{cases} P' = rP - cIP \\ I' = kP - \delta I + h \end{cases}$$
 (Mohtashemi-Levins, 2002)

If an infection can occur $(r > c\frac{h}{\delta})$, then system always goes -to an equilibrium, generally after several infection cycles.

Proposed model for within-host dynamics

Several other models in Nowak-May (2002) share this feature:

If an infection is possible, it is never cleared completely (at least, in the deterministic model).

Proposed model for within-host dynamics

Several other models in Nowak-May (2002) share this feature:

If an infection is possible, it is never cleared completely (at least, in the deterministic model).

An extension with functional response in immune cells-virus interaction:

$$\begin{cases} P' = rP - \frac{cI}{1+k_cP}P - \frac{m}{1+k_mP}P \\ I' = \frac{aP}{1+k_aP}I - \delta I + h \end{cases}$$

m level (activity) of aspecific immunity. k_c and k_m modulate functional response.

 k_a allows for different rules of immune response.

Proposed model for within-host dynamics

Several other models in Nowak-May (2002) share this feature:

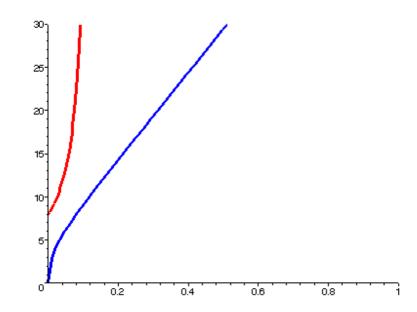
If an infection is possible, it is never cleared completely (at least, in the deterministic model).

An extension with functional response in immune cells-virus interaction:

$$\begin{cases} P' = rP - \frac{cI}{1+k_cP}P - \frac{m}{1+k_mP}P \\ I' = \frac{aP}{1+k_aP}I - \delta I + h \end{cases}$$

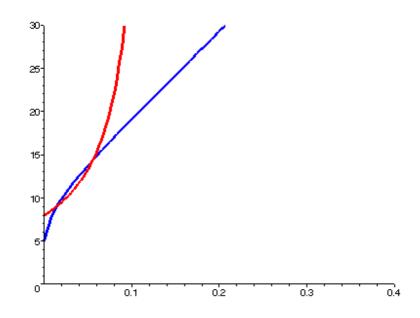
m level (activity) of aspecific immunity. k_c and k_m modulate functional response.

 k_a allows for different rules of immune response.



- If r small, no internal equilibria. Infection is cleared completely.
- If r intermediate, 2 internal equilibria. Infection is either cleared, or it goes to equilibrium (or limit cycle).

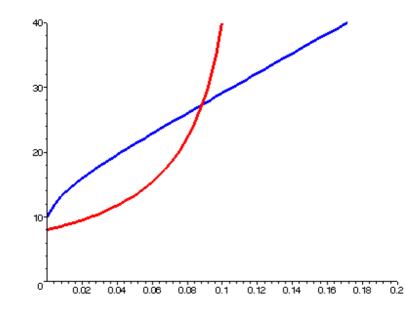
- If r small, no internal equilibria. Infection is cleared completely.
- If r intermediate, 2 internal equilibria. Infection is either cleared, or it goes to equilibrium (or limit cycle).



- If r small, no internal equilibria. Infection is cleared completely.
- If r intermediate, 2 internal equilibria. Infection is either cleared, or it goes to equilibrium (or limit cycle).

- If r small, no internal equilibria. Infection is cleared completely.
- If r intermediate, 2 internal equilibria. Infection is either cleared, or it goes to equilibrium (or limit cycle).
- If r large ($r > m + ch/\delta$), 1 internal equilibrium. Infection always goes to equilibrium (or limit cycle).

- If r small, no internal equilibria. Infection is cleared completely.
- If r intermediate, 2 internal equilibria. Infection is either cleared, or it goes to equilibrium (or limit cycle).
- If r large ($r > m + ch/\delta$), 1 internal equilibrium. Infection always goes to equilibrium (or limit cycle).



- If r small, no internal equilibria. Infection is cleared completely.
- If r intermediate, 2 internal equilibria. Infection is either cleared, or it goes to equilibrium (or limit cycle).

- If r small, no internal equilibria. Infection is cleared completely.
- If r intermediate, 2 internal equilibria. Infection is either cleared, or it goes to equilibrium (or limit cycle).
- If r large ($r > m + ch/\delta$), 1 internal equilibrium. Infection always goes to equilibrium (or limit cycle).

- If r small, no internal equilibria. Infection is cleared completely.
- If r intermediate, 2 internal equilibria. Infection is either cleared, or it goes to equilibrium (or limit cycle).
- If r large ($r > m + ch/\delta$), 1 internal equilibrium. Infection always goes to equilibrium (or limit cycle).

Moreover, for $r + \delta > a/k_a$, solutions may diverge to infinity (immune system does not control infection)

Into which qualitative regime will the parameters (especially the replication rate r) evolve?

- i(t, P, I) infectives of immune-level I and pathogen load P
- \checkmark S susceptibles

- i(t, P, I) infectives of immune-level I and pathogen load P
- \checkmark S susceptibles

$$\frac{\partial}{\partial t}i(t, P, I) + \frac{\partial}{\partial P}(f(P, I) \ i(t, P, I)) + \frac{\partial}{\partial I}(g(P, I) \ i(t, P, I))$$
$$= -(\mu + \alpha(P, I))i(t, P, I)$$

- i(t, P, I) infectives of immune-level I and pathogen load P
- \checkmark S susceptibles

$$\frac{\partial}{\partial t}i(t, P, I) + \frac{\partial}{\partial P}((f(P, I))i(t, P, I)) + \frac{\partial}{\partial I}((g(P, I))i(t, P, I))$$

$$= -(\mu + o(P, I))i(t, P, I)$$
where
$$P' = f(P, I)$$
and
$$I' = g(P, I)$$

- i(t, P, I) infectives of immune-level I and pathogen load P
- \checkmark S susceptibles

$$\frac{\partial}{\partial t}i(t, P, I) + \frac{\partial}{\partial P}((f(P, I))i(t, P, I)) + \frac{\partial}{\partial I}((g(P, I))i(t, P, I)) = -(\mu + \alpha(P, I))i(t, P, I)$$

 α disease-induced mortality

- i(t, P, I) infectives of immune-level I and pathogen load P
- \checkmark S susceptibles

$$\frac{\partial}{\partial t}i + \frac{\partial}{\partial P}(fi) + \frac{\partial}{\partial I}(gi) = -(\mu + \alpha(P, I))i(t, P, I)$$

Epidemic dynamics

- i(t, P, I) infectives of immune-level I and pathogen load P
- \checkmark S susceptibles

$$\frac{\partial}{\partial t}i + \frac{\partial}{\partial P}(fi) + \frac{\partial}{\partial I}(gi) = -(\mu + \alpha(P, I))i(t, P, I)$$

and

$$S'(t) = \Lambda - (\mu + \lambda(t))S(t)$$
$$aP_0i(t, 1) = \lambda(t)S(t)$$
$$\lambda(t) = \beta \int Pi(t, P, I) dP dI$$
$$\alpha(P, I) = k_1 aIP + k_2 rP$$

Epidemic dynamics

- i(t, P, I) infectives of immune-level I and pathogen load P
- \checkmark S susceptibles

$$\frac{\partial}{\partial t}i + \frac{\partial}{\partial P}(fi) + \frac{\partial}{\partial I}(gi) = -(\mu + \alpha(P, I))i(t, P, I)$$

 λ infection rate

 α disease-induced mortality

$$S'(t) = \Lambda - (\mu + \lambda(t))S(t)$$
$$aP_0i(t, 1) = \lambda(t)S(t)$$
$$\lambda(t) = \beta \int Pi(t, P, I) dP dI$$
$$\alpha(P, I) = k_1 aIP + k_2 rP$$

Age-of-infection setting

Since *P* and *I* are deterministic function $P(\theta)$, $I(\theta)$ of time since infection, one can rewrite it as

Age-of-infection setting

Since *P* and *I* are deterministic function $P(\theta)$, $I(\theta)$ of time since infection, one can rewrite it as

$$\begin{cases} \frac{\partial}{\partial t}u(t,\theta) + \frac{\partial}{\partial \theta}u(t,\theta) &= -(\mu + \alpha(P(\theta), I(\theta))u(t,\theta))\\ u(t,0) &= \lambda(t)S(t)\\ \lambda(t) &= \beta \int_0^\infty P(\theta)u(t,\theta) \, d\theta\\ S'(t) &= \Lambda - (\mu + \lambda(t))S(t) \end{cases}$$

with $u(t, \theta)$ related to $i(t, P(\theta), B(\theta))$

Age-of-infection setting

Since *P* and *I* are deterministic function $P(\theta)$, $I(\theta)$ of time since infection, one can rewrite it as

$$\begin{cases} \frac{\partial}{\partial t}u(t,\theta) + \frac{\partial}{\partial \theta}u(t,\theta) &= -(\mu + \alpha(P(\theta), I(\theta))u(t,\theta))\\ u(t,0) &= \lambda(t)S(t)\\ \lambda(t) &= \beta \int_0^\infty P(\theta)u(t,\theta) \, d\theta\\ S'(t) &= \Lambda - (\mu + \lambda(t))S(t) \end{cases}$$

with $u(t, \theta)$ related to $i(t, P(\theta), B(\theta))$

This system is in the class considered by Thieme and Castillo-Chavez for AIDS.

$$R_{0} = \frac{\Lambda}{\mu} \beta \int_{0}^{\infty} P(\theta)$$

$$\times \exp\left\{-(\mu\theta + k_{1} \int_{0}^{\theta} k_{1} a I(s) P(s) + k_{2} r P(s) ds\right\} d\theta.$$

The behaviour of the system is mainly determined by R_0 :

$$R_{0} = \underbrace{\frac{\Lambda}{\mu}}_{\mu} \beta \int_{0}^{\infty} \underbrace{P(\theta)}_{0} \times \left[\exp\left\{ -(\mu\theta + k_{1} \int_{0}^{\theta} k_{1} a I(s) P(s) + k_{2} r P(s) \, ds \right\} \right] d\theta.$$

Pathogen level at time θ since infection

$$R_{0} = \underbrace{\Lambda}{\mu} \beta \int_{0}^{\infty} \underbrace{P(\theta)} \\ \times \left[\exp \left\{ -(\mu \theta + k_{1} \int_{0}^{\theta} k_{1} a I(s) P(s) + k_{2} r P(s) ds \right\} \right] d\theta.$$

Survival probability to time θ

$$R_{0} = \underbrace{\Lambda}_{\mu} \beta \int_{0}^{\infty} P(\theta)$$

$$\times \exp\left\{-(\mu\theta + k_{1} \int_{0}^{\theta} k_{1} a I(s) P(s) + k_{2} r P(s) ds\right\} d\theta.$$
Population at disease-free equilibrium

$$R_{0} = \underbrace{\Lambda}{\mu} \beta \int_{0}^{\infty} \underbrace{P(\theta)} \\ \times \left[\exp \left\{ -(\mu \theta + k_{1} \int_{0}^{\theta} k_{1} a I(s) P(s) + k_{2} r P(s) ds \right\} \right] d\theta.$$

R_0 . II

• If $R_0 < 1$, disease-free equilibrium is globally stable

R_0 . II

If R₀ < 1, disease-free equilibrium is globally stable
If R₀ > 1, there exists a unique positive equilibrium:

$$\begin{cases} \bar{S} = \frac{\Lambda}{\mu R_0} \\ \bar{\lambda} = \mu (R_0 - 1) \\ \bar{u}(\theta) = \bar{\lambda} \bar{S} \dots \end{cases}$$

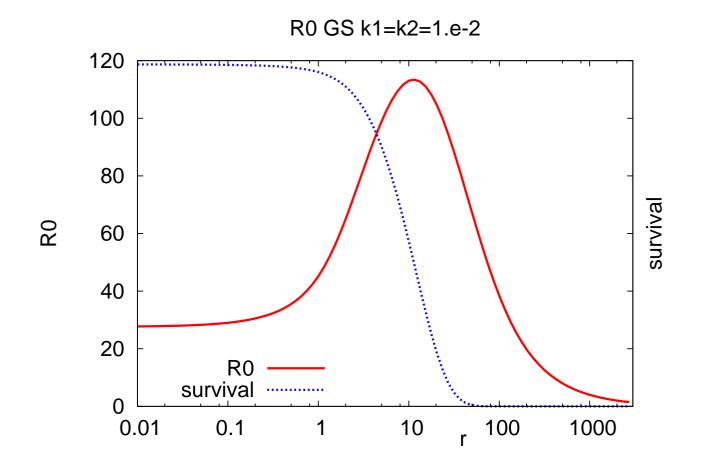
R_0 . II

If R₀ < 1, disease-free equilibrium is globally stable
If R₀ > 1, there exists a unique positive equilibrium:

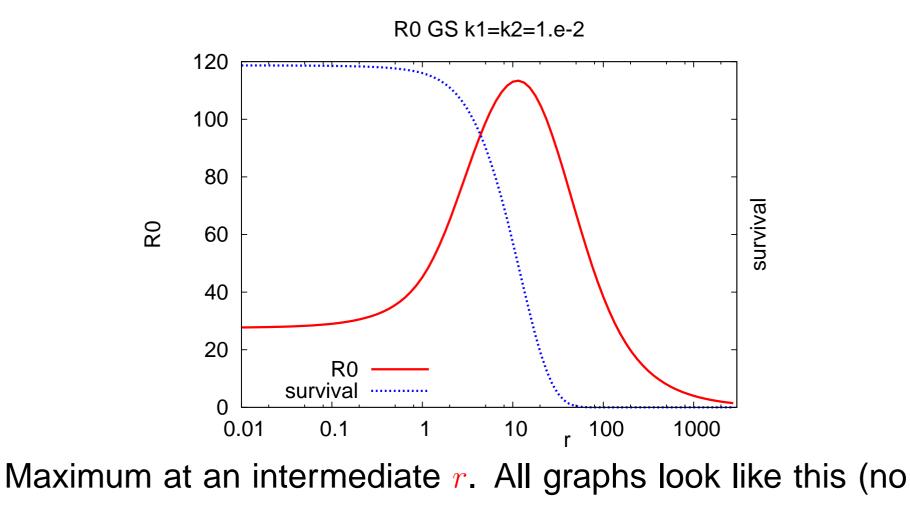
$$\begin{cases} \bar{S} = \frac{\Lambda}{\mu R_0} \\ \bar{\lambda} = \mu (R_0 - 1) \\ \bar{u}(\theta) = \bar{\lambda} \bar{S} \dots \end{cases}$$

If two strains compete, with complete cross-immunity, the strain with the highest R₀ outcompetes the other (Bremermann-Thieme, 1989).

Graph of R_0

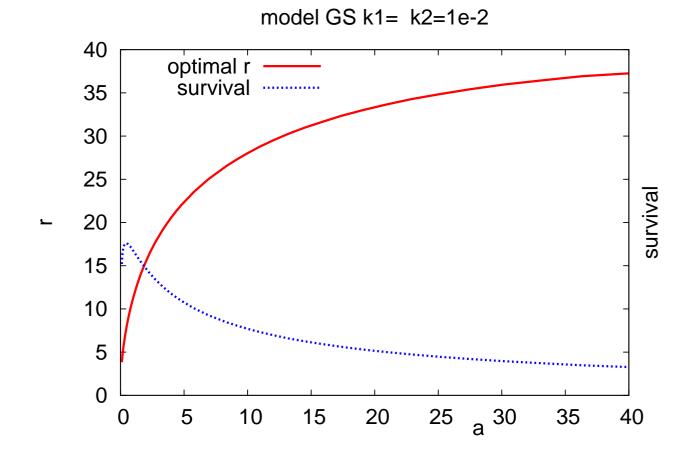


Graph of R_0

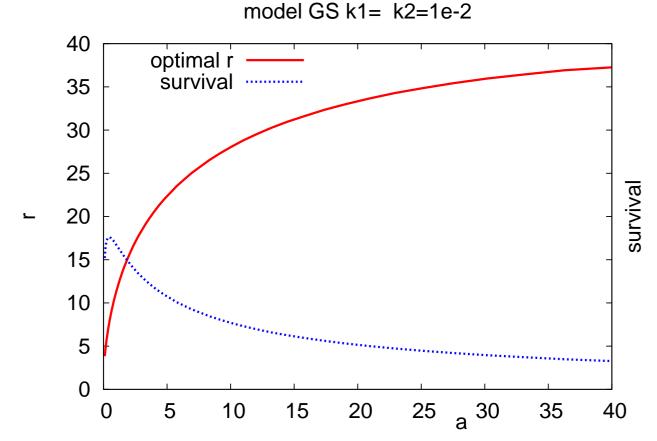


proof!).

Optimal *r* **for fixed** *a*

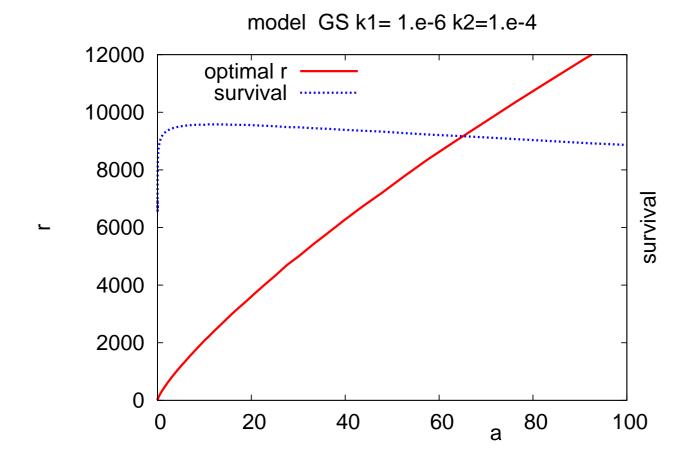


Optimal *r* **for fixed** *a*

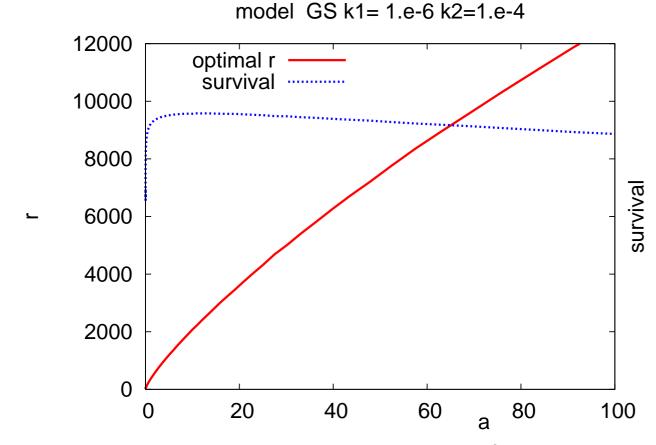


If host evolution of *a* is slower than pathogen's, move along the red curve to the maximum of the blue.

Lower costs of immune response

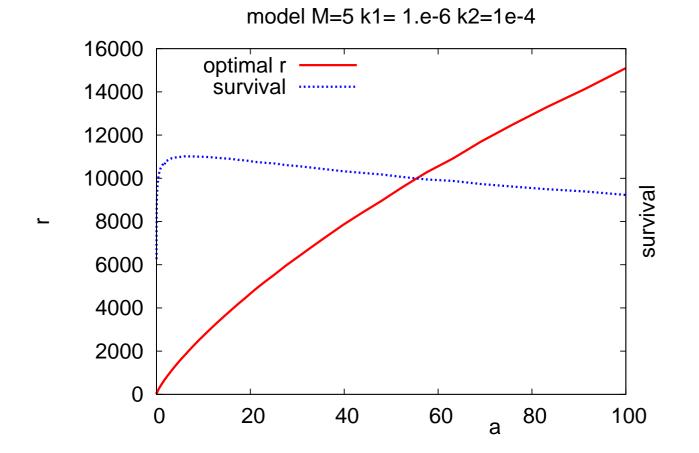


Lower costs of immune response

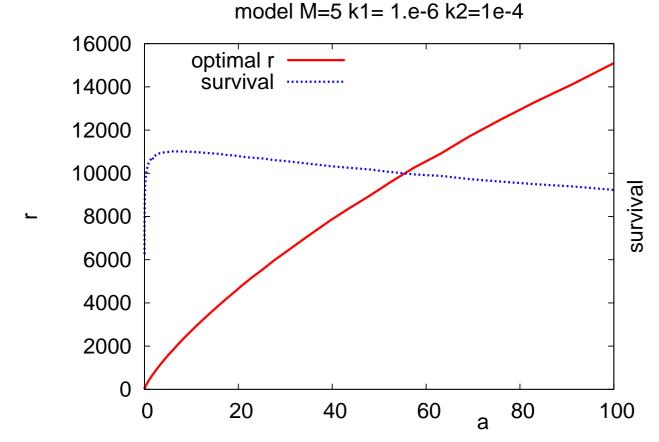


Higher survival, but still a rather lethal infection.

Effect of innate immunity



Effect of innate immunity



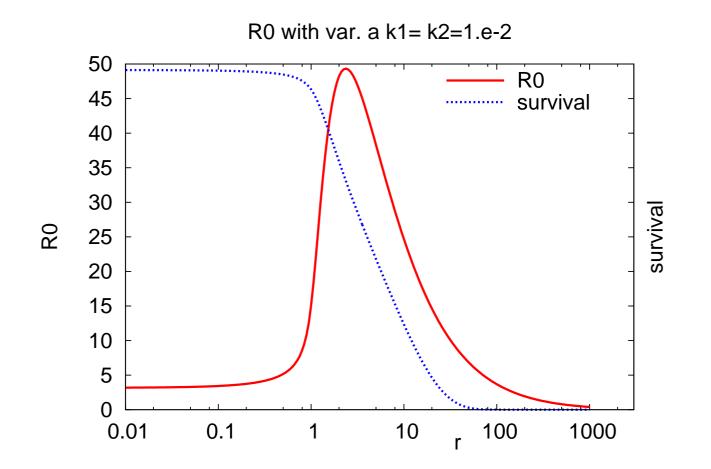
Survival lower than without.

Host variability and pathogen evolution

Assume the values of *a* in the host population follow some distribution (with average 1):

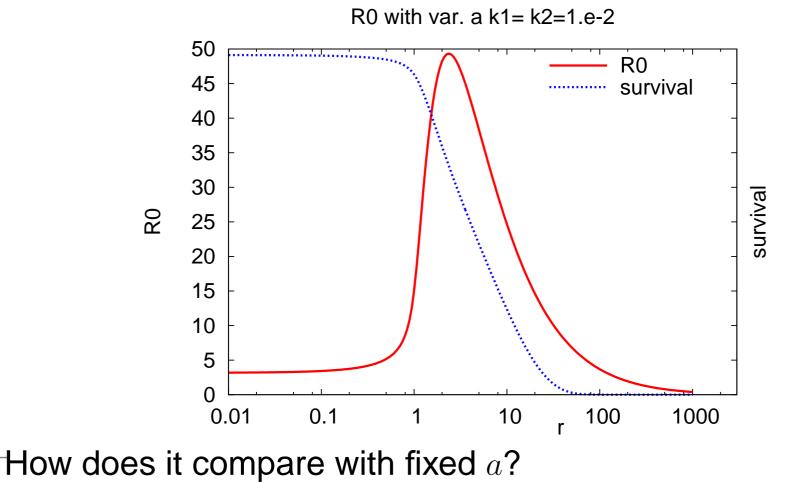
Host variability and pathogen evolution

Assume the values of *a* in the host population follow some distribution (with average 1):

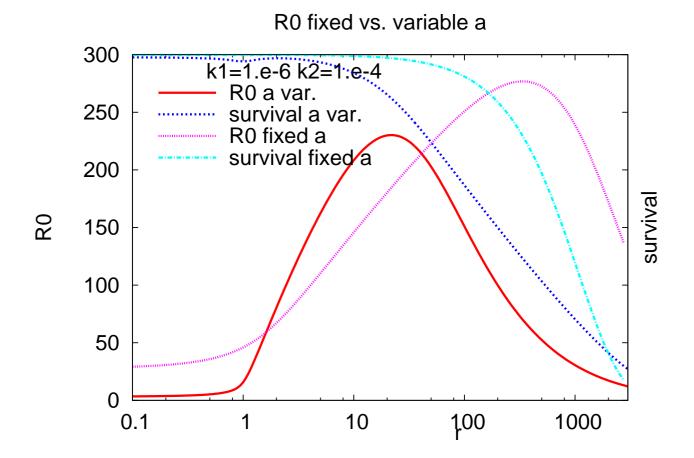


Host variability and pathogen evolution

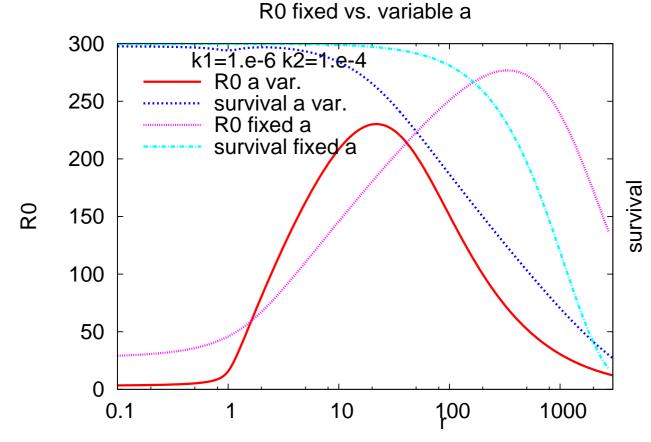
Assume the values of *a* in the host population follow some distribution (with average 1):



Comparison of fixed vs. distributed *a*

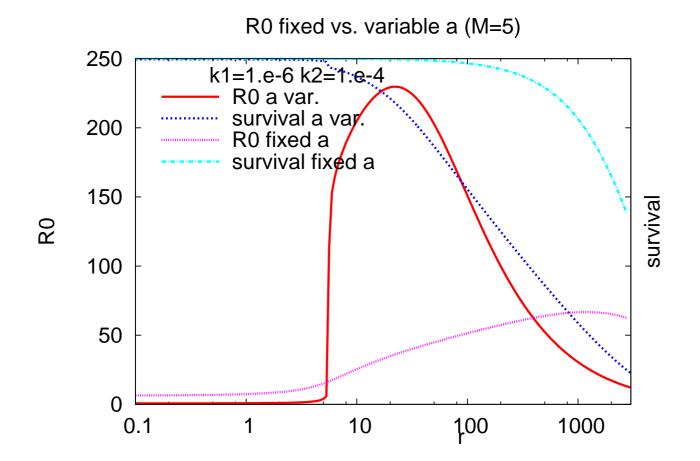


Comparison of fixed vs. distributed *a*

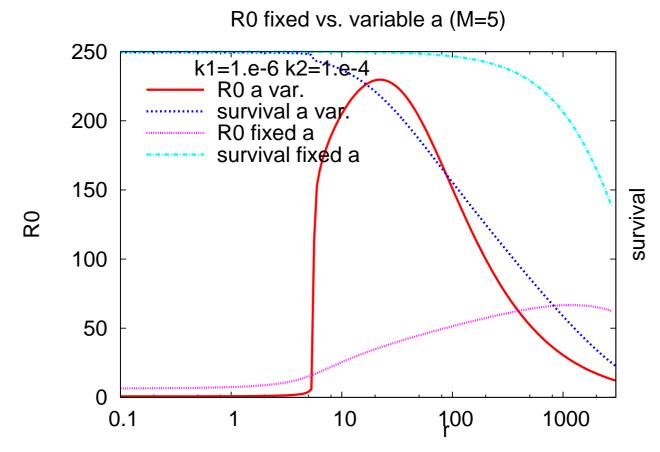


Selection for much lower r

Adding innate immunity



Adding innate immunity



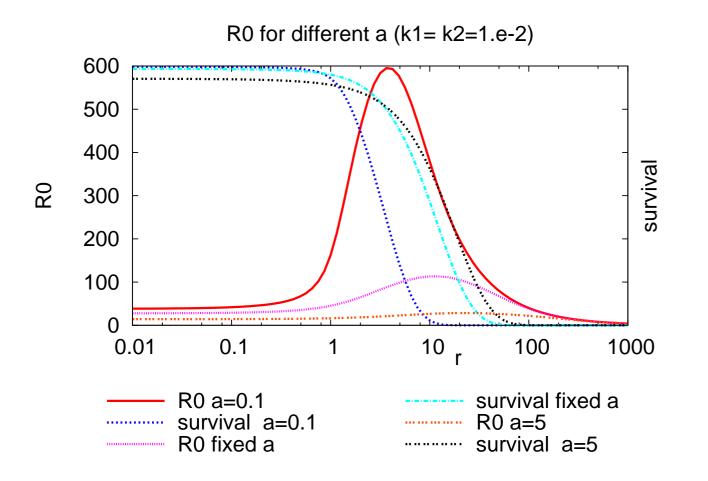
Similar picture

Host variation, and pathogen virulence

Should variation in host immunity levels select for lower virulence? why?

Host variation, and pathogen virulence

Should variation in host immunity levels select for lower virulence? why?



The nested approach (Gilchrist-Sasaki, 2002) provides a very nice framework. Some complications can be introduced, since one has to resort to numericals, anyway.

- The nested approach (Gilchrist-Sasaki, 2002) provides a very nice framework. Some complications can be introduced, since one has to resort to numericals, anyway.
- It seems that pathogen selection on replication rate always brings to the level in which host survivorship is affected (and in the parameter region where the within-host dynamics has one positive equilibrium).

- The nested approach (Gilchrist-Sasaki, 2002) provides a very nice framework. Some complications can be introduced, since one has to resort to numericals, anyway.
- It seems that pathogen selection on replication rate always brings to the level in which host survivorship is affected (and in the parameter region where the within-host dynamics has one positive equilibrium).
- Host variability (which could be due to age, nutritional status, ...) seems always to select for lower pathogen virulence. What does that mean for host evolution?

- The nested approach (Gilchrist-Sasaki, 2002) provides a very nice framework. Some complications can be introduced, since one has to resort to numericals, anyway.
- It seems that pathogen selection on replication rate always brings to the level in which host survivorship is affected (and in the parameter region where the within-host dynamics has one positive equilibrium).
- Host variability (which could be due to age, nutritional status, ...) seems always to select for lower pathogen virulence. What does that mean for host evolution?
- Modelling superinfection within this framework is rather complex, and perhaps pointless. There may be better ways of tackling within-host competition.

- The nested approach (Gilchrist-Sasaki, 2002) provides a very nice framework. Some complications can be introduced, since one has to resort to numericals, anyway.
- It seems that pathogen selection on replication rate always brings to the level in which host survivorship is affected (and in the parameter region where the within-host dynamics has one positive equilibrium).
- Host variability (which could be due to age, nutritional status, ...) seems always to select for lower pathogen virulence. What does that mean for host evolution?
- Modelling superinfection within this framework is rather complex, and perhaps pointless. There may be better ways of tackling within-host competition.

Thanks

- The within-host model was set up and analysed with Alberto Gandolfi (IASI - Roma).
- Thanks to DIMACS for providing the support and the smooth organization for this workshop...
- ... and to you for your attention.