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Fully deterministic model

• The model consists of a set of classes representing parts of 
population immune to and infectious with virus strains.

• These classes can overlap, which means that the same parts of 
population can be immune to or can be infected and become 
infectious with multiple strains simultaneously. The processes of 
infection are described in uniform mixing approximation and 
immunity to a particular strain is assumed to be lifelong.

• Virus strains are described as sequences of antigens consisting of 
NL loci, each of which can be occupied by one of NA alleles. The 
total possible number of strains in the model is LN
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Dynamics of the part of population immune to a strain i is given by

µ is the natural birth/death rate (we suppose birth and death 
processes in the population to be at equilibrium)

is the force of infection

Proportion of population completely susceptible to strain i  is given by
( )1 iz−

β is the transmission coefficient and yi is the proportion of infectious with strain i

To quantitatively characterize affinity of strains, we use common 
Hamming distance, i.e. we define the inter-strain distance as the 
number of loci occupied by different alleles. This value can take on 
discrete values from the set [1,2,…,NL].



We also define a set of additional compartments,        ,(k=1… (NL-1)), 
which represent the proportion of immune to any strain j that shares 
alleles at the corresponding loci with strain i but has not more than k
distinct alleles.
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where      is the distance between strains i and j, and the summation is 
done over all strains, the distances between which are less than or 
equal to k.

By definition, we put ( ) 1LN
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and

Proportion of immune to strains sharing alleles with strain i but 
having exactly k distinct alleles is



• The degree of cross-immunity against a new strain varies with the 
number of novel antigenic alleles in it and is described by a cross-
immunity function          which decays with genetic distance d.  

• Individuals who have been exposed to strain j and have immunity to 
strain i get infected with probability                  , where d is the distance 
between strains i and j. 

• The value of         equal to one corresponds to the full immune 
protection against a virus strain and the value of zero means complete 
susceptibility to it.
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To keep the model simple, we use the 
following two-parametric form of           :
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• Mutation is characterized on population level by rate m.
• It is assumed that, as a result of mutation, hosts acquire 

infectiousness with a new strain and immediate mutations are 
possible between strains which differ from each other only by single 
allele, i.e. are separated by genetic distance equal to one.

Equations describing temporal evolution of the proportion of infectious 
with strains i have the form
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σ is the rate of loss of infectiousness of the host. 
The last term describes mutation processes,                     if the distance 
between strains i and j is equal to one and                      otherwise.0ij jim m= =

ij jim m m= =

• The number of differential equations describing model dynamics is 

• The complexity of the model scales up exponentially with the number 
of loci in the virus genome and as a power function with the number of 
alleles.

( )lnexp 1L AN N
LC N= +



Numerical analysis of fully deterministic model

The virus genotype consists of 5 loci and 3 alleles (the total possible number of 
different strains is 243). The mutation rate, m, for the virus is 10-4/year. The 
infectivity of the virus is high, with the transmission coefficient, β, and recovery 
rate, σ, equal to 100/year and 50/year respectively. The birth-death rate, µ, is 
0.014/year, which corresponds to life expectancy of approximately 70 years.

Simple case: the probability for a person exposed to one strain to be infected 
with another one is the same for all non-discordant strains regardless the genetic 
distance between them and is defined by single cross immunity parameter.
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The model reveals three distinct types of dynamical 
behaviour:
• 0<b<bL, stable fixed point in the system phase space
(fully symmetric equilibrium: all the strains coexist with the 
same prevalence that does not change in time)
• bL<b<bU , complex quasi-periodic and chaotic 
dynamics
• bU<b<1, stable fixed point in the phase space (a 
structure of strain sets each having different prevalence is 
established; the strains from different sets are pairwise 
discordant)



(a) (b)

(c) (d)

(e) (f)

Bifurcation diagrams 
which characterize the 
model dynamics 
depending on the 
cross immunity 
parameter a; the 
parameter b is fixed 
and is equal to
b=0.3 (a);
b=0.4 (b);
b=0.5 (c);
b=0.6 (d);
b=0.7 (e);
b=0.8 (f);



Semi-deterministic model

• Deterministic epidemic models governed by a set of differential 
equations have a major drawback: once emerged, a strain of infectious 
agent may never completely die out regenerating from arbitrarily small 
proportion of infected subpopulation. As a result, in the models with 
regular recruitment of susceptibles recurrent epidemic waves caused 
by the same strains and unrealistically high strain diversity and long life 
times can be observed.
• More biologically realistic models should take into account the 
probability of extinction of the disease once the proportion of infectious 
falls below a certain critical level.

We introduce the extinction threshold according to the following
algorithm: if there is only one virus strain carrier in the population and 
no infection spread takes place during the mean infectious period, this 
strain is eliminated from the simulation, which means that the 
proportion of infectious with this strain is put to zero. Reemergence of 
extinct strains is possible due to mutation.



• Another factor which can play an important role in emergence of 
new strains and extinction of old ones is fluctuations in mutation 
processes.

Considering the probability of a single mutation as small, we 
describe mutation on population level as a stochastic Poisson 
process. We assume, as we did before, that after mutation hosts 
become infectious with mutated strains and immediate mutations can 
occur only between genetically closest strains.

In the modified model the infection and recovery processes as well as 
the processes of birth and death are described deterministically and 
the form of model equations for the parts of population immune to 
various virus strains remains unchanged.
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The equations for the infectious parts of population are superseded by 
the following:

where SMT is a stochastic (Poisson) term describing mutation processes.

Numerical analysis of the semi-deterministic model 
dynamics

Simulations were done for two virus genotypes, one consisting of 10 
loci and 2 alleles and allowing for 210=1024 strains in total and the other 
consisting of 7 loci and 3 alleles allowing for 37=2187 strains.

Cross immunity function  is different from zero only within a rather 
narrow interval                     , where the distance characterizing cross 
immunity decay, dmax, has value of two to three meaning that two to 
three allele substitutions at different loci are enough to escape 
previously acquired immunity.
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Immune resistance to the genetically closest strains is very high and 
characterized by the constant b=0.95.

The dynamics of the system is essentially different from the one of the 
deterministic model.
In particular, regular periodic dynamics and equilibria are superseded 
by epidemic oscillations with chaotically varying amplitudes.
Temporal dynamics of the model possess an obvious trend: the 
average level of infection grows as cross immune response becomes 
more specific, which, in terms of this model, means increasing the 
cross immunity parameter a.

Example time series 
for the proportion of 
infected in one billion 
population (virus 
genotype consists of 
10 loci and 2 alleles)



Mean strain life times in the case of the fully deterministic model can be 
extremely long as no factors, except for long term fitness deficit, 
prevent strains from extinction.
Allowing for extinction and treating mutation as a stochastic process 
eliminates this property of the model leading to mean strain life times of 
1.5 years to several years.

Average strain life time vs cross immunity parameter a (virus 
genotype consists of 10 loci and 2 alleles).
(a) transmission rate: β =100/year, recovery rate: σ =50/year;
(b) transmission rate: β =200/year, recovery rate: σ =100/year

(a) (b)



(a) (b)

Average strain life time vs cross immunity parameter a (virus 
genotype consists of 7 loci and 3 alleles).
(a) transmission rate: β =100/year, recovery rate: σ =50/year;
(b) transmission rate: β =200/year, recovery rate: σ =100/year



More detailed information about strain life times can be obtained from 
distribution and density functions. Cumulative distribution function Fs (t)
is defined as the percentage of strains having life times less than or 
equal to t and density function fs(t) is the percentage of strains whose 
life times fall within the interval (t, t+δt), where δt is a constant, which 
we assume to be equal to one year.

Strain life time distribution, Fs (t) (blue 
curve), and density, fs(t) (red curve), 
functions plotted for 90 million population 
(β =200/year and σ =100/year).

For the case of β =100/year and σ =50/year, about 84% of strains for 1 billion 
population and 88% of strains for 90 million population have their life times 
lower than 5 years. For the case of β =200/year and σ =100/year this 
percentage is 95% and 96% for 1 billion and 90 million populations 
respectively.



To characterize diversity of virus strains in accordance with their 
relative prevalences at a time t, the following weighted function is used:

, where yk(t) and and y(max)(t) are respectively 
the proportion of infected with strain k and maximum proportion of 
infected at a time t and summation is done over all prevalent strains.
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• Average weighted number of co-circulating strains is almost 
independent of the population size and the cross immunity parameter a, 
but is influenced by the values of infection and recovery rates and also 
by the genotype.

• Infectious agents of diseases characterized by higher transmissibility 
and recovery rates have less diversity and slightly less extinction rates 
compared to less transmissible and more prolonged infections.

For different  transmission and recovery rates the difference in strain diversity 
is about 25% in the case of 10 loci 2 allele genotype and 30% in the case of 7 
loci 3 allele genotype



(a) (b)

Prevalence-weighted numbers of strains circulating yearly vs cross 
immunity parameter a. Color triangles correspond to the data for 
diseases with transmission and recovery rate equal to β = 100/year 
and σ = 50/year, circles correspond to the data for diseases with β = 
200/year and σ = 100/year. Graph (a) is plotted for 10 locus 2 allele 
genotype and graph (b) is for 7 locus 3 allele genotype.



In this work we study a class of deterministic multi-strain epidemic models, which 
is an extension of the class first outlined by Gupta et al (Science, 1998. 280: p. 
912-915) The extension includes description of mutation at deterministic level and 
cross immunity degree varying as a function of the number of novel antigenic 
alleles in new strains. 

Dynamics of this model are much more complicated compared to the original 
model and are determined by the interplay of two parameters defining the function 
of cross immune response γ (d).

• At low maximum values of cross immune response function γ (d) (<0.5) 
dynamics of the model are characterized by fully symmetric equilibria and low 
amplitude chaos. 
• At intermediate and high maximum values of γ(d)(~>0.5) the dynamics are 
more diverse and include "windows" of regular and quasi-periodic regimes in 
chaotic areas as well as equilibria of a special type related to the self-organization 
of virus strains into pairwise discordant sets with different prevalences. 
Equilibrium solutions corresponding to the discordant strain structures are 
unstable with respect to variations of function γ(d).

Conclusions



We make further extension of the deterministic model class taking into account 
processes of extinction and stochasticity of mutation.  These two factors play 
crucial role in making biologically realistic estimates of mean strain life times and 
diversity in multi-strain systems.

• Population size has noticeable influence on strain life times for the diseases 
with moderate transmission rate (β =100/year) and duration of infection equal to 
a week approximately (σ =50/year). The difference between strain life times in 1 
billion and in 90 million populations is about 1 year. For highly infectious 
diseases (β =200/year) with the recovery period of about 3.7 days (σ =100/year) 
the difference of strain life times in the populations of different sizes is only 3 
months.
• Maximum life times of strains can be rather high (about a few decades). 
However the ratio of the number of long living strains to the number of all 
prevalent strains is negligible and the vast majority of strains have life times less 
than 5 years.
• Prevalence-weighted numbers of strains circulating yearly are approximately
the same for all considered population sizes and are mainly defined by values of 
the transmission and recovery rates and the genotype (number of loci and 
alleles in modelled strains). Strains of diseases with higher transmission and 
recovery rates exhibit less diversity compared to less transmissible but more 
durational infections.


