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Distributed mean estimation 

Statistical estimation: 

– Unknown parameter 𝜃.  

– Inputs to machines: i.i.d. data 
points ∼ 𝐷𝜃. 

– Output estimator 𝜃 . 

Objectives: 

– Low communication 𝐶 = Π . 

– Small loss 

𝑅 ≔ 𝔼 𝜃 − 𝜃
2

. 
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Blackboard 

Big Data! 
Distributed Storage  

and Processing small 
data 

𝜃  

small 
data 



Distributed sparse Gaussian 
mean estimation 

• Ambient dimension 𝑑. 

• Sparsity parameter 𝑘: 𝜃 0 ≤ 𝑘. 

• Number of machines 𝑚. 

• Each machine holds 𝑛 samples.  

• Standard deviation 𝜎. 

• Thus each sample is a vector  

𝑋𝑗
(𝑡)

∼ 𝒩 𝜃1, 𝜎
2 , … ,𝒩 𝜃𝑑, 𝜎

2 ∈ ℝ𝑑 
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Goal: 
estimate

(𝜃1, … , 𝜃𝑑) 



• Ambient dimension 𝑑. 

• Sparsity parameter 𝑘: 𝜃 0 ≤ 𝑘. 

• Number of machines 𝑚. 

• Each machine holds 𝑛 samples.  

• Standard deviation 𝜎. 

• Thus each sample is a vector  

𝑋𝑗
(𝑡)

∼ 𝒩 𝜃1, 𝜎
2 , … ,𝒩 𝜃𝑑, 𝜎

2 ∈ ℝ𝑑 
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Higher value makes 
estimation: 

harder 

harder 

easier 

easier* 

harder 

Goal: 
estimate

(𝜃1, … , 𝜃𝑑) 



Distributed sparse Gaussian 
mean estimation 

• Main result: if Π = C, then  

𝑅 ≥ Ω max
𝜎2𝑑𝑘

𝑛𝐶
,
𝜎2𝑘

𝑛𝑚
 

• Tight up to a log 𝑑 factor 
[GMN14]. Up to a const. 
factor in the dense case.  

• For optimal performance, 
𝐶 ≳ 𝑚𝑑 (not 𝑚𝑘) is needed! 
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• 𝑑 – dim  
• 𝑘 – sparsity 
• 𝑚 – machine 
• 𝑛 – samp. each 
• 𝜎 – deviation 
• 𝑅 – sq. loss  

Statistical 
limit 



Prior work (partial list) 

• [Zhang-Duchi-Jordan-Wainwright’13]: the case 
when 𝑑 = 1 and general communication; and the 
dense case for simultaneous-message protocols.  

• [Shamir’14]: Implies the result for 𝑘 = 1 in a 
restricted communication model. 

• [Duchi-Jordan-Wainwright-Zhang’14, Garg-Ma-
Nguyen’14]: the dense case (up to logarithmic 
factors).  

• A lot of recent work on communication-efficient 
distributed learning.  
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Reduction from Gaussian mean 
detection 

• 𝑅 ≥ Ω max
𝜎2𝑑𝑘

𝑛𝐶
,
𝜎2𝑘

𝑛𝑚
 

• Gaussian mean detection 

– A one-dimensional problem.  

– Goal: distinguish between 𝜇0 = 𝒩 0, 𝜎2  and 
𝜇1 = 𝒩 𝛿, 𝜎2 . 

– Each player gets 𝑛 samples. 
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• Assume 𝑅 ≪ max
𝜎2𝑑𝑘

𝑛𝐶
,
𝜎2𝑘

𝑛𝑚
 

• Distinguish between 𝜇0 = 𝒩 0, 𝜎2  and 
𝜇1 = 𝒩 𝛿, 𝜎2 . 

• Theorem: If can attain 𝑅 ≤
1

16
𝑘𝛿2 in the 

estimation problem using 𝐶 
communication, then we can solve the 
detection problem at ∼ 𝐶/𝑑 min-
information cost.  

• Using 𝛿2 ≪ 𝜎2𝑑/(𝐶 𝑛), get detection using 

𝐼 ≪
𝜎2

𝑛 𝛿2 min-information cost. 
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The detection problem 

• Distinguish between 𝜇0 = 𝒩 0,1  and 
𝜇1 = 𝒩 𝛿, 1 . 

• Each player gets 𝑛 samples. 

• Want this to be impossible using 𝐼 ≪
1

𝑛 𝛿2 

min-information cost. 
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The detection problem 

• Distinguish between 𝜇0 = 𝒩 0,1  and 
𝜇1 = 𝒩 𝛿, 1 . 

• Distinguish between 𝜇0 = 𝒩 0,
1

𝑛
 and 

𝜇1 = 𝒩 𝛿,
1

𝑛
. 

• Each player gets 𝑛 samples. one sample. 

• Want this to be impossible using 𝐼 ≪
1

𝑛 𝛿2 

min-information cost. 
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The detection problem 

• By scaling everything by 𝑛 (and replacing 
𝛿 with 𝛿 𝑛).  

• Distinguish between 𝜇0 = 𝒩 0,1  and 
𝜇1 = 𝒩 𝛿, 1 . 

• Each player gets one sample. 

• Want this to be impossible using 𝐼 ≪
1

𝛿2 

min-information cost. 
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Tight (for 𝑚 large enough, 
otherwise task impossible) 



Information cost 
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Blackboard Π 

𝜇𝑣 = 𝒩 𝛿𝑉, 1  𝑉 

𝑋1 ∼ 𝜇𝑣  𝑋2 ∼ 𝜇𝑣 𝑋𝑚 ∼ 𝜇𝑣  

𝐼𝐶 𝜋 := 𝐼(Π; 𝑋1𝑋2 …𝑋𝑚) 



Min-Information cost 
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Blackboard Π 

𝑋1 ∼ 𝜇𝑣  𝑋2 ∼ 𝜇𝑣 𝑋𝑚 ∼ 𝜇𝑣  

𝜇𝑉 = 𝒩 𝛿𝑉, 1  𝑉 

𝑚𝑖𝑛𝐼𝐶 𝜋 ≔ min
𝑣∈{0,1}

𝐼(Π; 𝑋1𝑋2 …𝑋𝑚|𝑉 = 𝑣)  



Min-Information cost 

𝑚𝑖𝑛𝐼𝐶 𝜋 ≔ min
𝑣∈{0,1}

𝐼(Π; 𝑋1𝑋2 …𝑋𝑚|𝑉 = 𝑣)  

• We will want this quantity to be Ω
1

𝛿2 . 

• Warning: it is not the same thing as 
𝐼(Π; 𝑋1𝑋2 …𝑋𝑚|𝑉)= 𝔼𝑣∼𝑉 𝐼(Π; 𝑋1𝑋2 …𝑋𝑚|𝑉 = 𝑣)  

because one case can be much smaller than the 
other.  

• In our case, the need to use 𝑚𝑖𝑛𝐼𝐶 instead of 
𝐼𝐶 happens because of the sparsity.  
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Strong data processing inequality 
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Blackboard Π 

𝑋1 ∼ 𝜇𝑣  𝑋2 ∼ 𝜇𝑣 𝑋𝑚 ∼ 𝜇𝑣  

𝜇𝑣 = 𝒩 𝛿𝑉, 1  𝑉 

Fact: Π ≥ 𝐼 Π; 𝑋1𝑋2 …𝑋𝑚 =  𝐼(Π; 𝑋𝑖|𝑋<𝑖)𝑖  



Strong data processing inequality 

16 

• 𝜇𝑣 = 𝒩 𝛿𝑉, 1 ; suppose 𝑉 ∼ 𝐵1/2. 

• For each 𝑖, 𝑉 − 𝑋𝑖 − Π is a Markov chain.  

• Intuition: “𝑋𝑖  contains little information about 
𝑉; no way to learn this information except by 
learning a lot about 𝑋𝑖”. 

• Data processing: 𝐼 𝑉; Π ≤ 𝐼 𝑋𝑖; Π . 

• Strong Data Processing: 𝐼 𝑉; Π ≤ 𝛽 ⋅ 𝐼 𝑋𝑖; Π  
for some 𝛽 = 𝛽(𝜇0, 𝜇1) < 1. 

 



Strong data processing inequality 
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• 𝜇𝑣 = 𝒩 𝛿𝑉, 1 ; suppose 𝑉 ∼ 𝐵1/2. 

• For each 𝑖, 𝑉 − 𝑋𝑖 − Π is a Markov chain.  

• Strong Data Processing: 𝐼 𝑉; Π ≤ 𝛽 ⋅ 𝐼 𝑋𝑖; Π  
for some 𝛽 = 𝛽(𝜇0, 𝜇1) < 1. 

• In this case (𝜇0 = 𝒩 0,1 , 𝜇1 = 𝒩 𝛿, 1 ):  

𝛽 𝜇0, 𝜇1 ∼
𝐼 𝑉; sign 𝑋𝑖

𝐼 𝑋𝑖; sign(𝑋𝑖)
∼ 𝛿2 



“Proof” 
• 𝜇𝑣 = 𝒩 𝛿𝑉, 1 ; suppose 𝑉 ∼ 𝐵1/2. 

• Strong Data Processing: 𝐼 𝑉; Π ≤ 𝛿2 ⋅ 𝐼 𝑋𝑖; Π  

• We know 𝐼 𝑉; Π = Ω(1). 

Π ≥ 𝐼 Π; 𝑋1𝑋2 …𝑋𝑚 ≳  𝐼 Π;𝑋𝑖

𝑖

≥
1

𝛿2
… 

 "𝐼𝑛𝑓𝑜 Π 𝑐𝑜𝑛𝑣𝑒𝑦𝑠 𝑎𝑏𝑜𝑢𝑡 𝑉 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑝𝑙𝑎𝑦𝑒𝑟 𝑖"

𝑖

≳ 

 
1

𝛿2 𝐼 𝑉; Π = Ω
1

𝛿2  
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Q.E.D! 



Issues with the proof 

• The right high level idea.  

• Two main issues: 

– Not clear how to deal with additivity over 
coordinates. 

– Dealing with 𝑚𝑖𝑛𝐼𝐶 instead of 𝐼𝐶. 

19 



If the picture were this… 
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Blackboard Π 

𝑋1 ∼ 𝜇𝑣  𝑋2 ∼ 𝜇0 𝑋𝑚 ∼ 𝜇0  

𝜇𝑣 = 𝒩 𝛿𝑉, 1  𝑉 

Then indeed 𝐼 Π; 𝑉 ≤ 𝛿2 ⋅ 𝐼 Π; 𝑋1 . 



Hellinger distance 

• Solution to additivity: using Hellinger 

distance  𝑓 𝑥 − 𝑔 𝑥
2
𝑑𝑥

Ω
 

• Following from [Jayram’09].  
ℎ2 Π𝑉=0, Π𝑉=1 ∼ 𝐼 𝑉; Π = Ω 1  

• ℎ2 Π𝑉=0, Π𝑉=1  decomposes into 𝑚 
scenarios as above using the fact that Π is 
a protocol.  
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𝑚𝑖𝑛𝐼𝐶 

• Dealing with 𝑚𝑖𝑛𝐼𝐶 is more technical. Recall: 

• 𝑚𝑖𝑛𝐼𝐶 𝜋 ≔ min
𝑣∈{0,1}

𝐼(Π; 𝑋1𝑋2 …𝑋𝑚|𝑉 = 𝑣)  

• Leads to our main technical statement: 
“Distributed Strong Data Processing Inequality” 

Theorem: Suppose Ω 1 ⋅ 𝜇0 ≤ 𝜇1 ≤ 𝑂 1 ⋅ 𝜇0, 
and let 𝛽(𝜇0, 𝜇1) be the SDPI constant. Then  

ℎ2 Π𝑉=0, Π𝑉=1 ≤ 𝑂 𝛽 𝜇0, 𝜇1 ⋅ 𝑚𝑖𝑛𝐼𝐶(𝜋) 

22 



Putting it together  

Theorem: Suppose Ω 1 ⋅ 𝜇0 ≤ 𝜇1 ≤ 𝑂 1 ⋅ 𝜇0, 
and let 𝛽(𝜇0, 𝜇1) be the SDPI constant. Then  

ℎ2 Π𝑉=0, Π𝑉=1 ≤ 𝑂 𝛽 𝜇0, 𝜇1 ⋅ 𝑚𝑖𝑛𝐼𝐶(𝜋) 

• With 𝜇0 = 𝒩 0,1 , 𝜇1 = 𝒩 𝛿, 1 , 𝛽 ∼ 𝛿2, we 
get Ω 1 = ℎ2 Π𝑉=0, Π𝑉=1 ≤ 𝛿2 ⋅ 𝑚𝑖𝑛𝐼𝐶(𝜋) 

• Therefore, 𝑚𝑖𝑛𝐼𝐶 𝜋 = Ω
1

𝛿2 . 
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Putting it together  

Theorem: Suppose Ω 1 ⋅ 𝜇0 ≤ 𝜇1 ≤ 𝑂 1 ⋅ 𝜇0, 
and let 𝛽(𝜇0, 𝜇1) be the SDPI constant. Then  

ℎ2 Π𝑉=0, Π𝑉=1 ≤ 𝑂 𝛽 𝜇0, 𝜇1 ⋅ 𝑚𝑖𝑛𝐼𝐶(𝜋) 

• With 𝜇0 = 𝒩 0,1 , 𝜇1 = 𝒩 𝛿, 1  

• Ω 1 ⋅ 𝜇0 ≤ 𝜇1 ≤ 𝑂 1 ⋅ 𝜇0 fails!! 

• Need an additional truncation step. Fortunately, 
the failure happens far in the tails.  
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Essential! 



Gaussian mean 
detection (𝑛 → 1) 
sample (𝑚𝑖𝑛𝐼𝐶) 

A direct sum 
argument 

Summary 
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Sparse Gaussian 
mean estimation 

“Only get 𝛿2 bits 
toward detection 

per bit of 𝑚𝑖𝑛𝐼𝐶”⇒ 

an 
1

𝛿2 lower bound 
Reduction 
[ZDJW’13] 

Distributed 
sparse linear 

regression 

Hellinger 
distance 

Strong data 
processing 



Distributed sparse linear regression 

• Each machine gets 𝑛 data of the form (𝐴𝑗 , 𝑦𝑗), 

where 𝑦𝑗 = 𝐴𝑗 , 𝜃 + 𝑤𝑗, 𝑤𝑗 ∼ 𝒩 0, 𝜎2  

• Promised that 𝜃 is 𝑘-sparse: 𝜃 0 ≤ 𝑘. 

• Ambient dimension 𝑑. 

• Loss 𝑅 = 𝔼 𝜃 − 𝜃
2

. 

• How much communication to achieve statistically 
optimal loss? 
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• Promised that 𝜃 is 𝑘-sparse: 𝜃 0 ≤ 𝑘. 

• Ambient dimension 𝑑. Loss 𝑅 = 𝔼 𝜃 − 𝜃
2

. 

• How much communication to achieve statistically 
optimal loss? 

• We get: 𝐶 = Ω 𝑚 ⋅ min (𝑛, 𝑑)  (small 𝑘 doesn’t 
help).  

• [Lee-Sun-Liu-Taylor’15]: under some conditions 
𝐶 = 𝑂 𝑚 ⋅ 𝑑  suffice.  
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Distributed sparse linear regression 



A new upper bound (time permitting) 

• For the one-dimensional distributed 
Gaussian estimation (generalizes to 𝑑 
dimensions trivially).  

• For optimal statistical performance, Ω 𝑚  is 
the lower bound.  

• We give a simple simultaneous-message 
upper bound of 𝑂(𝑚). 

• Previously: multi-round 𝑂(𝑚) [GMN’14] or 
simultaneous 𝑂(𝑚 log 𝑛) [folklore].  
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A new upper bound (time permitting) 

(Stylized) main idea: 

• Each machine wants to send the empirical 
average 𝑦𝑖 ∈ [0,1] of its input.  

• Then the average 
1

𝑚
 𝑦𝑖

𝑚
𝑖=1 = 𝑦  is computed.  

• Instead of 𝑦𝑖 each machine sends 𝑏𝑖 sampled 
from Bernoulli distribution 𝐵𝑦𝑖

. 

• Form the estimate 𝑦  =
1

𝑚
 𝑏𝑖

𝑚
𝑖=1 . 

• “Good enough” if var 𝑦𝑖 ∼ 1. 
29 



Open problems 

• Closing the gap for the sparse linear 
regression problem. 

• Other statistical questions in the 
distributed framework. More general 
theorems? 

• Can Strong Data Processing be applied to 
the two-party Gap Hamming Distance 
problem? 

30 



• http://csnexus.info/ 
Organizers 

• Mark Braverman (Princeton University)  

• Bobak Nazer (Boston University) 

• Anup Rao (University of Washington) 

• Aslan Tchamkerten, General Chair (Telecom Paristech) 
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• http://csnexus.info/ 
Primary themes 

• Distributed Computation and Communication 

• Fundamental Inequalities and Lower Bounds 

• Inference Problems 

• Secrecy and Privacy 
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Institut Henri Poincaré 
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http://csnexus.info/ 
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Thank You! 


