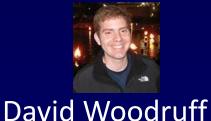
Communication Lower Bounds for Statistical Estimation Problems via a Distributed Data Processing Inequality

Mark Braverman

Ankit Garg

Tengyu Ma

Huy Nguyen [



DIMACS Workshop on Big Data through the Lens of Sublinear Algorithms Aug 28, 2015

Center for Discrete Mathematics & Theoretical Computer Science Founded as a National Science Foundation Science and Technology Center

Distributed mean estimation

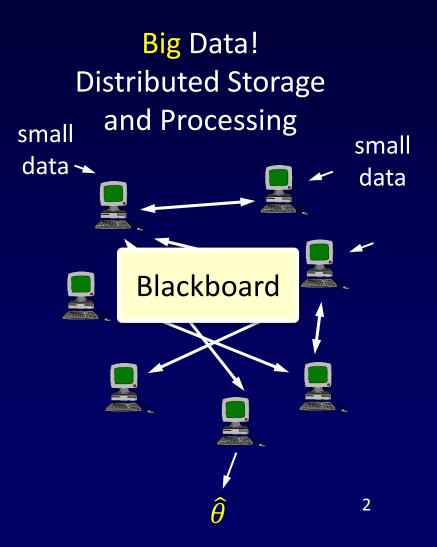
Statistical estimation:

- Unknown parameter θ .
- Inputs to machines: i.i.d. data points $\sim D_{\theta}$.
- Output estimator $\hat{\theta}$.

Objectives:

- Low communication $C = |\Pi|$.
- Small loss

 $R \coloneqq \mathbb{E}\left[\left\|\widehat{\theta} - \theta\right\|^2\right].$



Goal:
estimate
 $(\theta_1, \dots, \theta_d)$ uted sparse Gaussian
nean estimation

- Ambient dimension *d*.
- Sparsity parameter $k: \|\theta\|_0 \le k$.
- Number of machines *m*.
- Each machine holds *n* samples.
- Standard deviation σ .
- Thus each sample is a vector

 $X_j^{(t)} \sim \left(\mathcal{N}(\theta_1, \sigma^2), \dots, \mathcal{N}(\theta_d, \sigma^2) \right) \in \mathbb{R}^d$

Goal: estimate $(\theta_1, \dots, \theta_d)$

Higher value makes estimation:

easier*

easier

harder

- Ambient dimension *d*. *harder*
- Sparsity parameter $k: \|\theta\|_0 \le k$. harder
- Number of machines *m*.
- Each machine holds *n* samples.
- Standard deviation *σ*.
- Thus each sample is a vector

 $X_j^{(t)} \sim \left(\mathcal{N}(\theta_1, \sigma^2), \dots, \mathcal{N}(\theta_d, \sigma^2) \right) \in \mathbb{R}^d$

Distributed sparse Gaussian mean estimati Statistical limit • Main result: if $|\Pi| = C$, then $R \ge \Omega\left(\max\left(\frac{\sigma^2 dk}{nC} \left| \frac{\sigma^2 k}{nm} \right| \right)\right)$

- Tight up to a log *d* factor [GMN14]. Up to a const. factor in the dense case.
- For optimal performance, $C \gtrsim md$ (not mk) is needed!

- <u>d</u> dim
- <u>k</u> sparsity
- *m* machine
- n samp. each
- σ deviation
- R sq. loss

Prior work (partial list)

- [Zhang-Duchi-Jordan-Wainwright'13]: the case when d = 1 and general communication; and the dense case for simultaneous-message protocols.
- [Shamir'14]: Implies the result for k = 1 in a restricted communication model.
- [Duchi-Jordan-Wainwright-Zhang'14, Garg-Ma-Nguyen'14]: the dense case (up to logarithmic factors).
- A lot of recent work on communication-efficient distributed learning.

Reduction from Gaussian mean detection

•
$$R \ge \Omega\left(\max\left(\frac{\sigma^2 dk}{nC}, \frac{\sigma^2 k}{nm}\right)\right)$$

- Gaussian mean detection
 - A one-dimensional problem.
 - Goal: distinguish between $\mu_0 = \mathcal{N}(0, \sigma^2)$ and $\mu_1 = \mathcal{N}(\delta, \sigma^2)$.
 - Each player gets *n* samples.

- Assume $R \ll \max\left(\frac{\sigma^2 dk}{nC}, \frac{\sigma^2 k}{nm}\right)$
- Distinguish between $\mu_0 = \mathcal{N}(0, \sigma^2)$ and $\mu_1 = \mathcal{N}(\delta, \sigma^2)$.
- <u>Theorem</u>: If can attain $R \leq \frac{1}{16} k \delta^2$ in the estimation problem using *C* communication, then we can solve the detection problem at ~ *C*/*d* min-information cost.
- Using $\delta^2 \ll \sigma^2 d/(C n)$, get detection using $I \ll \frac{\sigma^2}{n \, \delta^2}$ min-information cost.

The detection problem

- Distinguish between $\mu_0 = \mathcal{N}(0,1)$ and $\mu_1 = \mathcal{N}(\delta, 1)$.
- Each player gets *n* samples.
- Want this to be impossible using $I \ll \frac{1}{n \, \delta^2}$ min-information cost.

The detection problem

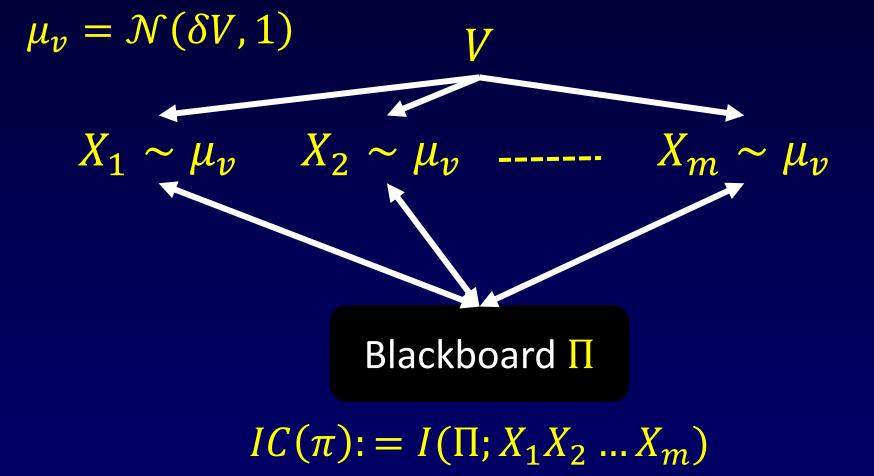
- Distinguish between $\mu_0 = \mathcal{N}(0,1)$ and $\mu_1 = \mathcal{N}(\delta,1)$.
- Distinguish between $\mu_0 = \mathcal{N}\left(0, \frac{1}{n}\right)$ and $\mu_1 = \mathcal{N}\left(\delta, \frac{1}{n}\right)$.
- Each player gets *n*-samples. one sample.
- Want this to be impossible using $I \ll \frac{1}{n \, \delta^2}$ min-information cost.

The detection problem

- By scaling everything by \sqrt{n} (and replacing δ with $\delta\sqrt{n}$).
- Distinguish between $\mu_0 = \mathcal{N}(0,1)$ and $\mu_1 = \mathcal{N}(\delta, 1)$.
- Each player gets one sample.
- Want this to be impossible using $I \ll \frac{1}{\delta^2}$ min-information cost.

Tight (for *m* large enough, otherwise task impossible)

Information cost

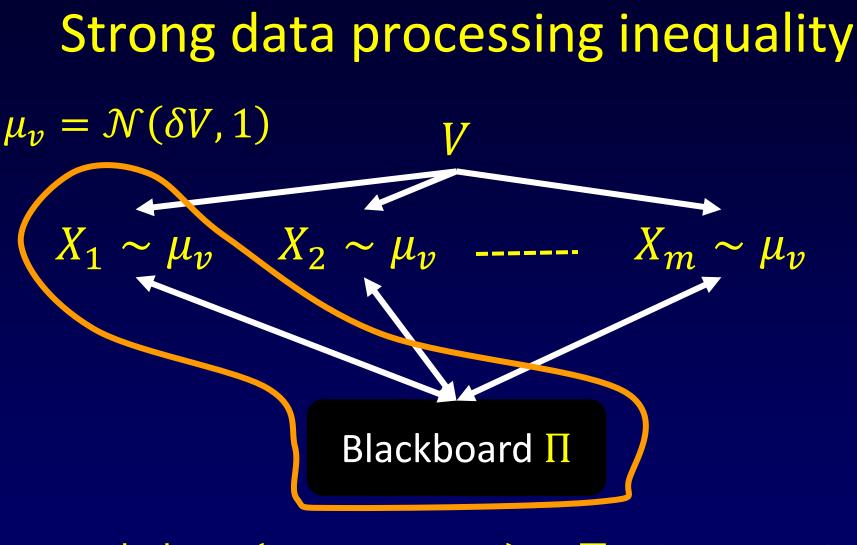


Min-Information cost $\mu_V = \mathcal{N}(\delta V, 1)$ $X_1 \sim \mu_{\nu} \quad X_2 \sim \mu_{\nu} \quad \dots$ $X_m \sim \mu_{\nu}$ Blackboard **П** $minIC(\pi) \coloneqq \min_{v \in \{0,1\}} I(\Pi; X_1 X_2 \dots X_m | V = v)$

Min-Information cost

 $\overline{minIC}(\pi) \coloneqq \min_{v \in \{0,1\}} I(\Pi; X_1 X_2 \dots X_m | V = v)$

- We will want this quantity to be $\Omega\left(\frac{1}{\delta^2}\right)$.
- Warning: it is not the same thing as
 I(Π; X₁X₂ ... X_m|V)= E_{v~V} I(Π; X₁X₂ ... X_m|V = v)
 because one case can be much smaller than the
 other.
- In our case, the need to use *minIC* instead of *IC* happens because of the sparsity.



Fact: $|\Pi| \ge I(\Pi; X_1 X_2 \dots X_m) = \sum_i I(\Pi; X_i | X_{< i})$

Strong data processing inequality

- $\mu_{v} = \mathcal{N}(\delta V, 1)$; suppose $V \sim B_{1/2}$.
- For each *i*, $V X_i \Pi$ is a Markov chain.
- Intuition: "X_i contains little information about V; no way to learn this information except by learning a lot about X_i".
- Data processing: $I(V; \Pi) \leq I(X_i; \Pi)$.
- Strong Data Processing: $I(V; \Pi) \leq \beta \cdot I(X_i; \Pi)$ for some $\beta = \beta(\mu_0, \mu_1) < 1$.

Strong data processing inequality

• $\mu_{v} = \mathcal{N}(\delta V, 1)$; suppose $V \sim B_{1/2}$.

- For each *i*, $V X_i \Pi$ is a Markov chain.
- Strong Data Processing: $I(V; \Pi) \leq \beta \cdot I(X_i; \Pi)$ for some $\beta = \beta(\mu_0, \mu_1) < 1$.
- In this case $(\mu_0 = \mathcal{N}(0,1), \mu_1 = \mathcal{N}(\delta,1))$: $\beta(\mu_0,\mu_1) \sim \frac{I(V; \operatorname{sign}(X_i))}{I(X_i; \operatorname{sign}(X_i))} \sim \delta^2$

"Proof"

- $\mu_{v} = \mathcal{N}(\delta V, 1)$; suppose $V \sim B_{1/2}$.
- Strong Data Processing: $I(V; \Pi) \leq \delta^2 \cdot I(X_i; \Pi)$
- We know $I(V; \Pi) = \Omega(1)$.

 $|\Pi| \ge I(\Pi; X_1 X_2 \dots X_m) \ge \sum I(\Pi; X_i) \ge \frac{1}{\delta^2} \dots$

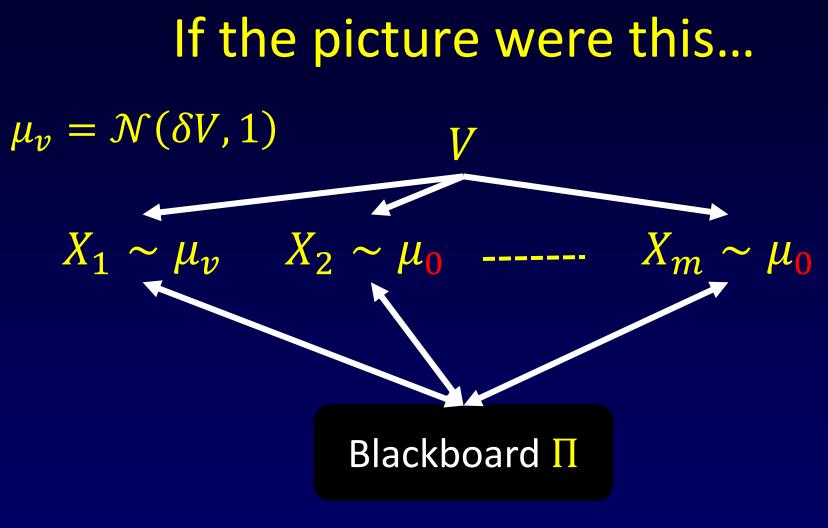
"Info Π conveys about V through player i" \gtrsim

Q.E.D!

 $\frac{1}{\delta^2}I(V;\Pi) = \Omega\left(\frac{1}{\delta^2}\right)$

Issues with the proof

- The right high level idea.
- Two main issues:
 - Not clear how to deal with additivity over coordinates.
 - Dealing with *minIC* instead of *IC*.



Then indeed $I(\Pi; V) \leq \delta^2 \cdot I(\Pi; X_1)$.

Hellinger distance

- Solution to additivity: using Hellinger distance $\int_{\Omega} (\sqrt{f(x)} \sqrt{g(x)})^2 dx$
- Following from [Jayram'09]. $h^2(\Pi_{V=0}, \Pi_{V=1}) \sim I(V; \Pi) = \Omega(1)$
- h²(Π_{V=0}, Π_{V=1}) decomposes into m scenarios as above using the fact that Π is a protocol.

minIC

- Dealing with *minIC* is more technical. Recall:
- $minIC(\pi) \coloneqq \min_{v \in \{0,1\}} I(\Pi; X_1X_2 \dots X_m | V = v)$
- Leads to our main technical statement: "Distributed Strong Data Processing Inequality" <u>Theorem</u>: Suppose $\Omega(1) \cdot \mu_0 \leq \mu_1 \leq O(1) \cdot \mu_0$, and let $\beta(\mu_0, \mu_1)$ be the SDPI constant. Then $h^2(\Pi_{V=0}, \Pi_{V=1}) \leq O(\beta(\mu_0, \mu_1)) \cdot minIC(\pi)$

Putting it together

<u>Theorem</u>: Suppose $\Omega(1) \cdot \mu_0 \leq \mu_1 \leq O(1) \cdot \mu_0$, and let $\beta(\mu_0, \mu_1)$ be the SDPI constant. Then $h^2(\Pi_{V=0}, \Pi_{V=1}) \leq O(\beta(\mu_0, \mu_1)) \cdot minIC(\pi)$

- With $\mu_0 = \mathcal{N}(0,1), \mu_1 = \mathcal{N}(\delta,1), \beta \sim \delta^2$, we get $\Omega(1) = h^2(\Pi_{V=0}, \Pi_{V=1}) \leq \delta^2 \cdot minIC(\pi)$
- Therefore, $minIC(\pi) = \Omega\left(\frac{1}{\delta^2}\right)$.

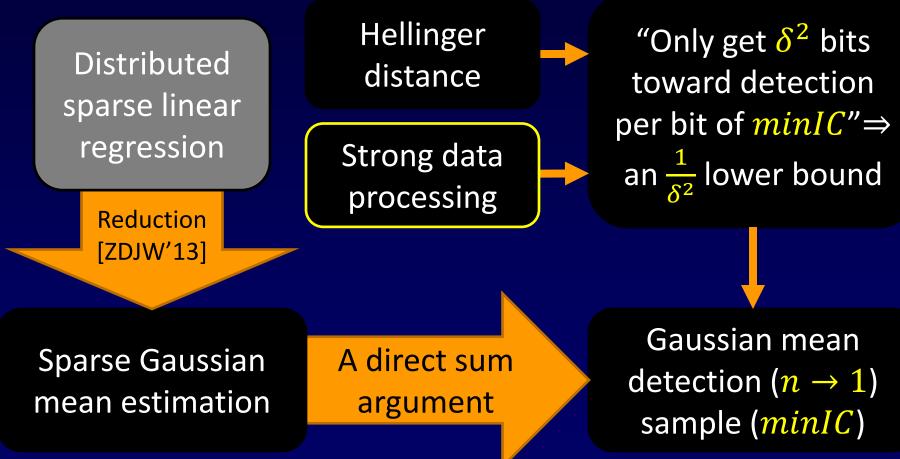
Essential!

Putting it together

<u>Theorem</u>: Suppose $\Omega(1) \cdot \mu_0 \leq \mu_1 \leq O(1) \cdot \mu_0$, and let $\beta(\mu_0, \mu_1)$ be the SDPI constant. Then $h^2(\Pi_{V=0}, \Pi_{V=1}) \leq O(\beta(\mu_0, \mu_1)) \cdot minIC(\pi)$

- With $\mu_0 = \mathcal{N}(0,1), \mu_1 = \mathcal{N}(\delta,1)$
- $\Omega(1) \cdot \mu_0 \leq \mu_1 \leq O(1) \cdot \mu_0$ fails!!
- Need an additional truncation step. Fortunately, the failure happens far in the tails.

Summary



Distributed sparse linear regression

- Each machine gets n data of the form (A^{j}, y^{j}) , where $y^{j} = \langle A^{j}, \theta \rangle + w^{j}, w^{j} \sim \mathcal{N}(0, \sigma^{2})$
- Promised that θ is k-sparse: $\|\theta\|_0 \leq k$.
- Ambient dimension *d*.
- Loss $R = \mathbb{E}\left[\left\|\widehat{\theta} \theta\right\|^2\right]$.
- How much communication to achieve statistically optimal loss?

Distributed sparse linear regression

- Promised that θ is k-sparse: $\|\theta\|_0 \leq k$.
- Ambient dimension *d*. Loss $R = \mathbb{E} \|\hat{\theta} \theta\|^2$.
- How much communication to achieve statistically optimal loss?
- We get: $C = \Omega(m \cdot \min(n, d))$ (small k doesn't help).
- [Lee-Sun-Liu-Taylor'15]: under some conditions $C = O(m \cdot d)$ suffice.

A new upper bound (time permitting)

- For the one-dimensional distributed Gaussian estimation (generalizes to d dimensions trivially).
- For optimal statistical performance, Ω(m) is the lower bound.
- We give a simple simultaneous-message upper bound of O(m).
- Previously: multi-round O(m) [GMN'14] or simultaneous O(m log n) [folklore].

A new upper bound (time permitting) (Stylized) main idea:

- Each machine wants to send the empirical average $y_i \in [0,1]$ of its input.
- Then the average $\frac{1}{m} \sum_{i=1}^{m} y_i = \hat{y}$ is computed.
- Instead of y_i each machine sends b_i sampled from Bernoulli distribution B_{y_i} .
- Form the estimate $\hat{\hat{y}} = \frac{1}{m} \sum_{i=1}^{m} b_i$.
- "Good enough" if $var(y_i) \sim 1$.

Open problems

- Closing the gap for the sparse linear regression problem.
- Other statistical questions in the distributed framework. More general theorems?
- Can Strong Data Processing be applied to the two-party Gap Hamming Distance problem?

Nexus of Information and Computation Theories

Institut Henri Poincaré Spring 2016 Thematic Program

January 25 - April 1, 2016 Paris, France

http://csnexus.info/

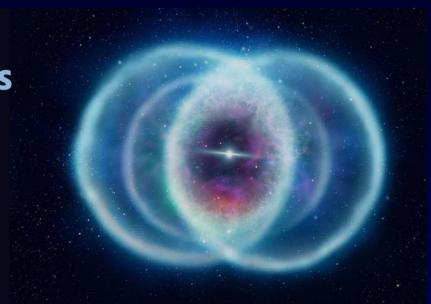
Organizers

- Mark Braverman (Princeton University)
- Bobak Nazer (Boston University)
- Anup Rao (University of Washington)
- Aslan Tchamkerten, General Chair (Telecom Paristech)

Nexus of Information and Computation Theories

Institut Henri Poincaré Spring 2016 Thematic Program

January 25 - April 1, 2016 Paris, France



http://csnexus.info/

Primary themes

- Distributed Computation and Communication
- Fundamental Inequalities and Lower Bounds
- Inference Problems
- Secrecy and Privacy

Institut Henri Poincaré

http://csnexus.info/

Thank You!