Optimisation While Streaming

Amit Chakrabarti

Joint work with S. Kale, A. Wirth

DIMACS Workshop on Big Data
Through the Lens of Sublinear Algorithms, Aug 2015

Combinatorial Optimisation Problems

- 1950s, 60s: Operations research
- 1970s, 80s: NP-hardness
- 1990s, 2000s: Approximation algorithms, hardness of approximation
- 2010s: Space-constrained settings, e.g., streaming

Maximum Matching

Maximum Matching

The cardinality version

Maximum Matching

The weighted version

Graph Streams: Maximum Matching, Generalisations

Maximum cardinality matching (MCM)

- Input: stream of edges $(u, v) \in[n] \times[n]$
- Describes graph $G=(V, E)$: n vertices, m edges, undirected, simple
- Each edge appears exactly once in stream
- Goal
- Output a matching $M \subseteq E$, with $|M|$ maximal

Graph Streams: Maximum Matching, Generalisations

Maximum cardinality matching (MCM)

- Input: stream of edges $(u, v) \in[n] \times[n]$
- Describes graph $G=(V, E)$: n vertices, m edges, undirected, simple
- Each edge appears exactly once in stream
- Goal
- Output a matching $M \subseteq E$, with $|M|$ maximal
- Use sublinear (in m) working memory
- Ideally $O(n$ polylog $n)$... "semi-streaming"
- Need $\Omega(n \log n)$ to store M

Graph Streams: Maximum Matching, Generalisations

Maximum cardinality matching (MCM)

- Input: stream of edges $(u, v) \in[n] \times[n]$
- Describes graph $G=(V, E)$: n vertices, m edges, undirected, simple
- Goal: output a matching $M \subseteq E$, with $|M|$ maximal

Maximum weight matching (MWM)

- Input: stream of weighted edges $\left(u, v, w_{u v}\right) \in[n] \times[n] \times \mathbb{R}^{+}$
- Goal: output matching $M \subseteq E$, with $w(M)=\sum_{e \in M} w(e)$ maximal

Graph Streams: Maximum Matching, Generalisations

Maximum cardinality matching (MCM)

- Input: stream of edges $(u, v) \in[n] \times[n]$
- Describes graph $G=(V, E)$: n vertices, m edges, undirected, simple
- Goal: output a matching $M \subseteq E$, with $|M|$ maximal

Maximum weight matching (MWM)

- Input: stream of weighted edges $\left(u, v, w_{u v}\right) \in[n] \times[n] \times \mathbb{R}^{+}$
- Goal: output matching $M \subseteq E$, with $w(M)=\sum_{e \in M} w(e)$ maximal

Maximum submodular-function matching (MSM)

- Input: unweighted edges (u, v), plus submodular $f: 2^{E} \rightarrow \mathbb{R}^{+}$
- Goal: output matching $M \subseteq E$, with $f(M)$ maximal

Set Cover

Set Cover

Set Cover with Sets Streamed

- Input: stream of m sets, each $\subseteq[n]$
- Goal: cover universe [n] using as few sets as possible

Set Cover with Sets Streamed

- Input: stream of m sets, each $\subseteq[n]$
- Goal: cover universe [n] using as few sets as possible
- Use sublinear (in m) space
- Ideally O (n polylog n) ... "semi-streaming"
- Need $\Omega(n \log n)$ space to certify: for each item, who covered it?

Think $m \geq n$

Road Map

- Results on Maximum Submodular Matching (MSM)
- Generalising MSM: constrained submodular maximisation
- Set Cover: upper bounds
- Set Cover: lower bounds, with proof outline

Maximum Submodular Matching

Input

- Stream of edges $\sigma=\left\langle e_{1}, e_{2}, \ldots, e_{m}\right\rangle$
- Valuation function $f: 2^{E} \rightarrow \mathbb{R}^{+}$
- Submodular:

$$
X \subseteq Y \subseteq E, e \in E \Longrightarrow f(X+e)-f(X) \geq f(Y+e)-f(Y)
$$

- Monotone:

$$
X \subseteq Y \Longrightarrow f(X) \leq f(Y)
$$

- Normalised:

$$
f(\varnothing)=0
$$

- Oracle access to f : query at $X \subseteq E$, get $f(X)$
- May only query at $X \subseteq$ (stream so far)

Goal

- Output matching $M \subseteq E$, with $f(M)$ maximal "large"
- Store $O(n)$ edges and f-values

Some Results on MSM

Can't solve MSM exactly

- MCM, approx $<e /(e-1) \Longrightarrow$ space ω (n polylog n) $\quad\left[K a p r a l o v^{\prime} 13\right]$
- Offline MSM, approx $<e /(e-1) \Longrightarrow n^{\omega(1)}$ oracle calls
- Via cardinality-constrained submodular max [Nemhauser-Wolsey'78]

Some Results on MSM

Can't solve MSM exactly

- MCM, approx $<e /(e-1) \Longrightarrow$ space ω (n polylog n) [Kapralov'13]
- Offline MSM, approx $<e /(e-1) \Longrightarrow n^{\omega(1)}$ oracle calls
- Via cardinality-constrained submodular max [Nemhauser-Wolsey'78]

Positive results, using $O(n)$ storage:
Theorem 1 MSM, one pass: 7.75-approx
Theorem 2 MSM, $(3+\varepsilon)$-approx in $O\left(e^{-3}\right)$ passes

Some Results on MSM

Can't solve MSM exactly

- MCM, approx $<e /(e-1) \Longrightarrow$ space ω (n polylog n) $\quad[K a p r a l o v ' 13]$
- Offline MSM, approx $<e /(e-1) \Longrightarrow n^{\omega(1)}$ oracle calls
- Via cardinality-constrained submodular max [Nemhauser-Wolsey'78]

Positive results, using $O(n)$ storage:
Theorem 1 MSM, one pass: 7.75-approx
Theorem 2 MSM, $(3+\varepsilon)$-approx in $O\left(e^{-3}\right)$ passes

More importantly:
Meta-Thm 1 Every compliant MWM approx alg \rightarrow MSM approx alg

Some Results on MSM

Can't solve MSM exactly

- MCM, approx $<e /(e-1) \Longrightarrow$ space ω (n polylog n) [Kapralov'13]
- Offline MSM, approx $<e /(e-1) \Longrightarrow n^{\omega(1)}$ oracle calls
- Via cardinality-constrained submodular max [Nemhauser-Wolsey'78]

Positive results, using $O(n)$ storage:
Theorem 1 MSM, one pass: 7.75-approx
Theorem 2 MSM, $(3+\varepsilon)$-approx in $O\left(e^{-3}\right)$ passes

More importantly:
Meta-Thm 1 Every compliant MWM approx alg \rightarrow MSM approx alg
Meta-Thm 2 Similarly, max weight independent set (MWIS) \rightarrow MSIS

Compliant Algorithms for MWM

__ unpicked edge

Compliant Algorithms for MWM

__ unpicked edge

Compliant Algorithms for MWM

Maintain "current solution" M, update if new edge improves it sufficiently

Compliant Algorithms for MWM: Details

Update of "current solution" M

- Given new edge e, pick "augmenting pair" (A, J)
- $A \leftarrow\{e\}$
- $J \leftarrow M \cap A \ldots$ edges in M that conflict with A
- Ensure $w(A) \geq(1+\gamma) w(J)$
- Update $M \leftarrow(M \backslash J) \cup A$

Choice of gain parameter

- $\gamma=1$, approx factor 6
[Feigenbaum-K-M-S-Z'05]
- $\gamma=1 / \sqrt{2}$, approx factor 5.828

Compliant Algorithms for MWM: Details

Update of "current solution" M

- Given new edge e, pick "augmenting pair" (A, J)
- $A \leftarrow\{e\} \quad A \leftarrow$ "best" subset of 3-neighbourhood of e
- $J \leftarrow M \cap A \ldots$ edges in M that conflict with A
- Ensure $w(A) \geq(1+\gamma) w(J)$
- Update $M \leftarrow(M \backslash J) \cup A$

Choice of gain parameter

- $\gamma=1$, approx factor 6
[Feigenbaum-K-M-S-Z'05]
[McGregor'05]
- $\gamma=1.717$, approx factor 5.585
[Zelke'08]

Compliant Algorithms for MWM: Details

Update of "current solution" $M+$ pool of "shadow edges" S

- Given new edge e, pick "augmenting pair" (A, J)
- $A \leftarrow\{e\} \quad A \leftarrow$ "best" subset of 3 -neighbourhood of e
- $J \leftarrow M \cap A \ldots$ edges in M that conflict with A
- Ensure $w(A) \geq(1+\gamma) w(J)$
- Update $M \leftarrow(M \backslash J) \cup A$
- Update $S \leftarrow$ appropriate subset of $(S \backslash A) \cup J$

Choice of gain parameter

- $\gamma=1$, approx factor 6
[Feigenbaum-K-M-S-Z'05]
- $\gamma=1 / \sqrt{2}$, approx factor 5.828
[McGregor'05]
- $\gamma=1.717$, approx factor 5.585

Generic Compliant Algorithm and f-Extension for MSM

1: procedure Process-Edge(e, $M, S, \gamma)$
2 :
3: $\quad(A, J) \leftarrow$ a well-chosen augmenting pair for M with $A \subseteq M \cup S+e, w(A) \geq(1+\gamma) w(J)$
4: $\quad M \leftarrow(M \backslash J) \cup A$
5: $\quad S \leftarrow$ a well-chosen subset of $(S \backslash A) \cup J$

MWM alg $\mathcal{A}+\operatorname{submodular} f \rightarrow$ MSM alg \mathcal{A}^{f} (the f-extension of \mathcal{A})

Generic Compliant Algorithm and f-Extension for MSM

1: procedure Process-Edge (e, M, S, γ)
2: $\quad w(e) \leftarrow f(M \cup S+e)-f(M \cup S)$
3: $\quad(A, J) \leftarrow$ a well-chosen augmenting pair for M with $A \subseteq M \cup S+e, w(A) \geq(1+\gamma) w(J)$
4: $\quad M \leftarrow(M \backslash J) \cup A$
5: $\quad S \leftarrow$ a well-chosen subset of $(S \backslash A) \cup J$

MWM alg $\mathcal{A}+\operatorname{submodular} f \rightarrow$ MSM alg \mathcal{A}^{f} (the f-extension of \mathcal{A})

Generic Compliant Algorithm and f-Extension for MSM

1: procedure Process-Edge (e, M, S, γ)
2: $\quad w(e) \leftarrow f(M \cup S+e)-f(M \cup S)$
3: $\quad(A, J) \leftarrow$ a well-chosen augmenting pair for M with $A \subseteq M \cup S+e, w(A) \geq(1+\gamma) w(J)$
4: $\quad M \leftarrow(M \backslash J) \cup A$
5: $\quad S \leftarrow$ a well-chosen subset of $(S \backslash A) \cup J$

MWM alg $\mathcal{A}+$ submodular $f \rightarrow$ MSM alg \mathcal{A}^{f} (the f-extension of \mathcal{A}) MWIS (arbitrary ground set E, independent sets $\mathcal{I} \subseteq 2^{E}$) $+f \rightarrow$ MSIS

Generalise: Submodular Maximization (MWIS, MSIS)

1: procedure Process-Element (e, I, S, γ)
2:
3: $\quad(A, J) \leftarrow$ a well-chosen augmenting pair for I with $A \subseteq I \cup S+e, w(A) \geq(1+\gamma) w(J)$
4: $\quad I \leftarrow(I \backslash J) \cup A$
5: $\quad S \leftarrow$ a well-chosen subset of $(S \backslash A) \cup J$

MWM alg $\mathcal{A}+\operatorname{submodular} f \rightarrow$ MSM alg \mathcal{A}^{f} (the f-extension of \mathcal{A}) MWIS (arbitrary ground set E, independent sets $\mathcal{I} \subseteq 2^{E}$) $+f \rightarrow$ MSIS

Further Applications: Hypermatchings

Stream of hyperedges $e_{1}, e_{2}, \ldots, e_{m} \subseteq[n]$, each $\left|e_{i}\right| \leq p$
Hypermatching $=$ subset of pairwise disjoint edges

Further Applications: Hypermatchings

Stream of hyperedges $e_{1}, e_{2}, \ldots, e_{m} \subseteq[n]$, each $\left|e_{i}\right| \leq p$
Hypermatching $=$ subset of pairwise disjoint edges

Multi-pass MSM algorithm (compliant)

- Augment using only current edge e
- Use $\gamma=1$ for first pass, $\gamma=\varepsilon /(p+1)$ subsequently
- Make passes until solution doesn't improve much

Results

- 4p-approx in one pass
- $(p+1+\varepsilon)$-approx in $O\left(\varepsilon^{-3}\right)$ passes

Further Applications: Maximization Over Matroids

Stream of elements $e_{1}, e_{2}, \ldots, e_{m}$ from ground set E Matroids $\left(E, \mathcal{I}_{1}\right), \ldots,\left(E, \mathcal{I}_{p}\right)$, given by circuit oracles:

$$
\text { Given } A \subseteq E \text {, returns } \begin{cases}\odot, & \text { if } A \in \mathcal{I}_{i} \\ \text { a circuit in } A, & \text { otherwise }\end{cases}
$$

Independent sets, $\mathcal{I}=\bigcap_{i} \mathcal{I}_{i} ;$ size parameter $n=\max _{I \in \mathcal{I}}|I|$

Further Applications: Maximization Over Matroids

Stream of elements $e_{1}, e_{2}, \ldots, e_{m}$ from ground set E
Matroids $\left(E, \mathcal{I}_{1}\right), \ldots,\left(E, \mathcal{I}_{p}\right)$, given by circuit oracles:

$$
\text { Given } A \subseteq E \text {, returns } \begin{cases}\odot, & \text { if } A \in \mathcal{I}_{i} \\ \text { a circuit in } A, & \text { otherwise }\end{cases}
$$

Independent sets, $\mathcal{I}=\bigcap_{i} \mathcal{I}_{i} ;$ size parameter $n=\max _{I \in \mathcal{I}}|I|$
Recent MWIS algorithm (compliant)

- Augment using only current element e
- Remove $J=\left\{x_{1}, \ldots, x_{p}\right\}$, where $x_{i}:=$ lightest element in circuit formed in ith matroid

Further Applications: Maximization Over Matroids

Stream of elements $e_{1}, e_{2}, \ldots, e_{m}$ from ground set E
Independent sets, $\mathcal{I}=\bigcap_{i} \mathcal{I}_{i} ;$ size parameter $n=\max _{I \in \mathcal{I}}|I|$
Recent MWIS algorithm (compliant)
[Varadaraja'11]

- Augment using only current element e
- Remove $J=\left\{x_{1}, \ldots, x_{p}\right\}$, where $x_{i}:=$ lightest element in circuit formed in ith matroid

Further Applications: Maximization Over Matroids

Stream of elements $e_{1}, e_{2}, \ldots, e_{m}$ from ground set E
Independent sets, $\mathcal{I}=\bigcap_{i} \mathcal{I}_{i}$; size parameter $n=\max _{I \in \mathcal{I}}|I|$
Recent MWIS algorithm (compliant)
[Varadaraja'11]

- Augment using only current element e
- Remove $J=\left\{x_{1}, \ldots, x_{p}\right\}$, where $x_{i}:=$ lightest element in circuit formed in ith matroid

Follow paradigm: use f-extension of above algorithm
Results, using $O(n)$ storage

- 4p-approx in one pass
- $(p+1+\varepsilon)$-approx in $O\left(\varepsilon^{-3}\right)$ passes *
* Multi-pass analysis only works for partition matroids

Road Map

- Results on Maximum Submodular Matching (MSM) \checkmark
- Generalising MSM: constrained submodular maximisation \checkmark
- Set Cover: upper bounds
- Set Cover: lower bounds, with proof outline

Set Cover: Background

Offline results:

- Best possible poly-time approx $(1 \pm o(1)) \ln n \quad[J o h n s o n ' 74]$ [Slavík'96] [Lund-Yannakakis'94] [Dinur-Steurer'14]
- Simple greedy strategy gets $\ln n$-approx:
- Repeatedly add set with highest contribution
- Contribution := number of new elements covered

Streaming results:

- One pass semi-streaming $O(\sqrt{n})$-approx
- This is best possible in a single pass
[Emek-Rosén'14]
- (More results in Indyk's talk)

Set Cover: Our Results

Upper bound

- With p passes, semi-streaming space, get $O\left(n^{1 /(p+1)}\right)$-approx
- Algorithm giving this approx based on very simple heuristic
- Deterministic

Lower bound

- Randomized
- In p passes, semi-streaming space, need $\Omega\left(n^{1 /(p+1)} / p^{2}\right)$ space.
- Upper bound tight for all constant p
- Semi-streaming $O(\log n)$ approx requires $\Omega(\log n / \log \log n)$ passes

Progressive Greedy Algorithm

```
procedure GreedyPass(stream \(\sigma\), threshold \(\tau\), set Sol, array Coverer)
    for all \((i, S)\) in \(\sigma\) do
    \(C \leftarrow\{x:\) Coverer \([x] \neq 0\} \quad \triangleright\) the already covered elements
    if \(|S \backslash C| \geq \tau\) then
        Sol \(\leftarrow\) Sol \(\cup\{i\}\)
        for all \(x \in S \backslash C\) do Coverer \([x] \leftarrow i\)
```

 procedure ProgGreedyNaive(stream \(\sigma\), integer \(n\), integer \(p \geq 1\))
 Coverer \([1 \ldots n] \leftarrow 0^{n} ; \quad\) Sol \(\leftarrow \varnothing\)
 for \(j=1\) to \(p\) do \(\operatorname{GreedyPass}\left(\sigma, n^{1-j / p}\right.\), Sol, Coverer)
 output Sol, Coverer

Progressive Greedy: Analysis Idea

Consider $p=2$ passes

- First pass: admit sets iff contribution $\geq \sqrt{n}$
- Thus, first pass adds at most \sqrt{n} sets to Sol

Progressive Greedy: Analysis Idea

Consider $p=2$ passes

- First pass: admit sets iff contribution $\geq \sqrt{n}$
- Thus, first pass adds at most \sqrt{n} sets to Sol
- Second pass: Opt cover remaining items with sets of contrib $\leq \sqrt{n}$
- Thus, Sol will cover the same using $\leq \sqrt{n}|O p t|$ sets

Progressive Greedy: Analysis Idea

Consider $p=2$ passes

- First pass: admit sets iff contribution $\geq \sqrt{n}$
- Thus, first pass adds at most \sqrt{n} sets to Sol
- Second pass: Opt cover remaining items with sets of contrib $\leq \sqrt{n}$
- Thus, Sol will cover the same using $\leq \sqrt{n}|O p t|$ sets

But wait, this uses two passes for $O(\sqrt{n})$ approx!

Progressive Greedy: Analysis Idea

Consider $p=2$ passes

- First pass: admit sets iff contribution $\geq \sqrt{n}$
- Thus, first pass adds at most \sqrt{n} sets to Sol
- Second pass: Opt cover remaining items with sets of contrib $\leq \sqrt{n}$
- Thus, Sol will cover the same using $\leq \sqrt{n}|O p t|$ sets

But wait, this uses two passes for $O(\sqrt{n})$ approx!

- Logic of last pass especially simple: add set if positive contrib
- Can fold this into previous one

Final result: p passes, $O\left(n^{1 /(p+1)}\right)$-approx

Lower Bound Idea: One Pass

Reduce from index: Alice gets $x \in\{0,1\}^{n}$, Bob gets $j \in[n]$, Alice talks to Bob, who must determine x_{j}. Requires $\Omega(n)$-bit message. [Ablayev'96]

Lower Bound Idea: One Pass

Reduce from index: Alice gets $x \in\{0,1\}^{n}$, Bob gets $j \in[n]$, Alice talks to Bob, who must determine x_{j}. Requires $\Omega(n)$-bit message. [Ablayev'96]

If Alice has Bob's missing line, then $|O p t|=2$, else $|O p t| \geq q$

Lower Bound Idea: One Pass

Reduce from index: Alice gets $x \in\{0,1\}^{n}$, Bob gets $j \in[n]$, Alice talks to Bob, who must determine x_{j}. Requires $\Omega(n)$-bit message. [Ablayev'96]

If Alice has Bob's missing line, then $|O p t|=2$, else $|O p t| \geq q$
So $\Theta(\sqrt{n})$ approx requires $\Omega(\#$ lines $)=\Omega(n)$ space

Tree Pointer Jumping

Multiplayer game $\operatorname{TPJ}_{p+1, t}$ defined on complete $(p+1)$-level t-ary tree

- Pointer to child at each internal level-i node (known to Player i)
- Bit at each leaf node (known to Player 1)
- Goal: output (whp) bit reached by following pointers from root

Model: p rounds of communication
Each round: (Plr 1, Plr 2, $\ldots, \operatorname{Plr}(p+1))$

Theorem: Longest message is $\Omega\left(t / p^{2}\right)$ bits
[C.-Cormode-McGregor'08]

Edifices

Basic idea: Generalise affine plane to high-rank Buekenhout geometry

Edifices

Basic idea: Generalise affine plane to high-rank Buekenhout geometry

- Universe \mathbb{F}_{q}^{p+1}
- Variety X_{u} at node u
- u above v
$\Longrightarrow X_{u} \supseteq X_{v}$

Edifices

Basic idea: Generalise affine plane to high-rank Buekenhout geometry

- Universe \mathbb{F}_{q}^{p+1}
- Variety X_{u} at node u
- u above v

$$
\Longrightarrow X_{u} \supseteq X_{v}
$$

- Leaf z with bit $=1$ encoded as set X_{z}

Edifices

Basic idea: Generalise affine plane to high-rank Buekenhout geometry

- Universe \mathbb{F}_{q}^{p+1}
- Variety X_{u} at node u
- u above v

$$
\Longrightarrow X_{u} \supseteq X_{v}
$$

- Leaf z with bit $=1$ encoded as set X_{z}
- If player 1 has the missing variety, then $|O p t|=p+1$, else $|O p t| \geq q /(2 p)$

Construction of an Edifice

Basic idea: Varieties at leaves are low-degree curves, at level 2 they are low-degree surfaces, and so on.

Concern: Determining "cardinality" of algebraic variety over finite field is the stuff of difficult mathematics.

Construction of an Edifice

Basic idea: Varieties at leaves are low-degree curves, at level 2 they are low-degree surfaces, and so on.

Concern: Determining "cardinality" of algebraic variety over finite field is the stuff of difficult mathematics.

Our Solution: Define varieties using equations of special format

- Coordinates $\left(x, y_{1}, y_{2}, \ldots, y_{p}\right)$
- Equation at each edge of tree; at level i :

$$
\begin{aligned}
y_{i} & =a_{1} y_{1}+\cdots a_{i-1} y_{i-1}+a_{i} f_{p+1-i}(x) \\
f_{j}(x) & =\text { monic poly in } \mathbb{F}_{q}[x] \text { of degree } p+j
\end{aligned}
$$

- Variety X_{u} defined by equations on root-to- u path

Construction of an Edifice

Basic idea: Varieties at leaves are low-degree curves, at level 2 they are low-degree surfaces, and so on.

Concern: Determining "cardinality" of algebraic variety over finite field is the stuff of difficult mathematics.

Our Solution: Define varieties using equations of special format

- Coordinates ($x, y_{1}, y_{2}, \ldots, y_{p}$)
- Equation at each edge of tree; at level i :

$$
\begin{aligned}
y_{i} & =a_{1} y_{1}+\cdots a_{i-1} y_{i-1}+a_{i} f_{p+1-i}(x) \\
f_{j}(x) & =\text { monic poly in } \mathbb{F}_{q}[x] \text { of degree } p+j
\end{aligned}
$$

Cardinality bound via much simpler mathematics.

- Schwartz-Zippel lemma
- Linear independence arguments via row reduction

Final Remarks

Combinatorial optimisation: old topic, but relatively new territory for data stream algorithms

- Potential for many new research questions
- Stronger or more general results on submodular maximization? Some new work in [Chekuri-Gupta-Quanrud'15]
- Lower bounds for submodular maximization?
- Fuller understanding of possible tradeoff for set cover?

