Optimisation While Streaming

Amit Chakrabarti

Dartmouth College

Joint work with S. Kale, A. Wirth

DIMACS Workshop on Big Data Through the Lens of Sublinear Algorithms, Aug 2015

Combinatorial Optimisation Problems

- ▶ 1950s, 60s: Operations research
- ▶ 1970s, 80s: NP-hardness
- ▶ 1990s, 2000s: Approximation algorithms, hardness of approximation
- ▶ 2010s: Space-constrained settings, e.g., streaming

The cardinality version

The weighted version

Maximum cardinality matching (MCM)

- ▶ Input: stream of edges $(u, v) \in [n] \times [n]$
- ▶ Describes graph G = (V, E): *n* vertices, *m* edges, undirected, simple
- Each edge appears exactly once in stream
- Goal
 - Output a matching $M \subseteq E$, with |M| maximal

Maximum cardinality matching (MCM)

- ▶ Input: stream of edges $(u, v) \in [n] \times [n]$
- Describes graph G = (V, E): *n* vertices, *m* edges, undirected, simple
- Each edge appears exactly once in stream
- Goal
 - Output a matching $M \subseteq E$, with |M| maximal
 - Use *sublinear* (in *m*) working memory
 - Ideally O(n polylog n) ... "semi-streaming"
 - Need $\Omega(n \log n)$ to store M

Maximum cardinality matching (MCM)

- ▶ Input: stream of edges $(u, v) \in [n] \times [n]$
- ▶ Describes graph G = (V, E): *n* vertices, *m* edges, undirected, simple
- Goal: output a matching $M \subseteq E$, with |M| maximal

Maximum weight matching (MWM)

- ▶ Input: stream of weighted edges $(u, v, w_{uv}) \in [n] \times [n] \times \mathbb{R}^+$
- ▶ Goal: output matching $M \subseteq E$, with $w(M) = \sum_{e \in M} w(e)$ maximal

Maximum cardinality matching (MCM)

- ▶ Input: stream of edges $(u, v) \in [n] \times [n]$
- ▶ Describes graph G = (V, E): *n* vertices, *m* edges, undirected, simple
- ▶ Goal: output a matching $M \subseteq E$, with |M| maximal

Maximum weight matching (MWM)

- ▶ Input: stream of weighted edges $(u, v, w_{uv}) \in [n] \times [n] \times \mathbb{R}^+$
- ▶ Goal: output matching $M \subseteq E$, with $w(M) = \sum_{e \in M} w(e)$ maximal

Maximum submodular-function matching (MSM) [Chakrabarti-Kale'14]

- ▶ Input: unweighted edges (u, v), plus submodular $f : 2^E \to \mathbb{R}^+$
- Goal: output matching $M \subseteq E$, with f(M) maximal

Set Cover with Sets Streamed

- ▶ Input: stream of *m* sets, each \subseteq [*n*]
- ▶ Goal: cover universe [n] using as few sets as possible

Set Cover with Sets Streamed

- ▶ Input: stream of *m* sets, each \subseteq [*n*]
- ▶ Goal: cover universe [n] using as few sets as possible
 - Use sublinear (in *m*) space
 - Ideally O(n polylog n) ... "semi-streaming"
 - Need $\Omega(n \log n)$ space to *certify*: for each item, who covered it?

Think $m \ge n$

- Results on Maximum Submodular Matching (MSM)
- Generalising MSM: constrained submodular maximisation
- Set Cover: upper bounds
- Set Cover: lower bounds, with proof outline

Maximum Submodular Matching

Input

- Stream of edges $\sigma = \langle e_1, e_2, \dots, e_m \rangle$
- Valuation function $f: 2^E \to \mathbb{R}^+$
 - Submodular: $X \subseteq Y \subseteq E, e \in E \implies f(X + e) - f(X) \ge f(Y + e) - f(Y)$
 - Monotone: $X \subseteq Y \implies f(X) \leq f(Y)$
 - Normalised: $f(\emptyset) = 0$
- Oracle access to f: query at $X \subseteq E$, get f(X)
 - May only query at $X \subseteq$ (stream so far)

Goal

- Output matching $M \subseteq E$, with f(M) maximal "large"
- Store O(n) edges and f-values

Can't solve MSM exactly

- MCM, approx $< e/(e-1) \implies$ space $\omega(n \operatorname{polylog} n)$ [Kapralov'13]
- ▶ Offline MSM, approx $< e/(e-1) \implies n^{\omega(1)}$ oracle calls
 - Via cardinality-constrained submodular max [Nemhauser-Wolsey'78]

Can't solve MSM exactly

- MCM, approx $< e/(e-1) \implies$ space $\omega(n \operatorname{polylog} n)$ [Kapralov'13]
- ▶ Offline MSM, approx $< e/(e-1) \implies n^{\omega(1)}$ oracle calls
 - Via cardinality-constrained submodular max [Nemhauser-Wolsey'78]

Positive results, using O(n) storage:

Theorem 1 MSM, one pass: 7.75-approx Theorem 2 MSM, $(3 + \varepsilon)$ -approx in $O(e^{-3})$ passes

Can't solve MSM exactly

- MCM, approx $< e/(e-1) \implies$ space $\omega(n \operatorname{polylog} n)$ [Kapralov'13]
- ▶ Offline MSM, approx $< e/(e-1) \implies n^{\omega(1)}$ oracle calls
 - Via cardinality-constrained submodular max [Nemhauser-Wolsey'78]

Positive results, using O(n) storage:

```
Theorem 1 MSM, one pass: 7.75-approx
Theorem 2 MSM, (3 + \varepsilon)-approx in O(e^{-3}) passes
```

More importantly:

Meta-Thm 1 Every compliant MWM approx alg \rightarrow MSM approx alg

Can't solve MSM exactly

- MCM, approx $< e/(e-1) \implies$ space $\omega(n \operatorname{polylog} n)$ [Kapralov'13]
- ▶ Offline MSM, approx $< e/(e-1) \implies n^{\omega(1)}$ oracle calls
 - Via cardinality-constrained submodular max [Nemhauser-Wolsey'78]

Positive results, using O(n) storage:

```
Theorem 1 MSM, one pass: 7.75-approx
Theorem 2 MSM, (3 + \varepsilon)-approx in O(e^{-3}) passes
```

More importantly:

Meta-Thm 1 Every compliant MWM approx alg \rightarrow MSM approx alg Meta-Thm 2 Similarly, max weight *independent* set (MWIS) \rightarrow MSIS

Compliant Algorithms for MWM

Compliant Algorithms for MWM

Compliant Algorithms for MWM

Maintain "current solution" *M*, update if new edge improves it *sufficiently*

Compliant Algorithms for MWM: Details

Update of "current solution" M

- Given new edge e, pick "augmenting pair" (A, J)
 - $A \leftarrow \{e\}$
 - $J \leftarrow M \cap A$... edges in M that conflict with A
 - Ensure $w(A) \ge (1 + \gamma)w(J)$
- Update $M \leftarrow (M \setminus J) \cup A$

Choice of gain parameter

• $\gamma = 1$, approx factor 6 • $\gamma = 1/\sqrt{2}$, approx factor 5.828 [Feigenbaum-K-M-S-Z'05] [McGregor'05]

Compliant Algorithms for MWM: Details

Update of "current solution" M

▶ Given new edge *e*, pick "augmenting pair" (*A*, *J*)

- $A \leftarrow \{e\}$ $A \leftarrow$ "best" subset of 3-neighbourhood of e
- $J \leftarrow M \cap A$... edges in M that conflict with A
- Ensure $w(A) \ge (1 + \gamma)w(J)$
- Update $M \leftarrow (M \setminus J) \cup A$

Choice of gain parameter

- $\gamma = 1$, approx factor 6
- $\gamma = 1/\sqrt{2}$, approx factor 5.828
- $\gamma = 1.717$, approx factor 5.585

[Feigenbaum-K-M-S-Z'05] [McGregor'05] [Zelke'08]

Compliant Algorithms for MWM: Details

Update of "current solution" M + pool of "shadow edges" S

- Given new edge e, pick "augmenting pair" (A, J)
 - $A \leftarrow \{e\}$ $A \leftarrow$ "best" subset of 3-neighbourhood of e
 - $J \leftarrow M \cap A$... edges in M that conflict with A
 - Ensure $w(A) \ge (1 + \gamma)w(J)$
- Update $M \leftarrow (M \setminus J) \cup A$
- Update $S \leftarrow$ appropriate subset of $(S \setminus A) \cup J$

Choice of gain parameter

 $\gamma = 1$, approx factor 6 [Feigenbaum-K-M-S-Z'05] $\gamma = 1/\sqrt{2}$, approx factor 5.828 [McGregor'05] $\gamma = 1.717$, approx factor 5.585 [Zelke'08]

Generic Compliant Algorithm and *f*-Extension for MSM

1: procedure PROCESS-EDGE(
$$e, M, S, \gamma$$
)
2:
3: $(A, J) \leftarrow$ a well-chosen augmenting pair for M
with $A \subseteq M \cup S + e, w(A) \ge (1 + \gamma)w(J)$
4: $M \leftarrow (M \setminus J) \cup A$
5: $S \leftarrow$ a well-chosen subset of $(S \setminus A) \cup J$

MWM alg \mathcal{A} + submodular $f \rightarrow MSM$ alg \mathcal{A}^{f} (the *f*-extension of \mathcal{A})

Generic Compliant Algorithm and *f*-Extension for MSM

- 1: procedure Process-Edge(e, M, S, γ)
- 2: $w(e) \leftarrow f(M \cup S + e) f(M \cup S)$
- 3: $(A, J) \leftarrow$ a well-chosen augmenting pair for Mwith $A \subseteq M \cup S + e$, $w(A) \ge (1 + \gamma)w(J)$
- 4: $M \leftarrow (M \setminus J) \cup A$
- 5: $S \leftarrow a$ well-chosen subset of $(S \setminus A) \cup J$

MWM alg \mathcal{A} + submodular $f \rightarrow MSM$ alg \mathcal{A}^{f} (the *f*-extension of \mathcal{A})

Generic Compliant Algorithm and *f*-Extension for MSM

- 1: procedure PROCESS-EDGE(e, M, S, γ)
- 2: $w(e) \leftarrow f(M \cup S + e) f(M \cup S)$
- 3: $(A, J) \leftarrow$ a well-chosen augmenting pair for Mwith $A \subseteq M \cup S + e$, $w(A) \ge (1 + \gamma)w(J)$
- 4: $M \leftarrow (M \setminus J) \cup A$
- 5: $S \leftarrow a$ well-chosen subset of $(S \setminus A) \cup J$

MWM alg \mathcal{A} + submodular $f \to MSM$ alg \mathcal{A}^{f} (the *f*-extension of \mathcal{A}) MWIS (arbitrary ground set E, independent sets $\mathcal{I} \subseteq 2^{E}$) + $f \to MSIS$

Generalise: Submodular Maximization (MWIS, MSIS)

- 1: procedure PROCESS-ELEMENT (e, I, S, γ) 2: $w(e) \leftarrow f(I \cup S + e) - f(I \cup S)$
- 3: $(A, J) \leftarrow$ a well-chosen augmenting pair for Iwith $A \subseteq I \cup S + e$, $w(A) > (1 + \gamma)w(J)$
- 4: $I \leftarrow (I \setminus J) \cup A$
- 5: $S \leftarrow \text{a well-chosen subset of } (S \setminus A) \cup J$

MWM alg \mathcal{A} + submodular $f \to MSM$ alg \mathcal{A}^{f} (the *f*-extension of \mathcal{A}) MWIS (arbitrary ground set E, independent sets $\mathcal{I} \subseteq 2^{E}$) + $f \to MSIS$

Further Applications: Hypermatchings

Stream of hyperedges $e_1, e_2, \ldots, e_m \subseteq [n]$, each $|e_i| \leq p$ Hypermatching = subset of pairwise disjoint edges

Further Applications: Hypermatchings

Stream of hyperedges $e_1, e_2, \ldots, e_m \subseteq [n]$, each $|e_i| \leq p$ Hypermatching = subset of pairwise disjoint edges

Multi-pass MSM algorithm (compliant)

- Augment using only current edge e
- Use $\gamma = 1$ for first pass, $\gamma = \varepsilon/(p+1)$ subsequently
- Make passes until solution doesn't improve much

Results

- ▶ 4*p*-approx in one pass
- $(p+1+\varepsilon)$ -approx in $O(\varepsilon^{-3})$ passes

Stream of elements e_1, e_2, \ldots, e_m from ground set *E* Matroids $(E, \mathcal{I}_1), \ldots, (E, \mathcal{I}_p)$, given by *circuit oracles*:

Given
$$A \subseteq E$$
, returns
$$\begin{cases} \textcircled{o}, & \text{if } A \in \mathcal{I}_i \\ \text{a circuit in } A, & \text{otherwise} \end{cases}$$

Independent sets, $\mathcal{I} = \bigcap_{i} \mathcal{I}_{i}$; size parameter $n = \max_{I \in \mathcal{I}} |I|$

Stream of elements e_1, e_2, \ldots, e_m from ground set *E* Matroids $(E, \mathcal{I}_1), \ldots, (E, \mathcal{I}_p)$, given by *circuit oracles*:

Given
$$A \subseteq E$$
, returns
$$\begin{cases} \textcircled{ie}, & \text{if } A \in \mathcal{I}_i \\ \text{a circuit in } A, & \text{otherwise} \end{cases}$$

Independent sets, $I = \bigcap_{i} I_{i}$; size parameter $n = \max_{I \in I} |I|$ Recent MWIS algorithm (compliant) [Varadaraja'11]

- Augment using only current element e
- ▶ Remove J = {x₁,..., x_p}, where x_i := lightest element in circuit formed in *i*th matroid

Stream of elements $e_1, e_2, ..., e_m$ from ground set EIndependent sets, $\mathcal{I} = \bigcap_i \mathcal{I}_i$; size parameter $n = \max_{I \in \mathcal{I}} |I|$ Recent MWIS algorithm (compliant) [Varadaraja'11]

- Augment using only current element e
- Remove J = {x₁,..., x_p}, where x_i := lightest element in circuit formed in *i*th matroid

Stream of elements $e_1, e_2, ..., e_m$ from ground set EIndependent sets, $\mathcal{I} = \bigcap_i \mathcal{I}_i$; size parameter $n = \max_{I \in \mathcal{I}} |I|$ Recent MWIS algorithm (compliant) [Varadaraja'11]

- Augment using only current element e
- Remove J = {x₁,...,x_p}, where x_i := lightest element in circuit formed in *i*th matroid

Follow paradigm: use f-extension of above algorithm Results, using O(n) storage

- 4p-approx in one pass
- $(p+1+\varepsilon)$ -approx in $O(\varepsilon^{-3})$ passes *

* Multi-pass analysis only works for *partition* matroids

- Results on Maximum Submodular Matching (MSM)
- \blacktriangleright Generalising MSM: constrained submodular maximisation \checkmark
- Set Cover: upper bounds
- Set Cover: lower bounds, with proof outline

Set Cover: Background

Offline results:

- Best possible poly-time approx (1 ± o(1)) ln n [Johnson'74] [Slavík'96] [Lund-Yannakakis'94] [Dinur-Steurer'14]
- Simple greedy strategy gets In *n*-approx:
 - Repeatedly add set with highest contribution
 - Contribution := number of *new* elements covered

Streaming results:

- One pass semi-streaming $O(\sqrt{n})$ -approx
- This is best possible in a single pass
- (More results in Indyk's talk)

[Emek-Rosén'14]

Upper bound

- With p passes, semi-streaming space, get $O(n^{1/(p+1)})$ -approx
- Algorithm giving this approx based on very simple heuristic
- Deterministic

Lower bound

- Randomized
- ▶ In *p* passes, semi-streaming space, need $\Omega(n^{1/(p+1)}/p^2)$ space.
- Upper bound tight for all constant p
- Semi-streaming $O(\log n)$ approx requires $\Omega(\log n / \log \log n)$ passes

[Chakrabarti-Wirth'15]

Progressive Greedy Algorithm

- 1: procedure GREEDYPASS(stream σ , threshold τ , set *Sol*, array *Coverer*) 2: for all (i, S) in σ do 3: $C \leftarrow \{x : Coverer[x] \neq 0\}$ \triangleright the already covered elements 4: if $|S \setminus C| \geq \tau$ then 5: $Sol \leftarrow Sol \cup \{i\}$ 6: for all $x \in S \setminus C$ do $Coverer[x] \leftarrow i$
- 7: procedure PROGGREEDYNAIVE(stream σ , integer n, integer $p \ge 1$)
- 8: *Coverer*[1...n] $\leftarrow 0^n$; *Sol* $\leftarrow \emptyset$
- 9: for j = 1 to p do GREEDYPASS($\sigma, n^{1-j/p}, Sol, Coverer$)
- 10: output Sol, Coverer

Consider p = 2 passes

- First pass: admit sets iff contribution $\geq \sqrt{n}$
- Thus, first pass adds at most \sqrt{n} sets to Sol

Consider p = 2 passes

- First pass: admit sets iff contribution $\geq \sqrt{n}$
- Thus, first pass adds at most \sqrt{n} sets to *Sol*
- ▶ Second pass: *Opt* cover remaining items with sets of contrib $\leq \sqrt{n}$
- ▶ Thus, *Sol* will cover the same using $\leq \sqrt{n}|Opt|$ sets

Consider p = 2 passes

- First pass: admit sets iff contribution $\geq \sqrt{n}$
- Thus, first pass adds at most \sqrt{n} sets to Sol
- ▶ Second pass: *Opt* cover remaining items with sets of contrib $\leq \sqrt{n}$
- ▶ Thus, *Sol* will cover the same using $\leq \sqrt{n}|Opt|$ sets

But wait, this uses *two* passes for $O(\sqrt{n})$ approx!

Consider p = 2 passes

- First pass: admit sets iff contribution $\geq \sqrt{n}$
- Thus, first pass adds at most \sqrt{n} sets to Sol
- Second pass: *Opt* cover remaining items with sets of contrib $\leq \sqrt{n}$
- ▶ Thus, *Sol* will cover the same using $\leq \sqrt{n}|Opt|$ sets

But wait, this uses *two* passes for $O(\sqrt{n})$ approx!

- Logic of last pass especially simple: add set if positive contrib
- Can fold this into previous one

Final result: *p* passes, $O(n^{1/(p+1)})$ -approx

Lower Bound Idea: One Pass

Reduce from INDEX: Alice gets $x \in \{0, 1\}^n$, Bob gets $j \in [n]$, Alice talks to Bob, who must determine x_i . Requires $\Omega(n)$ -bit message. [Ablayev'96]

Lower Bound Idea: One Pass

Reduce from INDEX: Alice gets $x \in \{0, 1\}^n$, Bob gets $j \in [n]$, Alice talks to Bob, who must determine x_i . Requires $\Omega(n)$ -bit message. [Ablayev'96]

If Alice has Bob's missing line, then |Opt| = 2, else $|Opt| \ge q$

Lower Bound Idea: One Pass

Reduce from INDEX: Alice gets $x \in \{0, 1\}^n$, Bob gets $j \in [n]$, Alice talks to Bob, who must determine x_i . Requires $\Omega(n)$ -bit message. [Ablayev'96]

If Alice has Bob's *missing line*, then |Opt| = 2, else $|Opt| \ge q$ So $\Theta(\sqrt{n})$ approx requires $\Omega(\# \text{lines}) = \Omega(n)$ space

Tree Pointer Jumping

Multiplayer game $\operatorname{TPJ}_{p+1,t}$ defined on complete (p+1)-level t-ary tree

- Pointer to child at each internal level-i node (known to Player i)
- Bit at each leaf node (known to Player 1)
- Goal: output (whp) bit reached by following pointers from root

Model: p rounds of communication

Each round: (Plr 1, Plr 2, ..., Plr (p+1))

Theorem: Longest message is $\Omega(t/p^2)$ bits [C.-Cormode-McGregor'08]

Basic idea: Varieties at leaves are low-degree curves, at level 2 they are low-degree surfaces, and so on.

Concern: Determining "cardinality" of algebraic variety over finite field is the stuff of difficult mathematics.

Basic idea: Varieties at leaves are low-degree curves, at level 2 they are low-degree surfaces, and so on.

Concern: Determining "cardinality" of algebraic variety over finite field is the stuff of difficult mathematics.

Our Solution: Define varieties using equations of special format

- Coordinates $(x, y_1, y_2, \ldots, y_p)$
- Equation at each edge of tree; at level i:

 $y_i = a_1 y_1 + \cdots + a_{i-1} y_{i-1} + a_i f_{p+1-i}(x)$ $f_j(x) = \text{monic poly in } \mathbb{F}_q[x] \text{ of degree } p + j$

• Variety X_u defined by equations on root-to-u path

Construction of an Edifice

Basic idea: Varieties at leaves are low-degree curves, at level 2 they are low-degree surfaces, and so on.

Concern: Determining "cardinality" of algebraic variety over finite field is the stuff of difficult mathematics.

Our Solution: Define varieties using equations of special format

- Coordinates $(x, y_1, y_2, \ldots, y_p)$
- Equation at each edge of tree; at level i:

 $y_i = a_1 y_1 + \cdots + a_{i-1} y_{i-1} + a_i f_{p+1-i}(x)$ $f_j(x) = \text{monic poly in } \mathbb{F}_q[x] \text{ of degree } p + j$

Cardinality bound via much simpler mathematics.

- Schwartz-Zippel lemma
- Linear independence arguments via row reduction

Combinatorial optimisation: old topic, but relatively new territory for data stream algorithms

- Potential for many new research questions
- Stronger or more general results on submodular maximization? Some new work in [Chekuri-Gupta-Quanrud'15]
- Lower bounds for submodular maximization?
- Fuller understanding of possible tradeoff for set cover?