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How can we construct 
an expander locally?
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Distributed system 
     P2P networks 
     Sensor networks  
     Asynchronous system 

     
Benefits 
     Efficient 
     Robust 

New challenges 
     Important to construct quickly good network structure 
     Only local communication 

Why is it interesting?
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Local algorithms 
     Algorithms based on local message passing among nodes 

      

Local graph algorithms
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Local algorithms 
     Algorithms based on local message passing among nodes 

Advantages 
     Applicable to large scale graphs 
     Fast, easy to implement in parallel (MapReduce, Hadoop, Pregel...) 
       

Local graph algorithms
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Starting from any connected graph is it possible 
to construct an expander locally? 

     

Problem

Big Data and Sublinear Algorithms Workshop, DIMACS



SKIP+: A Self-Stabilizing Skip Graph. 
R. Jacob, A. W. Richa, C. Scheideler, S. Schmid and H. Täubig. 
J. ACM 61(6): 36:1-36:26 (2014)     

In the Local model it is possible to build an expander locally in  
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Construct Skip+ 
locally

Skip+ has constant edge 
expansion and degree log n

SKIP+: A Self-Stabilizing Skip Graph. 
R. Jacob, A. W. Richa, C. Scheideler, S. Schmid and H. Täubig. 
J. ACM 61(6): 36:1-36:26 (2014)     

In the Local model it is possible to build an expander locally in  



SKIP+: A Self-Stabilizing Skip Graph. 
R. Jacob, A. W. Richa, C. Scheideler, S. Schmid and H. Täubig. 
J. ACM 61(6): 36:1-36:26 (2014)     

In the Local model it is possible to build an expander locally in  

Limitations: 
    - Using this technique it is not possible to obtain an algebraic expander 
    - In any round nodes can exchange arbitrary large messages 
    - Memory needed by a single node in any round is not bounded 
    - Synchronous model, complex algorithm

Previous work
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Starting from any connected graph is it possible 
to define a simple rule to construct  

an expander locally? 
   

Problem

Big Data and Sublinear Algorithms Workshop, DIMACS



A simple 
distributed protocol
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Switch protocol
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[McKay, Congressus Numerantium 1981] 
A simple protocol:  
     Pick two edges at random and invert their endpoints 
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Switch protocol
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[McKay, Congressus Numerantium 1981] 
A simple protocol: 
     Pick two edges at random and invert their endpoints 
      Creation of parallel edges/self-loops is allowed 

    Limitation 
       It is not local 
        It may disconnect the graph



Flip protocol
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[Mahlmann and Schindelhauer, SPAA 2005] 
    Pick a random length 3 path and invert its endpoints 
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Flip protocol
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[Mahlmann and Schindelhauer, SPAA 2005] 
    Pick a random length 3 path and invert its endpoints 
     Creation of parallel edges/self-loops is allowed 

    Experimentally it seems to be really fast



What is known about them?
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[Cooper, Dyer and Greenhill, SODA 2005] 
    For d-regular graph the switch protocol converges to the 
    configuration model in                 steps. 
[Greenhill, SODA 2015] 
    For non regular graph with max degree in                the switch 
    protocol converges to the configuration model in 
    steps. 
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[Cooper, Dyer and Greenhill, SODA 2005] 
    For d-regular graph the switch protocol converges to the 
    configuration model in                 steps. 
[Greenhill, SODA 2015] 
    For non regular graph with max degree in                the switch 
    protocol converges to the configuration model in 
    steps. 
[Mahlmann and Schindelhauer, SPAA 2005] 
    For d-regular graph the flip protocol converges to the configuration 
    model. 
[Feder, Guetz, Mihail, and Saberi, FOCS 2006] 
    For d-regular graph the flip protocol converges to the configuration 
    model in                   steps. 
[Cooper and Dyer, PODC 2009] 
    For d-regular graph the flip protocol converges to the configuration 
    model in                   steps.
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How do they perform in practice?
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[Mahlmann and Schindelhauer, SPAA 2005] 
    Experimentally switch and flips protocol transform any graph in 
    an expander very quickly. 

    Conjectures: 
         Switch converges on d-regular graph in             steps. 

         Flip converges on d-regular graph in                      steps. O (nd log n)

O (nd)



A new analysis for 
the two protocols

Big Data and Sublinear Algorithms Workshop, DIMACS



Results
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    Starting from any d-regular graph, with                      , 

         the switch protocol transforms the graph in an algebraic expander in                       
                     steps. 

         the flip protocol transforms the graph in an algebraic expander in                       
                                      steps. 
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Obstacles
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    Dependencies. 

    Small cuts may first become smaller and only later increase. 
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   Pick a random edge. 

Flip definition
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   Pick a random edge. 
    
   One of the endpoints picks a neighbor 
   at random(if in common, abort). 

   The other endpoint picks a random 
   neighbor(if in common, picks a new one). 

   Perform swap. 

Flip definition
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   Pick a random edge. 
    
   One of the endpoints picks a neighbor 
   at random(if in common, abort). 

   The other endpoint picks a random 
   neighbor(if in common, picks a new one). 

   Perform swap. 

   Let

Expected change of laplacian
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   Unfortunately we cannot argue directly on the expectation of the matrix 
   after t step. 
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   Unfortunately we cannot argue directly on the expectation of the matrix 
   after t step. 

    We use a classic potential used for matrix concentration: 

    where  

    Note that in order to have         very small all the eigenvalues need 
    to be large.
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   We want to show that the potential decreases 

   by Golden-Thompson inequality 

   by 

  Taking expectation:

Potential
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Using common diagonalization 
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Two interesting cases: 
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Thus: 

So in expectation         is in                after                        steps, hence 
using Markov inequality we get the result. 
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Limit of our analysis
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Conclusions 
and 

future directions
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Conclusions

   New technique to analyze distribute protocol 

   New convergence time analysis for flip and switch 
     protocol 
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Future works

   Improve analysis of the flip 

   Study parallelized version of the protocol 

   Study node addition or deletion
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Thanks!
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