Streaming Algorithms for Set Cover

Piotr Indyk With: Sepideh Mahabadi, Ali Vakilian

Set Cover

- Input: a collection S of sets S₁...S_m that covers U={1...n}
 - $\text{ I.e., } S_1 \cup S_2 \cup \cup S_m = U$
- Output: a subset I of S such that:
 - I covers U
 - |/| is minimized
- Classic optimization problem:
 - NP-hard
 - Greedy In(n)-approximation algorithm
 - Can't do better unless P=NP (or something like that)

Streaming Set Cover [SG09]

- Model
 - Sequential access to $S_1, S_2, ..., S_m$
 - One (or few) passes, sublinear (i.e., o(mn)) storage
 - (Hopefully) decent approximation factor
- Why?
 - A classic optimization problem (see previous slide)
 - Several ``big data'' uses
 - One of few NP-hard problems studied in streaming
 - Other examples: max-cut, sub-modular opt, FPT

The ``Big Table''

Result	Approximation	Passes	Space	R/D
Greedy	ln(n)	1	O(mn)	D
Greedy	ln(n)	n	O(n)	D
[SG09]	O(logn)	O(logn)	O(n logn)	D
[ER14]	O(n ^{1/2})	1	0~(n)	D
[DIMV14]	O(4 ^{1/δ} ρ)	O(4 ^{1/δ})	O~(mn ^δ)	R
[CW]	n ^δ /δ	1/δ-1	Θ~(n)	D
[Nis02]	log(n)/2	O(logn)	Ω(m)	R
[DIMV14]	O(1)	O(logn)	Ω(mn)	D

[IMV]	Ο(ρ/δ)	Ο(1/δ)	O~(mn ^δ)	R
[IMV]	1	1/2δ-1	Ω~(mn ^δ)	R
[IMV]	1	1/2δ-1	Ω~(ms)	R
[IMV]	3/2	1	Ω(mn)	R

A few observations: algorithms

Greedy	ln(n)	1	O(mn)	D
Greedy	ln(n)	n	O(n)	D
[SG09]	O(logn)	O(logn)	O(n logn)	D
[ER14]	O(n)	1	O~(n)	D
[DIMV14]	O(4 ^{1/δ} ρ)	O(4 ^{1/δ})	O~(mn ^δ)	R
[CW]	n ^δ /δ	1/δ-1	Θ~(n)	D
[IMV]	Ο(ρ/δ)	Ο(1/δ)	O~(mn ^δ)	R

- Most of the algorithms are deterministic
- All of the algorithms are ``clean''

A few observations: lower bounds

[Nis02]	log(n)/2	O(logn)	Ω(m)	R
[DIMV14]	O(1)	O(logn)	Ω(mn)	D
[CW]	n ^δ /δ	1/δ–1	Θ~(n)	D
[IMV]	1	1/2δ-1	Ω~(mn ^δ)	R
[IMV]	3/2	1	Ω(mn)	R

Algorithm

O~(mn^δ)

R

- $O(\rho/\delta)$ Ο(1/δ) [IMV] Approach: "dimensionality reduction"
 - Covers all but $1/n^{\delta}$ fraction of elements using ρ^*k sets (k=min cover size)
 - Uses O~(mn^{δ}) space
 - Two passes
- Repeat $O(1/\delta)$ times:
 - $-O(1/\delta)$ passes
 - $-O(\rho/\delta)$ approximation

Dimensionality reduction:

- Covers all but 1/n^δ fraction of elements
- Uses mn^δ space
- Two passes
- Suppose we know k=min cover size
- Pass 1:
 - For each set S_i , select S_i if it covers $\Omega(n/k)$ elements
 - Compute V=set of elements not covered by selected sets
 - Fact: each not-selected set covers O(n/k) elements in V
- Select a set R of $kn^{\delta}\log m$ random elements from V
- Pass 2:
 - Store all sets projected on R
 - Compute a p-approximate set cover l'
 - Fact [DIMV14, KMVV13]: I' covers all but $1/n^{\delta}$ fraction of V
- Report sets found in Pass 1 and Pass 2

Dimensionality reduction: space accounting

• Suppose we know k=min cover size

* log n

n

- Pass 1:
 - For each set S_i, select S_i if it covers $\Omega(n/k)$ elements
 - Compute V=set of elements not covered by selected sets
 - Fact: each not-selected set covers O(n/k) elements in V
- Select a set R of $kn^{\delta}\log m$ random elements from V
- Pass 2:
 - Store all sets projected on R
 - Compute a ρ-approximate set cover l'
 - Fact [DIMV14, KMVV13]: I' covers all but $1/n^{\delta}$ fraction of V
- Report sets found in Pass 1 and Pass 2

 $m^{*}(n/k)^{*}|R|/n$ = $m^{*}n^{\delta}\log m$

Lower bound: single pass

- Have seen that O(1) passes can reduce space requirements
- What can(not) be done in one pass ?
- We show that distinguishing between k=2 and k=3 requires Ω(mn) space

Proof Idea

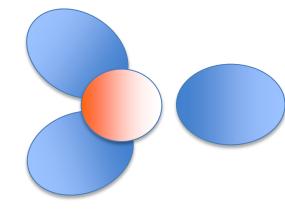
- Two sets cover U iff their complements are disjoint
- Consider two following one-way communication complexity problem:
 - Alice: sets S₁...S_m
 - Bob: set S
 - Question: is S disjoint from one of S_i 's ?
- Lemma: the randomized one way c.c. of this problem is Ω(mn) if error prob. is 1/poly(m)

Proof idea ctd.

- Lemma: the one way c.c. of this problem is Ω(mn) if error prob. is 1/poly(m).
- Proof:
 - Suppose S_i's are selected uniformly at random
 - We show that there exist poly(m) sets S such if
 Bob learns answers to all of them, he can recover all S_i's with high probability

Proof idea ctd.

- Bob's queries:
 - poly(m) random "seed" queries of size c log m for some constant c>0
 - For each sees query S, all "extension" queries of the form S \cup {i}
- Recovery procedure
 - Suppose that a seed S is disjoint from exactly one S_i (we do not know which one)
 - Call it a ``good seed" for S_i
 - Then extension queries recover the complement of S_i
- poly(m) queries suffice to generate a good seed for each S_i



Lower bound: multipass

[IMV]	1	1/2δ-1	Ω~(mn ^δ)	R
[IMV]	1	1/2δ-1	Ω~(ms)	R

- Reduction from Intersection Set Chasing [Guruswami-Onak'13]
- Very "brittle", hence works only for the exact problem

Conclusions

Result	Approximation	Passes	Space	R/D
Greedy	ln(n)	1	O(mn)	D
Greedy	ln(n)	n	O(n)	D
[SG09]	O(logn)	O(logn)	O(n logn)	D
[ER14]	O(n ^{1/2})	1	0~(n)	D
[DIMV14]	O(4 ^{1/δ} ρ)	O(4 ^{1/δ})	O~(mn ^δ)	R
[CW]	n ^δ /δ	1/δ–1	Θ~(n)	D
[Nis02]	log(n)/2	O(logn)	Ω(m)	R
[DIMV14]	O(1)	O(logn)	Ω(mn)	D

[IMV]	Ο(ρ/δ)	Ο(1/δ)	O~(mn ^δ)	R
[IMV]	1	1/2δ-1	Ω~(mn ^δ)	R
[IMV]	1	1/2δ-1	Ω~(ms)	R
[IMV]	3/2	1	Ω(mn)	R