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Set Cover 

• Input: a collection S of sets S1...Sm that covers 
U={1...n} 
– I.e., S1  S2 ….  Sm  = U 

• Output: a subset I of S such that: 
– I covers U 
– |I| is minimized 

• Classic optimization problem: 
– NP-hard 
– Greedy ln(n)-approximation algorithm 
– Can’t do better unless P=NP (or something like that) 

 
 



Streaming Set Cover [SG09] 

• Model 

– Sequential access to S1, S2, …., Sm  

– One (or few) passes, sublinear (i.e., o(mn)) storage 

– (Hopefully) decent approximation factor 

• Why ? 

– A classic optimization problem (see previous slide) 

– Several ``big data’’ uses 

– One of few NP-hard problems studied in streaming 

• Other examples: max-cut, sub-modular opt, FPT 



The ``Big Table’’ 
Result Approximation Passes Space R/D 

Greedy ln(n) 1 O(mn) D 

Greedy ln(n) n O(n) D 

[SG09] O(logn) O(logn) O(n logn) D 

[ER14] O(n1/2) 1 O˜(n) D 

[DIMV14] O(41/δ ρ) O(41/δ) O˜(mnδ) R 

[CW] nδ /δ 1/δ−1 Θ˜(n) D 

[Nis02] log(n)/2 O(logn) Ω(m) R 

[DIMV14] O(1) O(logn) Ω(mn) D 

[IMV] O(ρ/δ) O(1/δ) O˜(mnδ) R 

[IMV] 1 1/2δ−1 Ω~(mnδ) R 

[IMV] 1 1/2δ−1 Ω~(ms) R 

[IMV] 3/2 1 Ω(mn) R 



A few observations: algorithms 

• Most of the algorithms are deterministic 

• All of the algorithms are ``clean’’ 

 

Greedy ln(n) 1 O(mn) D 

Greedy ln(n) n O(n) D 

[SG09] O(logn) O(logn) O(n logn) D 

[ER14] O(n) 1 O˜(n) D 

[DIMV14] O(41/δ ρ) O(41/δ) O˜(mnδ) R 

[CW] nδ /δ 1/δ−1 Θ˜(n) D 

[IMV] O(ρ/δ) O(1/δ) O˜(mnδ) R 



A few observations: lower bounds 

[Nis02] log(n)/2 O(logn) Ω(m) R 

[DIMV14] O(1) O(logn) Ω(mn) D 

[CW] nδ /δ 1/δ−1 Θ˜(n) D 

[IMV] 1 1/2δ−1 Ω~(mnδ) R 

[IMV] 3/2 1 Ω(mn) R 



Algorithm 

• Approach: “dimensionality reduction” 

– Covers all but 1/nδ fraction of elements using ρ*k 
sets (k=min cover size)   

– Uses O~(mnδ) space 

– Two passes 

• Repeat O(1/δ) times: 

– O(1/δ) passes 

– O(ρ/δ) approximation 

 

[IMV] O(ρ/δ) O(1/δ) O˜(mnδ) R 



Dimensionality reduction: 

• Suppose we know k=min cover size  
• Pass 1:  

– For each set Si , select Si if it covers Ω(n/k) elements 
– Compute V=set of elements not covered by selected sets 
– Fact: each not-selected set covers O(n/k) elements in V 

• Select a set R of knδ log m random elements from V 
• Pass 2: 

– Store all sets projected on R 
– Compute a ρ-approximate set cover I’ 
– Fact [DIMV14, KMVV13]: I’ covers all but 1/nδ fraction of V 

• Report sets found in Pass 1 and Pass 2 
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Dimensionality reduction: space 
accounting 

* log n 

n 

  m*(n/k)*|R|/n 
=m*nδ log m  



Lower bound: single pass 

• Have seen that O(1) passes can reduce space 
requirements 

• What can(not) be done in one pass ? 

• We show that distinguishing between k=2 and 
k=3 requires Ω(mn) space 

 

[IMV] 3/2 1 Ω(mn) R 



Proof Idea 

• Two sets cover U iff their complements are 
disjoint 

• Consider two following one-way 
communication complexity problem: 
– Alice: sets S1…Sm 

– Bob: set S 

– Question: is S disjoint from one of Si’s ? 

• Lemma: the randomized one way c.c. of this 
problem is Ω(mn) if error prob. is 1/poly(m) 



Proof idea ctd. 

• Lemma: the one way c.c. of this problem is 
Ω(mn) if error prob. is 1/poly(m). 

• Proof: 

– Suppose Si’s are selected uniformly at random 

– We show that there exist poly(m) sets S such if 
Bob learns answers to all of them, he can recover 
all Si’s with high probability 

 



Proof idea ctd. 

• Bob’s queries:  
– poly(m) random “seed” queries of size         

c log m for some constant c>0  
– For each sees query S, all “extension” 

queries of the form S  {i} 

• Recovery procedure 
– Suppose that a seed S is disjoint from 

exactly one Si (we do not know which one) 
• Call it a ``good seed’’ for Si 

– Then extension queries recover the 
complement of Si 

• poly(m) queries suffice to generate a 
good seed for each Si 
 



Lower bound: multipass 

• Reduction from Intersection Set Chasing 
[Guruswami-Onak’13] 

• Very “brittle”, hence works only for the exact 
problem 

[IMV] 1 1/2δ−1 Ω~(mnδ) R 

[IMV] 1 1/2δ−1 Ω~(ms) R 



Conclusions 
Result Approximation Passes Space R/D 

Greedy ln(n) 1 O(mn) D 

Greedy ln(n) n O(n) D 

[SG09] O(logn) O(logn) O(n logn) D 

[ER14] O(n1/2) 1 O˜(n) D 

[DIMV14] O(41/δ ρ) O(41/δ) O˜(mnδ) R 

[CW] nδ /δ 1/δ−1 Θ˜(n) D 

[Nis02] log(n)/2 O(logn) Ω(m) R 

[DIMV14] O(1) O(logn) Ω(mn) D 

[IMV] O(ρ/δ) O(1/δ) O˜(mnδ) R 

[IMV] 1 1/2δ−1 Ω~(mnδ) R 

[IMV] 1 1/2δ−1 Ω~(ms) R 

[IMV] 3/2 1 Ω(mn) R 


